Welcome to **E-XFL.COM** # Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u> Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware. ## **Applications of Embedded - FPGAs** The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications. | Details | | |--------------------------------|---| | Product Status | Active | | Number of LABs/CLBs | - | | Number of Logic Elements/Cells | 6144 | | Total RAM Bits | 36864 | | Number of I/O | 68 | | Number of Gates | 250000 | | Voltage - Supply | 1.425V ~ 1.575V | | Mounting Type | Surface Mount | | Operating Temperature | 0°C ~ 70°C (TA) | | Package / Case | 100-TQFP | | Supplier Device Package | 100-VQFP (14x14) | | Purchase URL | https://www.e-xfl.com/product-detail/microchip-technology/agl250v5-vqg100 | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong VersaTiles are connected with any of the four levels of routing hierarchy. Flash switches are distributed throughout the device to provide nonvolatile, reconfigurable interconnect programming. Maximum core utilization is possible for virtually any design. Note: *Not supported by AGL015 and AGL030 devices Figure 1-1 • IGLOO Device Architecture Overview with Two I/O Banks (AGL015, AGL030, AGL060, and AGL125) Figure 1-2 • IGLOO Device Architecture Overview with Four I/O Banks (AGL250, AGL600, AGL400, and AGL1000) - Wide input frequency range (f_{IN CCC}) = 1.5 MHz up to 250 MHz - Output frequency range (f_{OUT CCC}) = 0.75 MHz up to 250 MHz - 2 programmable delay types for clock skew minimization - Clock frequency synthesis (for PLL only) ## Additional CCC specifications: - Internal phase shift = 0°, 90°, 180°, and 270°. Output phase shift depends on the output divider configuration (for PLL only). - Output duty cycle = 50% ± 1.5% or better (for PLL only) - Low output jitter: worst case < 2.5% x clock period peak-to-peak period jitter when single global network used (for PLL only) - Maximum acquisition time is 300 µs (for PLL only) - Exceptional tolerance to input period jitter—allowable input jitter is up to 1.5 ns (for PLL only) - Four precise phases; maximum misalignment between adjacent phases of 40 ps x 250 MHz / f_{OUT_CCC} (for PLL only) ## Global Clocking IGLOO devices have extensive support for multiple clocking domains. In addition to the CCC and PLL support described above, there is a comprehensive global clock distribution network. Each VersaTile input and output port has access to nine VersaNets: six chip (main) and three quadrant global networks. The VersaNets can be driven by the CCC or directly accessed from the core via multiplexers (MUXes). The VersaNets can be used to distribute low-skew clock signals or for rapid distribution of high-fanout nets. #### I/Os with Advanced I/O Standards The IGLOO family of FPGAs features a flexible I/O structure, supporting a range of voltages (1.2 V, 1.5 V, 1.8 V, 2.5 V, 3.0 V wide range, and 3.3 V). IGLOO FPGAs support many different I/O standards—single-ended and differential. The I/Os are organized into banks, with two or four banks per device. The configuration of these banks determines the I/O standards supported (Table 1-1). | Table 1-1 • I/0 |) Standards | Supported | |-----------------|-------------|-----------| |-----------------|-------------|-----------| | | | I/O Standards Supported | | | | |---------------|--|-------------------------|---------------|---------------------------------|--| | I/O Bank Type | Device and Bank Location | LVTTL/
LVCMOS | PCI/PCI-X | LVPECL, LVDS,
