

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

EXF

Details	
Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	6144
Total RAM Bits	36864
Number of I/O	97
Number of Gates	250000
Voltage - Supply	1.14V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 85°C (TA)
Package / Case	144-LBGA
Supplier Device Package	144-FPBGA (13x13)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/agl250v2-fgg144i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

I/Os Per Package¹

IGLOO Devices	AGL015 ²	AGL030	AGL060	AGL125	AGL	.250	AGL	400	AGL	.600	AGL	1000
ARM-Enabled IGLOO Devices					M1AG	GL250			M1AG	GL600	M1AG	L1000
			I/O Type ³									
Package	Single-Ended I/O	Single-Ended I/O	Single-Ended I/O	Single-Ended I/O	Single-Ended I/O ⁴	Differential I/O Pairs						
QN48	_	34	-	-	-	_	-	-	-	_	_	_
QN68	49	49	-	-	—	-	-	-	-	-	-	-
UC81	_	66	_	_	_	_	_	-	-	-	-	-
CS81	_	66	-	-	-	-	-	-	-	-	-	_
CS121	_	_	96	96	-	-	-	-	-	-	-	-
VQ100	_	77	71	71	68	13	-	-	-	-	-	—
QN132 ⁶	_	81	80	84	-	-	-	-	-	-	-	—
CS196	_	-	_	133	143 ⁵	35 ⁵	143	35	-	-	-	-
FG144	_	-	_	97	97	24	97	25	97	25	97	25
FG256 ⁷	_	-	-	-	—	-	178	38	177	43	177	44
CS281	_	-	-	-	—	-	-	-	215	53	215	53
FG484 ⁷	—	-	—	—	-	-	194	38	235	60	300	74

Notes:

1. When considering migrating your design to a lower- or higher-density device, refer to the IGLOO FPGA Fabric User Guide to ensure compliance with design and board migration requirements.

 AGL015 is not recommended for new designs.
 When the Flash*Freeze pin is used to directly enable Flash*Freeze mode and not used as a regular I/O, the number of singleended user I/Os available is reduced by one.

4. Each used differential I/O pair reduces the number of single-ended I/Os available by two.

5. The M1AGL250 device does not support QN132 or CS196 packages.

Package not available.
 FG256 and FG484 are footprint-compatible packages.

Table 1 •	IGLOO FPGAs Package Sizes Dimensions

Package	UC81	CS81	CS121	QN48	QN68	QN132 [*]	CS196	CS281	FG144	VQ100	FG256	FG484
Length × Width (mm\mm)	4 × 4	5×5	6×6	6×6	8×8	8 × 8	8×8	10 × 10	13 x 13	14 × 14	17 × 17	23 × 23
Nominal Area (mm ²)	16	25	36	36	64	64	64	100	169	196	289	529
Pitch (mm)	0.4	0.5	0.5	0.4	0.4	0.5	0.5	0.5	1.0	0.5	1.0	1.0
Height (mm)	0.80	0.80	0.99	0.90	0.90	0.75	1.20	1.05	1.45	1.00	1.60	2.23

Note: * Package not available.

Flash Advantages

Low Power

Flash-based IGLOO devices exhibit power characteristics similar to those of an ASIC, making them an ideal choice for power-sensitive applications. IGLOO devices have only a very limited power-on current surge and no high-current transition period, both of which occur on many FPGAs.

IGLOO devices also have low dynamic power consumption to further maximize power savings; power is even further reduced by the use of a 1.2 V core voltage.

Low dynamic power consumption, combined with low static power consumption and Flash*Freeze technology, gives the IGLOO device the lowest total system power offered by any FPGA.

Security

Nonvolatile, flash-based IGLOO devices do not require a boot PROM, so there is no vulnerable external bitstream that can be easily copied. IGLOO devices incorporate FlashLock, which provides a unique combination of reprogrammability and design security without external overhead, advantages that only an FPGA with nonvolatile flash programming can offer.

IGLOO devices utilize a 128-bit flash-based lock and a separate AES key to provide the highest level of protection in the FPGA industry for intellectual property and configuration data. In addition, all FlashROM data in IGLOO devices can be encrypted prior to loading, using the industry-leading AES-128 (FIPS192) bit block cipher encryption standard. AES was adopted by the National Institute of Standards and Technology (NIST) in 2000 and replaces the 1977 DES standard. IGLOO devices have a built-in AES decryption engine and a flash-based AES key that make them the most comprehensive programmable logic device security solution available today. IGLOO devices with AES-based security provide a high level of protection for remote field updates over public networks such as the Internet, and are designed to ensure that valuable IP remains out of the hands of system overbuilders, system cloners, and IP thieves.

Security, built into the FPGA fabric, is an inherent component of the IGLOO family. The flash cells are located beneath seven metal layers, and many device design and layout techniques have been used to make invasive attacks extremely difficult. The IGLOO family, with FlashLock and AES security, is unique in being highly resistant to both invasive and noninvasive attacks. Your valuable IP is protected with industry-standard security, making remote ISP possible. An IGLOO device provides the best available security for programmable logic designs.