B-LVDS, M-LVDS | | | Advanced | East and west banks of AGL250 and larger devices | ✓ | ✓ | ✓ | | | Standard Plus | North and south banks of AGL250 and larger devices All banks of AGL060 and AGL125K | √ | √ | Not supported | | | Standard | All banks of AGL015 and AGL030 | ✓ | Not supported | Not supported | | Each I/O module contains several input, output, and enable registers. These registers allow the implementation of the following: - Single-Data-Rate applications - Double-Data-Rate applications—DDR LVDS, B-LVDS, and M-LVDS I/Os for point-to-point communications IGLOO banks for the AGL250 device and above support LVPECL, LVDS, B-LVDS, and M-LVDS. B-LVDS and M-LVDS can support up to 20 loads. Hot-swap (also called hot-plug, or hot-insertion) is the operation of hot-insertion or hot-removal of a card in a powered-up system. Cold-sparing (also called cold-swap) refers to the ability of a device to leave system data undisturbed when the system is powered up, while the component itself is powered down, or when power supplies are floating. 1-7 Revision 27 Figure 2-2 • V2 Devices – I/O State as a Function of VCCI and VCC Voltage Levels ## **Thermal Characteristics** #### Introduction The temperature variable in the Designer software refers to the junction temperature, not the ambient temperature. This is an important distinction because dynamic and static power consumption cause the chip junction to be higher than the ambient temperature. EQ 1 can be used to calculate junction temperature. T_J = Junction Temperature = $\Delta T + T_A$ EQ 1 #### where: T_A = Ambient Temperature ΔT = Temperature gradient between junction (silicon) and ambient ΔT = θ_{ja} * P θ_{ia} = Junction-to-ambient of the package. θ_{ia} numbers are located in Table 2-5 on page 2-6. P = Power dissipation Table 2-10 • Quiescent Supply Current (IDD) Characteristics, IGLOO Sleep Mode* | | Core
Voltage | AGL015 | AGL030 | AGL060 | AGL125 | AGL250 | AGL400 | AGL600 | AGL1000 | Units | |---|------------------|--------|--------|--------|--------|--------|--------|--------|---------|-------| | VCCI/VJTAG = 1.2 V
(per bank) Typical (25°C) | 1.2 V | 1.7 | 1.7 | 1.7 | 1.7 | 1.7 | 1.7 | 1.7 | 1.7 | μΑ | | VCCI/VJTAG = 1.5 V
(per bank) Typical (25°C) | 1.2 V / 1.5
V | 1.8 | 1.8 | 1.8 | 1.8 | 1.8 | 1.8 | 1.8 | 1.8 | μΑ | | VCCI/VJTAG = 1.8 V (per bank) Typical (25°C) | 1.2 V / 1.5
V | 1.9 | 1.9 | 1.9 | 1.9 | 1.9 | 1.9 | 1.9 | 1.9 | μA | | VCCI/VJTAG = 2.5 V
(per bank) Typical (25°C) | 1.2 V / 1.5
V | 2.2 | 2.2 | 2.2 | 2.2 | 2.2 | 2.2 | 2.2 | 2.2 | μA | | VCCI/VJTAG = 3.3 V
(per bank) Typical (25°C) | 1.2 V / 1.5
V | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | μΑ | Note: $IDD = N_{BANKS} \times ICCI$. Values do not include I/O static contribution, which is shown in Table 2-13 on page 2-10 through Table 2-15 on page 2-11 and Table 2-16 on page 2-11 through Table 2-18 on page 2-12 (PDC6 and PDC7). Table 2-11 • Quiescent Supply Current (IDD) Characteristics, IGLOO Shutdown Mode | | Core Voltage | AGL015 | AGL030 | Units | |----------------|---------------|--------|--------|-------| | Typical (25°C) | 1.2 V / 1.5 V | 0 | 0 | μΑ | Table 2-12 • Quiescent Supply Current (IDD), No IGLOO Flash*Freeze Mode¹ | | Core
Voltage | AGL015 | AGL030 | AGL060 | AGL125 | AGL250 | AGL400 | AGL600 | AGL1000 | Units | |---|--------------------------|--------|--------|--------|--------|--------|--------|--------|---------|-------| | ICCA Current ² | CCA Current ² | | | | | | | | | | | Typical (25°C) | 1.2 V | 5 | 6 | 10 | 13 | 18 | 25 | 28 | 42 | μΑ | | | 1.5 V | 14 | 16 | 20 | 28 | 44 | 66 | 82 | 137 | μΑ | | ICCI or IJTAG Current ³ | | | | | | | | | | | | VCCI/VJTAG = 1.2 V
(per bank) Typical (25°C) | 1.2 V | 1.7 | 1.7 | 1.7 | 1.7 | 1.7 | 1.7 | 1.7 | 1.7 | μΑ | | VCCI/VJTAG = 1.5 V (per bank) Typical (25°C) | 1.2 V /
1.5 V | 1.8 | 1.8 | 1.8 | 1.8 | 1.8 | 1.8 | 1.8 | 1.8 | μΑ | | VCCI/VJTAG = 1.8 V (per bank) Typical (25°C) | 1.2 V /
1.5 V | 1.9 | 1.9 | 1.9 | 1.9 | 1.9 | 1.9 | 1.9 | 1.9 | μΑ | | VCCI/VJTAG = 2.5 V (per
bank) Typical (25°C) | 1.2 V /
1.5 V | 2.2 | 2.2 | 2.2 | 2.2 | 2.2 | 2.2 | 2.2 | 2.2 | μΑ | | VCCI/VJTAG = 3.3 V (per bank) Typical (25°C) | 1.2 V /
1.5 V | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | μΑ | ## Notes: - 1. $IDD = N_{BANKS} \times ICCI + ICCA$. JTAG counts as one bank when powered. - 2. Includes VCC, VPUMP, and VCCPLL currents. - 3. Values do not include I/O static contribution (PDC6 and PDC7). 2-8 Revision 27 Figure 2-4 • Input Buffer Timing Model and Delays (example) 2-20 Revision 27 # Summary of I/O Timing Characteristics – Default I/O Software Settings Table 2-29 • Summary of AC Measuring Points | Standard | Measuring Trip Point (Vtrip) | |----------------------------|------------------------------| | 3.3 V LVTTL / 3.3 V LVCMOS | 1.4 V | | 3.3 V VCMOS Wide Range | 1.4 V | | 2.5 V LVCMOS | 1.2 V | | 1.8 V LVCMOS | 0.90 V | | 1.5 V LVCMOS | 0.75 V | | 1.2 V LVCMOS | 0.60 V | | 1.2 V LVCMOS Wide Range | 0.60 V | | 3.3 V PCI | 0.285 * VCCI (RR) | | | 0.615 * VCCI (FF) | | 3.3 V PCI-X | 0.285 * VCCI (RR) | | | 0.615 * VCCI (FF) | ## Table 2-30 • I/O AC Parameter Definitions | Parameter | Parameter Definition | |-------------------|---| | t _{DP} | Data to Pad delay through the Output Buffer | | t _{PY} | Pad to Data delay through the Input Buffer | | t _{DOUT} | Data to Output Buffer delay through the I/O interface | | t _{EOUT} | Enable to Output Buffer Tristate Control delay through the I/O interface | | t _{DIN} | Input Buffer to Data delay through the I/O interface | | t _{HZ} | Enable to Pad delay through the Output Buffer—High to Z | | t_{ZH} | Enable to Pad delay through the Output Buffer—Z to High | | t_{LZ} | Enable to Pad delay through the Output Buffer—Low to Z | | t _{ZL} | Enable to Pad delay through the Output Buffer—Z to Low | | t _{ZHS} | Enable to Pad delay through the Output Buffer with delayed enable—Z to High | | t _{ZLS} | Enable to Pad delay through the Output Buffer with delayed enable—Z to Low | Table 2-31 • Summary of I/O Timing Characteristics—Software Default Settings, Std. Speed Grade, Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI (per standard) Applicable to Advanced I/O Banks | I/O Standard | Drive Strength | Equivalent Software Default
Drive Strength Option ¹ (mA) | Slew Rate | Capacitive Load (pF) | External Resistor (Ω) | t _{DOUT} (ns) | t _{DP} (ns) | ^t DIN (ns) | t _{PY} (ns) | t _{EOUT} (ns) | t _{ZL} (ns) | (su) ^{HZ} ₁ | t _{LZ} (ns) | t _{HZ} (ns) | t _{ZLS} (ns) | (su) SHZ ₁ | Units | |---|--------------------|--|-----------|----------------------|------------------------------|------------------------|----------------------|-----------------------|----------------------|------------------------|----------------------|---------------------------------|----------------------|----------------------|-----------------------|-----------------------|-------| | 3.3 V
LVTTL /
3.3 V
LVCMOS | 12 mA | 12 | High | 5 | _ | 0.97 | 2.09 | 0.18 | 0.85 | 0.66 | 2.14 | 1.68 | 2.67 | 3.05 | 5.73 | 5.27 | ns | | 3.3 V
LVCMOS
Wide
Range ² | 100 μΑ | 12 | High | 5 | _ | 0.97 | 2.93 | 0.18 | 1.19 | 0.66 | 2.95 | 2.27 | 3.81 | 4.30 | 6.54 | 5.87 | ns | | 2.5 V
LVCMOS | 12 mA | 12 | High | 5 | - | 0.97 | 2.09 | 0.18 | 1.08 | 0.66 | 2.14 | 1.83 | 2.73 | 2.93 | 5.73 | 5.43 | ns | | 1.8 V
LVCMOS | 12 mA | 12 | High | 5 | _ | 0.97 | 2.24 | 0.18 | 1.01 | 0.66 | 2.29 | 2.00 | 3.02 | 3.40 | 5.88 | 5.60 | ns | | 1.5 V
LVCMOS | 12 mA | 12 | High | 5 | _ | 0.97 | 2.50 | 0.18 | 1.17 | 0.66 | 2.56 | 2.27 | 3.21 | 3.48 | 6.15 | 5.86 | ns | | 3.3 V PCI | Per PCI
spec | 1 | High | 10 | 25 ² | 0.97 | 2.32 | 0.18 | 0.74 | 0.66 | 2.37 | 1.78 | 2.67 | 3.05 | 5.96 | 5.38 | ns | | 3.3 V
PCI-X | Per PCI-