Single Chip

Flash-based FPGAs store their configuration information in on-chip flash cells. Once programmed, the configuration data is an inherent part of the FPGA structure, and no external configuration data needs to be loaded at system powerup (unlike SRAM-based FPGAs). Therefore, flash-based IGLOO FPGAs do not require system configuration components such as EEPROMs or microcontrollers to load device configuration data. This reduces bill-of-materials costs and PCB area, and increases security and system reliability.

Instant On

Flash-based IGLOO devices support Level 0 of the Instant On classification standard. This feature helps in system component initialization, execution of critical tasks before the processor wakes up, setup and configuration of memory blocks, clock generation, and bus activity management. The Instant On feature of flash-based IGLOO devices greatly simplifies total system design and reduces total system cost, often eliminating the need for CPLDs and clock generation, and unlike SRAM-based FPGAs, the device will not have to be reloaded when system power is restored. This enables the reduction or complete removal of the configuration PROM, expensive voltage monitor, brownout detection, and clock generator devices from the PCB design. Flash-based IGLOO devices simplify total system design and reduce cost and design risk while increasing system reliability and improving system initialization time.

IGLOO flash FPGAs allow the user to quickly enter and exit Flash*Freeze mode. This is done almost instantly (within 1 µs) and the device retains configuration and data in registers and RAM. Unlike SRAM-based FPGAs the device does not need to reload configuration and design state from external memory components; instead it retains all necessary information to resume operation immediately.

Reduced Cost of Ownership

Advantages to the designer extend beyond low unit cost, performance, and ease of use. Unlike SRAM-based FPGAs, Flash-based IGLOO devices allow all functionality to be Instant On; no external boot PROM is required. On-board security mechanisms prevent access to all the programming information and enable secure remote updates of the FPGA logic. Designers can perform secure remote in-system reprogramming to support future design iterations and

User Nonvolatile FlashROM

IGLOO devices have 1 kbit of on-chip, user-accessible, nonvolatile FlashROM. The FlashROM can be used in diverse system applications:

- Internet protocol addressing (wireless or fixed)
- System calibration settings
- Device serialization and/or inventory control
- Subscription-based business models (for example, set-top boxes)
- Secure key storage for secure communications algorithms
- Asset management/tracking
- Date stamping
- Version management

The FlashROM is written using the standard IGLOO IEEE 1532 JTAG programming interface. The core can be individually programmed (erased and written), and on-chip AES decryption can be used selectively to securely load data over public networks (except in the AGL015 and AGL030 devices), as in security keys stored in the FlashROM for a user design.

The FlashROM can be programmed via the JTAG programming interface, and its contents can be read back either through the JTAG programming interface or via direct FPGA core addressing. Note that the FlashROM can only be programmed from the JTAG interface and cannot be programmed from the internal logic array.

The FlashROM is programmed as 8 banks of 128 bits; however, reading is performed on a byte-by-byte basis using a synchronous interface. A 7-bit address from the FPGA core defines which of the 8 banks and which of the 16 bytes within that bank are being read. The three most significant bits (MSBs) of the FlashROM address determine the bank, and the four least significant bits (LSBs) of the FlashROM address define the byte.

The Microsemi development software solutions, Libero[®] System-on-Chip (SoC) and Designer, have extensive support for the FlashROM. One such feature is auto-generation of sequential programming files for applications requiring a unique serial number in each part. Another feature allows the inclusion of static data for system version control. Data for the FlashROM can be generated quickly and easily using Libero SoC and Designer software tools. Comprehensive programming file support is also included to allow for easy programming of large numbers of parts with differing FlashROM contents.

SRAM and FIFO

IGLOO devices (except the AGL015 and AGL030 devices) have embedded SRAM blocks along their north and south sides. Each variable-aspect-ratio SRAM block is 4,608 bits in size. Available memory configurations are 256×18, 512×9, 1k×4, 2k×2, and 4k×1 bits. The individual blocks have independent read and write ports that can be configured with different bit widths on each port. For example, data can be sent through a 4-bit port and read as a single bitstream. The embedded SRAM blocks can be initialized via the device JTAG port (ROM emulation mode) using the UJTAG macro (except in the AGL015 and AGL030 devices).

In addition, every SRAM block has an embedded FIFO control unit. The control unit allows the SRAM block to be configured as a synchronous FIFO without using additional core VersaTiles. The FIFO width and depth are programmable. The FIFO also features programmable Almost Empty (AEMPTY) and Almost Full (AFULL) flags in addition to the normal Empty and Full flags. The embedded FIFO control unit contains the counters necessary for generation of the read and write address pointers. The embedded SRAM/FIFO blocks can be cascaded to create larger configurations.

PLL and CCC

IGLOO devices provide designers with very flexible clock conditioning circuit (CCC) capabilities. Each member of the IGLOO family contains six CCCs. One CCC (center west side) has a PLL. The AGL015 and AGL030 do not have a PLL.

The six CCC blocks are located at the four corners and the centers of the east and west sides. One CCC (center west side) has a PLL.

All six CCC blocks are usable; the four corner CCCs and the east CCC allow simple clock delay operations as well as clock spine access.

The inputs of the six CCC blocks are accessible from the FPGA core or from one of several inputs located near the CCC that have dedicated connections to the CCC block.

The CCC block has these key features:

Table 2-15 • Summary of I/O Input Buffer Power (per pin) – Default I/O Software Settings Applicable to Standard I/O Banks

	VCCI (V)	Static Power PDC6 (mW) ¹	Dynamic Power PAC9 (μW/MHz) ²
Single-Ended			•
3.3 V LVTTL / 3.3 V LVCMOS	3.3	_	17.24
3.3 V LVCMOS Wide Range ³	3.3	_	17.24
2.5 V LVCMOS	2.5	_	5.64
1.8 V LVCMOS	1.8	_	2.63
1.5 V LVCMOS (JESD8-11)	1.5	_	1.97
1.2 V LVCMOS ⁴	1.2	_	0.57
1.2 V LVCMOS Wide Range ⁴	1.2	_	0.57

Notes:

1. PDC6 is the static power (where applicable) measured on VCCI.

2. PAC9 is the total dynamic power measured on VCCI.

3. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD-8B specification.

4. Applicable for IGLOO V2 devices only.

Table 2-16 • Summary of I/O Output Buffer Power (per pin) – Default I/O Software Settings¹ Applicable to Advanced I/O Banks

	C _{LOAD} (pF)	VCCI (V)	Static Power PDC7 (mW) ²	Dynamic Power PAC10 (μW/MHz) ³
Single-Ended		•		
3.3 V LVTTL / 3.3 V LVCMOS	5	3.3	-	136.95
3.3 V LVCMOS Wide Range ⁴	5	3.3	-	136.95
2.5 V LVCMOS	5	2.5	_	76.84
1.8 V LVCMOS	5	1.8	-	49.31
1.5 V LVCMOS (JESD8-11)	5	1.5	-	33.36
1.2 V LVCMOS ⁵	5	1.2	-	16.24
1.2 V LVCMOS Wide Range ⁵	5	1.2	_	16.24
3.3 V PCI	10	3.3	-	194.05
3.3 V PCI-X	10	3.3	_	194.05
Differential	-			
LVDS	_	2.5	7.74	156.22
LVPECL	-	3.3	19.54	339.35

Notes:

1. Dynamic power consumption is given for standard load and software default drive strength and output slew.

2. PDC7 is the static power (where applicable) measured on VCCI.

3. PAC10 is the total dynamic power measured on VCCI.

4. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD-8B specification.

5. Applicable for IGLOO V2 devices only.

Table 2-42 • I/O Short Currents IOSH/IOSL Applicable to Advanced I/O Banks

	Drive Strength	IOSL (mA)*	IOSH (mA)*
3.3 V LVTTL / 3.3 V LVCMOS	2 mA	25	27
	4 mA	25	27
	6 mA	51	54
	8 mA	51	54
	12 mA	103	109
	16 mA	132	127
	24 mA	268	181
3.3 V LVCMOS Wide Range	100 μA	Same as regular 3.3 V LVCMOS	Same as regular 3.3 V LVCMOS
2.5 V LVCMOS	2 mA	16	18
	4 mA	16	18
	6 mA	32	37
	8 mA	32	37
	12 mA	65	74
	16 mA	83	87
	24 mA	169	124
1.8 V LVCMOS	2 mA	9	11
	4 mA	17	22
	6 mA	35	44
	8 mA	45	51
	12 mA	91	74
	16 mA	91	74
1.5 V LVCMOS	2 mA	13	16
	4 mA	25	33
	6 mA	32	39
	8 mA	66	55
	12 mA	66	55
1.2 V LVCMOS	2 mA	20	26
1.2 V LVCMOS Wide Range	100 μA	20	26
3.3 V PCI/PCI-X	Per PCI/PCI-X specification	103	109

Note: $^{*}T_{J} = 100^{\circ}C$

Table 2-75 • 3.3 V LVCMOS Wide Range Low Slew – Applies to 1.2 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 2.7
Applicable to Standard Plus Banks

Drive Strength	Equivalent Software Default Drive Strength Option ¹	Speed Grade	t _{dout}	t _{DP}	t _{DIN}	t _{PY}	t _{eout}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
100 µA	2 mA	Std.	1.55	6.69	0.26	1.32	1.10	6.69	5.73	3.41	3.72	12.48	11.52	ns
100 µA	4 mA	Std.	1.55	6.69	0.26	1.32	1.10	6.69	5.73	3.41	3.72	12.48	11.52	ns
100 µA	6 mA	Std.	1.55	5.58	0.26	1.32	1.10	5.58	5.01	3.77	4.35	11.36	10.79	ns
100 µA	8 mA	Std.	1.55	5.58	0.26	1.32	1.10	5.58	5.01	3.77	4.35	11.36	10.79	ns
100 µA	12 mA	Std.	1.55	4.82	0.26	1.32	1.10	4.82	4.44	4.02	4.76	10.61	10.23	ns
100 µA	16 mA	Std.	1.55	4.82	0.26	1.32	1.10	4.82	4.44	4.02	4.76	10.61	10.23	ns