X spec | - | High | 10 | 25 ² | 0.97 | 2.32 | 0.19 | 0.70 | 0.66 | 2.37 | 1.78 | 2.67 | 3.05 | 5.96 | 5.38 | ns | | LVDS | 24 mA | _ | High | - | - | 0.97 | 1.74 | 0.19 | 1.35 | _ | _ | - | - | _ | _ | - | ns | | LVPECL | 24 mA | _ | High | - | - | 0.97 | 1.68 | 0.19 | 1.16 | _ | _ | _ | _ | _ | _ | _ | ns | | N1-4 | | | | | | | | | | | | | | | | | | #### Notes: 4. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values. 2-28 Revision 27 The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ±100 μA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models. ^{2.} All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD-8B specification. ^{3.} Resistance is used to measure I/O propagation delays as defined in PCI specifications. See Figure 2-12 on page 2-79 for connectivity. This resistor is not required during normal operation. Table 2-44 • I/O Short Currents IOSH/IOSL Applicable to Standard I/O Banks | | Drive Strength | IOSL (mA)* | IOSH (mA)* | |----------------------------|----------------|------------------------------|------------------------------| | 3.3 V LVTTL / 3.3 V LVCMOS | 2 mA | 25 | 27 | | | 4 mA | 25 | 27 | | | 6 mA | 51 | 54 | | | 8 mA | 51 | 54 | | 3.3 V LVCMOS Wide Range | 100 μΑ | Same as regular 3.3 V LVCMOS | Same as regular 3.3 V LVCMOS | | 2.5 V LVCMOS | 2 mA | 16 | 18 | | | 4 mA | 16 | 18 | | | 6 mA | 32 | 37 | | | 8 mA | 32 | 37 | | 1.8 V LVCMOS | 2 mA | 9 | 11 | | | 4 mA | 17 | 22 | | 1.5 V LVCMOS | 2 mA | 13 | 16 | | 1.2 V LVCMOS | 1 mA | 20 | 26 | | 1.2 V LVCMOS Wide Range | 100 μΑ | 20 | 26 | Note: ${}^*T_J = 100 {}^{\circ}C$ The length of time an I/O can withstand I_{OSH}/I_{OSL} events depends on the junction temperature. The reliability data below is based on a 3.3 V, 12 mA I/O setting, which is the worst case for this type of analysis. For example, at 100°C, the short current condition would have to be sustained for more than six months to cause a reliability concern. The I/O design does not contain any short circuit protection, but such protection would only be needed in extremely prolonged stress conditions. Table 2-45 • Duration of Short Circuit Event before Failure | Temperature | Time before Failure | |-------------|---------------------| | -40°C | > 20 years | | -20°C | > 20 years | | 0°C | > 20 years | | 25°C | > 20 years | | 70°C | 5 years | | 85°C | 2 years | | 100°C | 6 months | Table 2-46 • I/O Input Rise Time, Fall Time, and Related I/O Reliability1 | Input Buffer | Input Rise/Fall Time (min.) | Input Rise/Fall Time (max.) | Reliability | |-------------------------------|-----------------------------|-----------------------------|------------------| | LVTTL/LVCMOS | No requirement | 10 ns * | 20 years (100°C) | | LVDS/B-LVDS/M-LVDS/
LVPECL | No requirement | 10 ns * | 10 years (100°C) | Note: The maximum input rise/fall time is related to the noise induced into the input buffer trace. If the noise is low, then the rise time and fall time of input buffers can be increased beyond the maximum value. The longer the rise/fall times, the more susceptible the input signal is to the board noise. Microsemi recommends signal integrity evaluation/characterization of the system to ensure that there is no excessive noise coupling into input signals. ## 1.5 V LVCMOS (JESD8-11) Low-Voltage CMOS for 1.5 V is an extension of the LVCMOS standard (JESD8-5) used for general-purpose 1.5 V applications. It uses a 1.5 V input buffer and a push-pull output buffer. Table 2-111 • Minimum and Maximum DC Input and Output Levels Applicable to Advanced I/O Banks | 1.5 V
LVCMOS | | VIL | VIH | | VOL | VOH | IOL | ЮН | IOSH | IOSL | IIL ¹ | IIH ² | |-------------------|-----------|-------------|-------------|-----------|-------------|-------------|-----|----|-------------------------|-------------------------|-------------------------|-------------------------| | Drive
Strength | Min.
V | Max.
V | Min.
V | Max.
V | Max.
V | Min.
V | mA | mA | Max.
mA ³ | Max.
mA ³ | μ Α ⁴ | μ Α ⁴ | | 2 mA | -0.3 | 0.35 * VCCI | 0.65 * VCCI | 1.575 | 0.25 * VCCI | 0.75 * VCCI | 2 | 2 | 13 | 16 | 10 | 10 | | 4 mA | -0.3 | 0.35 * VCCI | 0.65 * VCCI | 1.575 | 0.25 * VCCI | 0.75 * VCCI | 4 | 4 | 25 | 33 | 10 | 10 | | 6 mA | -0.3 | 0.35 * VCCI | 0.65 * VCCI | 1.575 | 0.25 * VCCI | 0.75 * VCCI | 6 | 6 | 32 | 39 | 10 | 10 | | 8 mA | -0.3 | 0.35 * VCCI | 0.65 * VCCI | 1.575 | 0.25 * VCCI | 0.75 * VCCI | 8 | 8 | 66 | 55 | 10 | 10 | | 12 mA | -0.3 | 0.35 * VCCI | 0.65 * VCCI | 1.575 | 0.25 * VCCI | 0.75 * VCCI | 12 | 12 | 66 | 55 | 10 | 10 | #### Notes: - 1. IIL is the input leakage current per I/O pin over recommended operation conditions where -0.3 V < VIN < VIL. - 2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges - 3. Currents are measured at 100°C junction temperature and maximum voltage. - 4. Currents are measured at 85°C junction temperature. - 5. Software default selection highlighted in gray. Table 2-112 • Minimum and Maximum DC Input and Output Levels Applicable to Standard Plus I/O Banks | 1.5 V
LVCMOS | | VIL | VIH | | VOL | VOH | IOL | ЮН | IOSH | IOSL | IIL ¹ | IIH ² | |-------------------|-----------|-------------|-------------|-----------|-------------|-------------|-----|----|-------------------------|-------------------------|-------------------------|-------------------------| | Drive
Strength | Min.
V | Max.
V | Min.
V | Max.
V | Max.
V | Min.
V | mA | mA | Max.
mA ³ | Max.
mA ³ | μ Α ⁴ | μ Α ⁴ | | 2 mA | -0.3 | 0.35 * VCCI | 0.65 * VCCI | 1.575 | 0.25 * VCCI | 0.75 * VCCI | 2 | 2 | 13 | 16 | 10 | 10 | | 4 mA | -0.3 | 0.35 * VCCI | 0.65 * VCCI | 1.575 | 0.25 * VCCI | 0.75 * VCCI | 4 | 4 | 25 | 33 | 10 | 10 | #### Notes: - 1. IIL is the input leakage current per I/O pin over recommended operation conditions where -0.3 V < VIN < VIL. - 2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges - 3. Currents are measured at 100°C junction temperature and maximum voltage. - 4. Currents are measured at 85°C junction temperature. - 5. Software default selection highlighted in gray. 2-66 Revision 27 Table 2-113 • Minimum and Maximum DC Input and Output Levels Applicable to Standard I/O Banks | 1.5 V
LVCMOS | | VIL | VIH | | VOL | VOH | IOL | ЮН | IOSH | IOSL | IIL ¹ | IIH ² | |-------------------|-----------|-------------|-------------|-----------|-------------|-------------|-----|----|-------------------------|-------------------------|------------------|-------------------------| | Drive
Strength | Min.
V | Max.
V | Min.
V | Max.
V | Max.
V | Min.