Notes:

1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ± 100 μA. Drive strengths displayed in software are supported for normal range only. For a detailed I/V curve, refer to the IBIS models.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

Table 2-76 • 3.3 V LVCMOS Wide Range High Slew – Applies to 1.2 V DC Core Voltage
Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 2.7
Applicable to Standard Plus Banks

Drive Strength	Equivalent Software Default Drive Strength Option ¹	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{ZHS}	Units
100 µA	2 mA	Std.	1.55	4.10	0.26	1.32	1.10	4.10	3.30	3.40	3.92	9.89	9.09	ns
100 µA	4 mA	Std.	1.55	4.10	0.26	1.32	1.10	4.10	3.30	3.40	3.92	9.89	9.09	ns
100 µA	6 mA	Std.	1.55	3.51	0.26	1.32	1.10	3.51	2.79	3.76	4.56	9.30	8.57	ns
100 µA	8 mA	Std.	1.55	3.51	0.26	1.32	1.10	3.51	2.79	3.76	4.56	9.30	8.57	ns
100 µA	12 mA	Std.	1.55	3.20	0.26	1.32	1.10	3.20	2.52	4.01	4.97	8.99	8.31	ns
100 µA	16 mA	Std.	1.55	3.20	0.26	1.32	1.10	3.20	2.52	4.01	4.97	8.99	8.31	ns

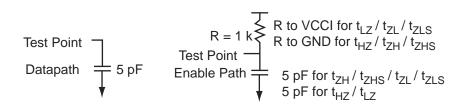
Notes:

1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ± 100 μA. Drive strengths displayed in software are supported for normal range only. For a detailed I/V curve, refer to the IBIS models.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

3. Software default selection highlighted in gray.

Table 2-113 • Minimum and Maximum DC Input and Output Levels Applicable to Standard I/O Banks


1.5 V LVCMOS		VIL	VIH		VOL	VOH	IOL	ЮН	IOSH	IOSL	IIL ¹	IIH ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
2 mA	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.25 * VCCI	0.75 * VCCI	2	2	13	16	10	10

Notes:

1. IIL is the input leakage current per I/O pin over recommended operation conditions where -0.3 V < VIN < VIL.

- 2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN <V CCI. Input current is larger when operating outside recommended ranges
- 3. Currents are measured at 100°C junction temperature and maximum voltage.
- 4. Currents are measured at 85°C junction temperature.

5. Software default selection highlighted in gray.

Figure 2-10 • AC Loading

Table 2-114 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	C _{LOAD} (pF)
0	1.5	0.75	5

Note: *Measuring point = Vtrip. See Table 2-29 on page 2-28 for a complete table of trip points.

Table 2-138 • Minimum and Maximum DC Input and Output Levels for LVCMOS 1.2 V Wide Range	
Applicable to Standard Plus I/O Banks	

1.2 V LVCI Wide Rang			VIL	VIH		VOL	VOH	IOL	юн	IOSL	IOSH	IIL ²	IIH ³
Drive Strength	Equivalent Software Default Drive Strength Option ¹	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ⁴	Max. mA ⁴	μA ⁵	μA ⁵
100 µA	2mA	-0.3	0.35 * VCCI	0.65 * VCCI	1.26	0.25 * VCCI	0.75 * VCCI	100	100	20	26	10	10

Notes:

1. The minimum drive strength for the default LVCMOS 1.2 V software configuration when run in wide range is ± 100 μA. The drive strength displayed in software is supported in normal range only. For a detailed I/V curve, refer to the IBIS models.

2. IIL is the input leakage current per I/O pin over recommended operation conditions where -0.3 V < VIN < VIL.

3. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges

4. Currents are measured at 100°C junction temperature and maximum voltage.

5. Currents are measured at 85°C junction temperature.

6. Software default selection highlighted in gray.

Table 2-139 • Minimum and Maximum DC Input and Output Levels for LVCMOS 1.2 V Wide Range Applicable to Standard I/O Banks

1.2 V LVCI Wide Rang			VIL	VIH		VOL	VOH	IOL	юн	IOSL	IOSH	IIL ²	IIH ³
Drive Strength	Equivalent Software Default Drive Strength Option ¹	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ⁴	Max. mA ⁴	μA ⁵	μA ⁵
100 µA	1 mA	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.25 * VCCI	0.75 * VCCI	100	100	20	26	10	10

Notes:

 The minimum drive strength for the default LVCMOS 1.2 V software configuration when run in wide range is ± 100 μA. The drive strength displayed in software is supported in normal range only. For a detailed I/V curve, refer to the IBIS models.

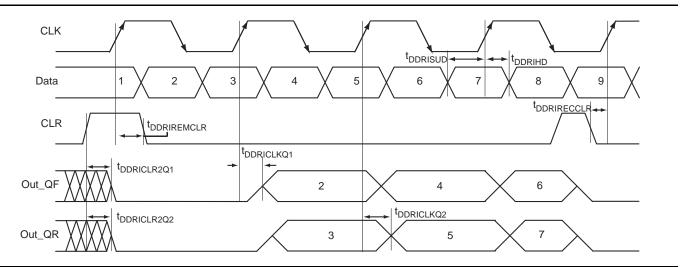
2. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.

3. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges

4. Currents are measured at 100°C junction temperature and maximum voltage.

5. Currents are measured at 85°C junction temperature.

6. Software default selection highlighted in gray.


Table 2-140 • 1.2 V LVCMOS Wide Range AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	C _{LOAD} (pF)
0	1.2	0.6	5

Note: *Measuring point = Vtrip. See Table 2-29 on page 2-28 for a complete table of trip points.

Timing Characteristics

Refer to LVCMOS 1.2 V (normal range) "Timing Characteristics" on page 2-75 for worst-case timing.

Figure 2-22 • Input DDR Timing Diagram

Timing Characteristics

1.5 V DC Core Voltage

Table 2-164 • Input DDR Propagation DelaysCommercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V

Parameter	Description	Std.	Units
t _{DDRICLKQ1}	Clock-to-Out Out_QR for Input DDR	0.48	ns
t _{DDRICLKQ2}	Clock-to-Out Out_QF for Input DDR	0.65	ns
t _{DDRISUD1}	Data Setup for Input DDR (negedge)	0.50	ns
t _{DDRISUD2}	Data Setup for Input DDR (posedge)	0.40	ns
t _{DDRIHD1}	Data Hold for Input DDR (negedge)	0.00	ns
t _{DDRIHD2} Data Hold for Input DDR (posedge)		0.00	ns
t _{DDRICLR2Q1} Asynchronous Clear-to-Out Out_QR for Input DDR		0.82	ns
t _{DDRICLR2Q2}	Asynchronous Clear-to-Out Out_QF for Input DDR	0.98	ns
t _{DDRIREMCLR}	Asynchronous Clear Removal Time for Input DDR	0.00	ns
t _{DDRIRECCLR}	Asynchronous Clear Recovery Time for Input DDR	0.23	ns
t _{DDRIWCLR}	Asynchronous Clear Minimum Pulse Width for Input DDR	0.19	ns
t _{DDRICKMPWH}	t _{DDRICKMPWH} Clock Minimum Pulse Width High for Input DDR		ns
t _{DDRICKMPWL}	KMPWL Clock Minimum Pulse Width Low for Input DDR		ns
F _{DDRIMAX}	Maximum Frequency for Input DDR	250.00	MHz

Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.

Table 2-177 • AGL250 Global Resource

Commercial-Case Conditions: T_J = 70°C, VCC = 1.425 V

		Std.	
Parameter	Description	Min. ¹ Max	κ. ² Units
t _{RCKL}	Input Low Delay for Global Clock	1.39 1.7	3 ns
t _{RCKH}	Input High Delay for Global Clock	1.41 1.8	4 ns
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock	1.18	ns
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock	1.15	ns
t _{RCKSW}	Maximum Skew for Global Clock	0.4	3 ns

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

Table 2-178 • AGL400 Global Resource

Commercial-Case Conditions: T_J = 70°C, VCC = 1.425 V

		Std.		
Parameter	Description	Min. ¹	Max. ²	Units
t _{RCKL}	Input Low Delay for Global Clock	1.45	1.79	ns
t _{RCKH}	Input High Delay for Global Clock	1.48	1.91	ns
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock	1.18		ns
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock	1.15		ns
t _{RCKSW}	Maximum Skew for Global Clock		0.43	ns

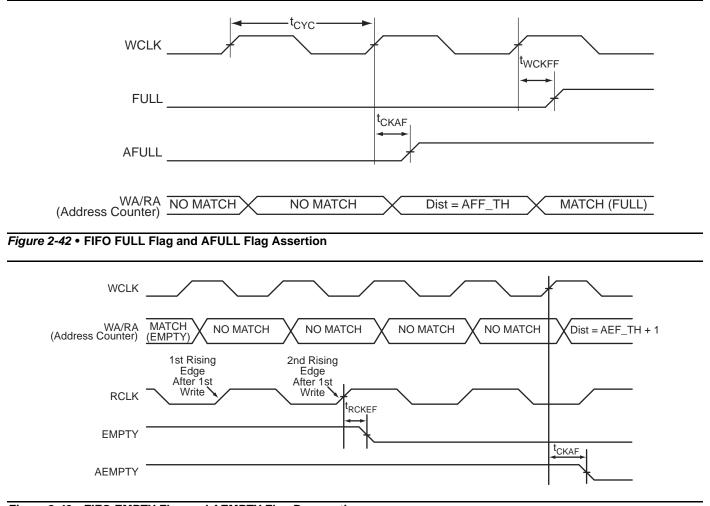
Notes:

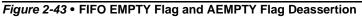
1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

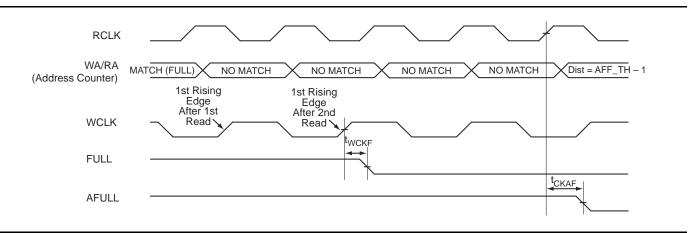
2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

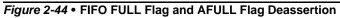
3. For specific junction temperature and voltage-supply levels, refer to Table 2-6 on page 2-7 for derating values.