V | mA | mA | Max.
mA ³ | Max.
mA ³ | μA ⁴ | μ Α ⁴ | | 2 mA | -0.3 | 0.35 * VCCI | 0.65 * VCCI | 3.6 | 0.25 * VCCI | 0.75 * VCCI | 2 | 2 | 13 | 16 | 10 | 10 | #### Notes: - 1. IIL is the input leakage current per I/O pin over recommended operation conditions where -0.3 V < VIN < VIL. - 2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN <V CCI. Input current is larger when operating outside recommended ranges - 3. Currents are measured at 100°C junction temperature and maximum voltage. - 4. Currents are measured at 85°C junction temperature. - 5. Software default selection highlighted in gray. Figure 2-10 • AC Loading Table 2-114 • AC Waveforms, Measuring Points, and Capacitive Loads | Input Low (V) | Input High (V) | Measuring Point* (V) | C _{LOAD} (pF) | |---------------|----------------|----------------------|------------------------| | 0 | 1.5 | 0.75 | 5 | Note: *Measuring point = Vtrip. See Table 2-29 on page 2-28 for a complete table of trip points. Table 2-151 • Minimum and Maximum DC Input and Output Levels | DC Parameter | Description | Min. | Max. | Min. | Max. | Min. | Max. | Units | |--------------------|--------------------------------|-------|------|-------|------|-------|------|-------| | VCCI | Supply Voltage | 3.0 | | 3.3 | | 3.6 | | V | | VOL | Output Low Voltage | 0.96 | 1.27 | 1.06 | 1.43 | 1.30 | 1.57 | V | | VOH | Output High Voltage | 1.8 | 2.11 | 1.92 | 2.28 | 2.13 | 2.41 | V | | VIL, VIH | Input Low, Input High Voltages | 0 | 3.6 | 0 | 3.6 | 0 | 3.6 | V | | V _{ODIFF} | Differential Output Voltage | 0.625 | 0.97 | 0.625 | 0.97 | 0.625 | 0.97 | V | | V _{OCM} | Output Common-Mode Voltage | 1.762 | 1.98 | 1.762 | 1.98 | 1.762 | 1.98 | V | | V _{ICM} | Input Common-Mode Voltage | 1.01 | 2.57 | 1.01 | 2.57 | 1.01 | 2.57 | V | | V _{IDIFF} | Input Differential Voltage | 300 | | 300 | | 300 | | mV | ## Table 2-152 • AC Waveforms, Measuring Points, and Capacitive Loads | Input Low (V) | Input High (V) | Measuring Point* (V) | |---------------|----------------|----------------------| | 1.64 | 1.94 | Cross point | Note: *Measuring point = Vtrip. See Table 2-28 on page 2-104 for a complete table of trip points. ## **Timing Characteristics** 1.5 V DC Core Voltage Table 2-153 • LVPECL – Applies to 1.5 V DC Core Voltage Commercial-Case Conditions: $T_J = 70$ °C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V Applicable to Standard Banks | Speed Grade | t _{DOUT} | t _{DP} | t _{DIN} | t _{PY} | Units | |-------------|-------------------|-----------------|------------------|-----------------|-------| | Std. | 0.97 | 1.67 | 0.19 | 1.16 | ns | Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values. ## 1.2 V DC Core Voltage Table 2-154 • LVPECL - Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: $T_J = 70^{\circ}$ C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 3.0 V Applicable to Standard Banks | Speed Grade | t _{DOUT} | t _{DP} | t _{DIN} | t _{PY} | Units | |-------------|-------------------|-----------------|------------------|-----------------|-------| | Std. | 1.55 | 2.24 | 0.25 | 1.37 | ns | Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values. ## 1.2 V DC Core Voltage Table 2-165 • Input DDR Propagation Delays Commercial-Case Conditions: $T_J = 70^{\circ}\text{C}$, Worst-Case VCC = 1.14 V | Parameter | Description | Std. | Units | |-------------------------|--|--------|-------| | t _{DDRICLKQ1} | Clock-to-Out Out_QR for Input DDR | 0.76 | ns | | t _{DDRICLKQ2} | Clock-to-Out Out_QF for Input DDR | 0.94 | ns | | t _{DDRISUD1} | Data Setup for Input DDR (negedge) | 0.93 | ns | | t _{DDRISUD2} | Data Setup for Input DDR (posedge) | 0.84 | ns | | t _{DDRIHD1} | Data Hold for Input DDR (negedge) | 0.00 | ns | | t _{DDRIHD2} | Data Hold for Input DDR (posedge) | 0.00 | ns | | t _{DDRICLR2Q1} | Asynchronous Clear-to-Out Out_QR for Input DDR | 1.23 | ns | | t _{DDRICLR2Q2} | Asynchronous Clear-to-Out Out_QF for Input DDR | 1.42 | ns | | t _{DDRIREMCLR} | Asynchronous Clear Removal Time for Input DDR | 0.00 | ns | | t _{DDRIRECCLR} | Asynchronous Clear Recovery Time for Input DDR | 0.24 | ns | | t _{DDRIWCLR} | Asynchronous Clear Minimum Pulse Width for Input DDR | 0.19 | ns | | t _{DDRICKMPWH} | Clock Minimum Pulse Width High for Input DDR | 0.31 | ns | | t _{DDRICKMPWL} | Clock Minimum Pulse Width Low for Input DDR | 0.28 | ns | | F _{DDRIMAX} | Maximum Frequency for Input DDR | 160.00 | MHz | Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values. Table 2-175 • AGL060 Global Resource Commercial-Case Conditions: T_J = 70°C, VCC = 1.425 V | | | | Std. | | | |----------------------|---|---|-------------------|-------------------|-------| | Parameter | Description | - | Min. ¹ | Max. ² | Units | | t _{RCKL} | Input Low Delay for Global Clock | | 1.33 | 1.55 | ns | | t _{RCKH} | Input High Delay for Global Clock | | 1.35 | 1.62 | ns | | t _{RCKMPWH} | Minimum Pulse Width High for Global Clock | | 1.18 | | ns | | t _{RCKMPWL} | Minimum Pulse Width Low for Global Clock | | 1.15 | | ns | | t _{RCKSW} | Maximum Skew for Global Clock | | | 0.27 | ns | #### Notes: - 1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net). - 2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row). - 3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values. Table 2-176 • AGL125 Global Resource Commercial-Case Conditions: T_J = 70°C, VCC = 1.425 V | | | | Std. | | | |----------------------|---|---|-------------------|-------------------|-------| | Parameter | Description | • | Min. ¹ | Max. ² | Units | | t _{RCKL} | Input Low Delay for Global Clock | | 1.36 | 1.71 | ns | | t _{RCKH} | Input High Delay for Global Clock | | 1.39 | 1.82 | ns | | t _{RCKMPWH} | Minimum Pulse Width High for Global Clock | | 1.18 | | ns | | t _{RCKMPWL} | Minimum Pulse Width Low for Global Clock | | 1.15 | | ns | | t _{RCKSW} | Maximum Skew for Global Clock | | | 0.43 | ns | #### Notes: - 1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net). - 2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row). - 3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values. Table 2-192 • RAM512X18 Commercial-Case Conditions: $T_J = 70^{\circ}\text{C}$, Worst-Case VCC = 1.425 V | Parameter | Description | Std. | Units | |----------------------------------|--|------|-------| | t _{AS} | Address setup time | 0.83 | ns | | t _{AH} | Address hold time | 0.16 | ns | | t _{ENS} | REN, WEN setup time | 0.73 | ns | | t _{ENH} | REN, WEN hold time | 0.08 | ns | | t _{DS} | Input data (WD) setup time | 0.71 | ns | | t _{DH} | Input data (WD) hold time | 0.36 | ns | | t _{CKQ1} | Clock High to new data valid on