Table 2-192 • RAM512X18


```
Commercial-Case Conditions: T<sub>J</sub> = 70°C, Worst-Case VCC = 1.425 V
```


Parameter	Description	Std.	Units	
t _{AS}	Address setup time	0.83	ns	
t _{AH}	Address hold time	0.16	ns	
t _{ENS}	REN, WEN setup time (
t _{ENH}	REN, WEN hold time	0.08	ns	
t _{DS}	Input data (WD) setup time	0.71	ns	
t _{DH}	Input data (WD) hold time	0.36	ns	
t _{CKQ1}	Clock High to new data valid on RD (output retained)		ns	
t _{CKQ2}	Clock High to new data valid on RD (pipelined)	1.71	ns	
t _{C2CRWH} 1	Address collision clk-to-clk delay for reliable read access after write on same address - Applicable to Opening Edge		ns	
t _{C2CWRH} 1	Address collision clk-to-clk delay for reliable write access after read on same address - Applicable to Opening Edge	0.42	ns	
t _{RSTBQ}	RESET Low to data out Low on RD (flow-through)	2.06	ns	
	RESET Low to data out Low on RD (pipelined)	2.06	ns	
t _{REMRSTB}	RESET removal	0.61	ns	
t _{RECRSTB}	RESET recovery	3.21	ns	
t _{MPWRSTB}	RESET minimum pulse width	0.68	ns	
t _{CYC}	Clock cycle time	6.24	ns	
F _{MAX}	Maximum frequency	160	MHz	


Notes:


1. For more information, refer to the application note Simultaneous Read-Write Operations in Dual-Port SRAM for Flash-Based cSoCs and FPGAs.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

Microsemi

IGLOO Low Power Flash FPGAs

FG144			FG144	FG144			
Pin Number	AGL125 Function	Pin Number	AGL125 Function	Pin Number	AGL125 Function		
A1	GNDQ	D1	IO128RSB1	G1	GFA1/IO121RSB1		
A2	VMV0	D2	IO129RSB1	G2	GND		
A3	GAB0/IO02RSB0	D3	IO130RSB1	G3	VCCPLF		
A4	GAB1/IO03RSB0	D4	GAA2/IO67RSB1	G4	GFA0/IO122RSB1		
A5	IO11RSB0	D5	GAC0/IO04RSB0	G5	GND		
A6	GND	D6	GAC1/IO05RSB0	G6	GND		
A7	IO18RSB0	D7	GBC0/IO35RSB0	G7	GND		
A8	VCC	D8	GBC1/IO36RSB0	G8	GDC1/IO61RSB0		
A9	IO25RSB0	D9	GBB2/IO43RSB0	G9	IO48RSB0		
A10	GBA0/IO39RSB0	D10	IO28RSB0	G10	GCC2/IO59RSB0		
A11	GBA1/IO40RSB0	D11	IO44RSB0	G11	IO47RSB0		
A12	GNDQ	D12	GCB1/IO53RSB0	G12	GCB2/IO58RSB0		
B1	GAB2/IO69RSB1	E1	VCC	H1	VCC		
B2	GND	E2	GFC0/IO125RSB1	H2	GFB2/IO119RSB1		
B3	GAA0/IO00RSB0	E3	GFC1/IO126RSB1	H3	GFC2/IO118RSB1		
B4	GAA1/IO01RSB0	E4	VCCIB1	H4	GEC1/IO112RSB1		
B5	IO08RSB0	E5	IO68RSB1	H5	VCC		
B6	IO14RSB0	E6	VCCIB0	H6	IO50RSB0		
B7	IO19RSB0	E7	VCCIB0	H7	IO60RSB0		
B8	IO22RSB0	E8	GCC1/IO51RSB0	H8	GDB2/IO71RSB1		
B9	GBB0/IO37RSB0	E9	VCCIB0	H9	GDC0/IO62RSB0		
B10	GBB1/IO38RSB0	E10	VCC	H10	VCCIB0		
B11	GND	E11	GCA0/IO56RSB0	H11	IO49RSB0		
B12	VMV0	E12	IO46RSB0	H12	VCC		
C1	IO132RSB1	F1	GFB0/IO123RSB1	J1	GEB1/IO110RSB1		
C2	GFA2/IO120RSB1	F2	VCOMPLF	J2	IO115RSB1		
C3	GAC2/IO131RSB1	F3	GFB1/IO124RSB1	J3	VCCIB1		
C4	VCC	F4	IO127RSB1	J4	GEC0/IO111RSB1		
C5	IO10RSB0	F5	GND	J5	IO116RSB1		
C6	IO12RSB0	F6	GND	J6	IO117RSB1		
C7	IO21RSB0	F7	GND	J7	VCC		
C8	IO24RSB0	F8	GCC0/IO52RSB0	J8	ТСК		
C9	IO27RSB0	F9	GCB0/IO54RSB0	J9	GDA2/IO70RSB1		
C10	GBA2/IO41RSB0	F10	GND	J10	TDO		
C11	IO42RSB0	F11	GCA1/IO55RSB0	J11	GDA1/IO65RSB0		
C12	GBC2/IO45RSB0	F12	GCA2/IO57RSB0	J12	GDB1/IO63RSB0		

Microsemi

Package Pin Assignments

	FG144
Pin Number	AGL1000 Function
K1	GEB0/IO189NDB3
K2	GEA1/IO188PDB3
K3	GEA0/IO188NDB3
K4	GEA2/IO187RSB2
K5	IO169RSB2
K6	IO152RSB2
K7	GND
K8	IO117RSB2
K9	GDC2/IO116RSB2
K10	GND
K11	GDA0/IO113NDB1
K12	GDB0/IO112NDB1
L1	GND
L2	VMV3
L3	FF/GEB2/IO186RSB2
L4	IO172RSB2
L5	VCCIB2
L6	IO153RSB2
L7	IO144RSB2
L8	IO140RSB2
L9	TMS
L10	VJTAG
L11	VMV2
L12	TRST
M1	GNDQ
M2	GEC2/IO185RSB2
M3	IO173RSB2
M4	IO168RSB2
M5	IO161RSB2
M6	IO156RSB2
M7	IO145RSB2
M8	IO141RSB2
M9	TDI
M10	VCCIB2
M11	VPUMP
M12	GNDQ

Microsemi

Package Pin Assignments

FG256			FG256		FG256		
Pin Number	AGL1000 Function	Pin Number	AGL1000 Function	Pin Number	AGL1000 Function		
A1	GND	C7	IO25RSB0	E13	GBC2/IO80PDB1		
A2	GAA0/IO00RSB0	C8	IO36RSB0	E14	IO83PPB1		
A3	GAA1/IO01RSB0	C9	IO42RSB0	E15	IO86PPB1		
A4	GAB0/IO02RSB0	C10	IO49RSB0	E16	IO87PDB1		
A5	IO16RSB0	C11	IO56RSB0	F1	IO217NDB3		
A6	IO22RSB0	C12	GBC0/IO72RSB0	F2	IO218NDB3		
A7	IO28RSB0	C13	IO62RSB0	F3	IO216PDB3		
A8	IO35RSB0	C14	VMV0	F4	IO216NDB3		
A9	IO45RSB0	C15	IO78NDB1	F5	VCCIB3		
A10	IO50RSB0	C16	IO81NDB1	F6	GND		
A11	IO55RSB0	D1	IO222NDB3	F7	VCC		
A12	IO61RSB0	D2	IO222PDB3	F8	VCC		
A13	GBB1/IO75RSB0	D3	GAC2/IO223PDB3	F9	VCC		
A14	GBA0/IO76RSB0	D4	IO223NDB3	F10	VCC		
A15	GBA1/IO77RSB0	D5	GNDQ	F11	GND		
A16	GND	D6	IO23RSB0	F12	VCCIB1		
B1	GAB2/IO224PDB3	D7	IO29RSB0	F13	IO83NPB1		
B2	GAA2/IO225PDB3	D8	IO33RSB0	F14	IO86NPB1		
B3	GNDQ	D9	IO46RSB0	F15	IO90PPB1		
B4	GAB1/IO03RSB0	D10	IO52RSB0	F16	IO87NDB1		
B5	IO17RSB0	D11	IO60RSB0	G1	IO210PSB3		
B6	IO21RSB0	D12	GNDQ	G2	IO213NDB3		
B7	IO27RSB0	D13	IO80NDB1	G3	IO213PDB3		
B8	IO34RSB0	D14	GBB2/IO79PDB1	G4	GFC1/IO209PPB3		
B9	IO44RSB0	D15	IO79NDB1	G5	VCCIB3		
B10	IO51RSB0	D16	IO82NSB1	G6	VCC		
B11	IO57RSB0	E1	IO217PDB3	G7	GND		
B12	GBC1/IO73RSB0	E2	IO218PDB3	G8	GND		
B13	GBB0/IO74RSB0	E3	IO221NDB3	G9	GND		
B14	IO71RSB0	E4	IO221PDB3	G10	GND		
B15	GBA2/IO78PDB1	E5	VMV0	G11	VCC		
B16	IO81PDB1	E6	VCCIB0	G12	VCCIB1		
C1	IO224NDB3	E7	VCCIB0	G13	GCC1/IO91PPB1		
C2	IO225NDB3	E8	IO38RSB0	G14	IO90NPB1		
C3	VMV3	E9	IO47RSB0	G15	IO88PDB1		
C4	IO11RSB0	E10	VCCIB0	G16	IO88NDB1		
C5	GAC0/IO04RSB0	E11	VCCIB0	H1	GFB0/IO208NPB3		
C6	GAC1/IO05RSB0	E12	VMV1	H2	GFA0/IO207NDB3		

Package Pin Assignments

FG484					
Pin Number	AGL400 Function				
E13	IO38RSB0				
E14	IO42RSB0				
E15	GBC1/IO55RSB0				
E16	GBB0/IO56RSB0				
E17	IO44RSB0				
E18	GBA2/IO60PDB1				
E19	IO60NDB1				
E20	GND				
E21	NC				
E22	NC				
F1	NC				
F2	NC				
F3	NC				
F4	IO154VDB3				
F5	IO155VDB3				
F6	IO11RSB0				
F7	IO07RSB0				
F8	GAC0/IO04RSB0				
F9	GAC1/IO05RSB0				
F10	IO20RSB0				
F11	IO24RSB0				
F12	IO33RSB0				
F13	IO39RSB0				
F14	IO45RSB0				
F15	GBC0/IO54RSB0				
F16	IO48RSB0				
F17	VMV0				
F18	IO61NPB1				
F19	IO63PDB1				
F20	NC				
F21	NC				
F22	NC				
G1	NC				
G2	NC				
G3	NC				
G4	IO151VDB3				

FG484					
Pin Number	AGL600 Function				
U1	IO149PDB3				
U2	IO149NDB3				
U3	NC				
U4	GEB1/IO145PDB3				
U5	GEB0/IO145NDB3				
U6	VMV2				
U7	IO138RSB2				
U8	IO136RSB2				
U9	IO131RSB2				
U10	IO124RSB2				
U11	IO119RSB2				
U12	IO107RSB2				
U13	IO104RSB2				
U14	IO97RSB2				
U15	VMV1				
U16	ТСК				
U17	VPUMP				
U18	TRST				
U19	GDA0/IO88NDB1				
U20	NC				
U21	IO83NDB1				
U22	NC				
V1	NC				
V2	NC				
V3	GND				
V4	GEA1/IO144PDB3				
V5	GEA0/IO144NDB3				
V6	IO139RSB2				
V7	GEC2/IO141RSB2				
V8	IO132RSB2				
V9	IO127RSB2				
V10	IO121RSB2				
V11	IO114RSB2				
V12	IO109RSB2				
V13	IO105RSB2				
V14	IO98RSB2				

FG484		
Pin Number	AGL1000 Function	
A1	GND	
A2	GND	
A3	VCCIB0	
A4	IO07RSB0	
A5	IO09RSB0	
A6	IO13RSB0	
A7	IO18RSB0	
A8	IO20RSB0	
A9	IO26RSB0	
A10	IO32RSB0	
A11	IO40RSB0	
A12	IO41RSB0	
A13	IO53RSB0	
A14	IO59RSB0	
A15	IO64RSB0	
A16	IO65RSB0	
A17	IO67RSB0	
A18	IO69RSB0	
A19	NC	
A20	VCCIB0	
A21	GND	
A22	GND	
AA1	GND	
AA2	VCCIB3	
AA3	NC	
AA4	IO181RSB2	
AA5	IO178RSB2	
AA6	IO175RSB2	
AA7	IO169RSB2	
AA8	IO166RSB2	
AA9	IO160RSB2	
AA10	IO152RSB2	
AA11	IO146RSB2	
AA12	IO139RSB2	
AA13	IO133RSB2	
AA14	NC	

FG484		
Pin Number	AGL1000 Function	
AA15	NC	
AA16	IO122RSB2	
AA17	IO119RSB2	
AA18	IO117RSB2	
AA19	NC	
AA20	NC	
AA21	VCCIB1	
AA22	GND	
AB1	GND	
AB2	GND	
AB3	VCCIB2	
AB4	IO180RSB2	
AB5	IO176RSB2	
AB6	IO173RSB2	
AB7	IO167RSB2	
AB8	IO162RSB2	
AB9	IO156RSB2	
AB10	IO150RSB2	
AB11	IO145RSB2	
AB12	IO144RSB2	
AB13	IO132RSB2	
AB14	IO127RSB2	
AB15	IO126RSB2	
AB16	IO123RSB2	
AB17	IO121RSB2	
AB18	IO118RSB2	
AB19	NC	
AB20	VCCIB2	
AB21	GND	
AB22	GND	
B1	GND	
B2	VCCIB3	
B3	NC	
B4	IO06RSB0	
B5	IO08RSB0	

FG484	
Pin Number	AGL1000 Function
N17	IO100NPB1
N18	IO102NDB1
N19	IO102PDB1
N20	NC
N21	IO101NPB1
N22	IO103PDB1
P1	NC
P2	IO199PDB3
P3	IO199NDB3
P4	IO202NDB3
P5	IO202PDB3
P6	IO196PPB3
P7	IO193PPB3
P8	VCCIB3
P9	GND
P10	VCC
P11	VCC
P12	VCC
P13	VCC
P14	GND
P15	VCCIB1
P16	GDB0/IO112NPB1
P17	IO106NDB1
P18	IO106PDB1
P19	IO107PDB1
P20	NC
P21	IO104PDB1
P22	IO103NDB1
R1	NC
R2	IO197PPB3
R3	VCC
R4	IO197NPB3
R5	IO196NPB3
R6	IO193NPB3
R7	GEC0/IO190NPB3
R8	VMV3