RD (output retained) | 4.21 | ns | | t _{CKQ2} | Clock High to new data valid on RD (pipelined) | 1.71 | ns | | t _{C2CRWH} ¹ | Address collision clk-to-clk delay for reliable read access after write on same address - Applicable to Opening Edge | 0.35 | ns | | t _{C2CWRH} 1 | Address collision clk-to-clk delay for reliable write access after read on same address - Applicable to Opening Edge | 0.42 | ns | | t _{RSTBQ} | RESET Low to data out Low on RD (flow-through) | 2.06 | ns | | | RESET Low to data out Low on RD (pipelined) | 2.06 | ns | | t _{REMRSTB} | RESET removal | 0.61 | ns | | t _{RECRSTB} | RESET recovery | 3.21 | ns | | t _{MPWRSTB} | RESET minimum pulse width | 0.68 | ns | | t _{CYC} | Clock cycle time | 6.24 | ns | | F _{MAX} | Maximum frequency | 160 | MHz | #### Notes: - 1. For more information, refer to the application note Simultaneous Read-Write Operations in Dual-Port SRAM for Flash-Based cSoCs and FPGAs. - 2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values. 2-118 Revision 27 Package Pin Assignments | VQ100 | | |------------|-----------------| | Pin Number | AGL030 Function | | 1 | GND | | 2 | IO82RSB1 | | 3 | IO81RSB1 | | 4 | IO80RSB1 | | 5 | IO79RSB1 | | 6 | IO78RSB1 | | 7 | IO77RSB1 | | 8 | IO76RSB1 | | 9 | GND | | 10 | IO75RSB1 | | 11 | IO74RSB1 | | 12 | GEC0/IO73RSB1 | | 13 | GEA0/IO72RSB1 | | 14 | GEB0/IO71RSB1 | | 15 | IO70RSB1 | | 16 | IO69RSB1 | | 17 | VCC | | 18 | VCCIB1 | | 19 | IO68RSB1 | | 20 | IO67RSB1 | | 21 | IO66RSB1 | | 22 | IO65RSB1 | | 23 | IO64RSB1 | | 24 | IO63RSB1 | | 25 | IO62RSB1 | | 26 | IO61RSB1 | | 27 | FF/IO60RSB1 | | 28 | IO59RSB1 | | 29 | IO58RSB1 | | 30 | IO57RSB1 | | 31 | IO56RSB1 | | 32 | IO55RSB1 | | 33 | IO54RSB1 | | 34 | IO53RSB1 | | 35 | IO52RSB1 | | 36 | IO51RSB1 | | V0400 | | |------------|-----------------| | VQ100 | | | Pin Number | AGL030 Function | | 37 | VCC | | 38 | GND | | 39 | VCCIB1 | | 40 | IO49RSB1 | | 41 | IO47RSB1 | | 42 | IO46RSB1 | | 43 | IO45RSB1 | | 44 | IO44RSB1 | | 45 | IO43RSB1 | | 46 | IO42RSB1 | | 47 | TCK | | 48 | TDI | | 49 | TMS | | 50 | NC | | 51 | GND | | 52 | VPUMP | | 53 | NC | | 54 | TDO | | 55 | TRST | | 56 | VJTAG | | 57 | IO41RSB0 | | 58 | IO40RSB0 | | 59 | IO39RSB0 | | 60 | IO38RSB0 | | 61 | IO37RSB0 | | 62 | IO36RSB0 | | 63 | GDB0/IO34RSB0 | | 64 | GDA0/IO33RSB0 | | 65 | GDC0/IO32RSB0 | | 66 | VCCIB0 | | 67 | GND | | 68 | VCC | | 69 | IO31RSB0 | | 70 | IO30RSB0 | | 71 | IO29RSB0 | | 72 | IO28RSB0 | | | | | VQ100 | | |------------|-----------------| | Pin Number | AGL030 Function | | 73 | IO27RSB0 | | 74 | IO26RSB0 | | 75 | IO25RSB0 | | 76 | IO24RSB0 | | 77 | IO23RSB0 | | 78 | IO22RSB0 | | 79 | IO21RSB0 | | 80 | IO20RSB0 | | 81 | IO19RSB0 | | 82 | IO18RSB0 | | 83 | IO17RSB0 | | 84 | IO16RSB0 | | 85 | IO15RSB0 | | 86 | IO14RSB0 | | 87 | VCCIB0 | | 88 | GND | | 89 | VCC | | 90 | IO12RSB0 | | 91 | IO10RSB0 | | 92 | IO08RSB0 | | 93 | IO07RSB0 | | 94 | IO06RSB0 | | 95 | IO05RSB0 | | 96 | IO04RSB0 | | 97 | IO03RSB0 | | 98 | IO02RSB0 | | 99 | IO01RSB0 | | 100 | IO00RSB0 | 4-38 Revision 27 IGLOO Low Power Flash FPGAs | FG144 | | |------------|-----------------| | Pin Number | AGL125 Function | | A1 | GNDQ | | A2 | VMV0 | | A3 | GAB0/IO02RSB0 | | A4 | GAB1/IO03RSB0 | | A5 | IO11RSB0 | | A6 | GND | | A7 | IO18RSB0 | | A8 | VCC | | A9 | IO25RSB0 | | A10 | GBA0/IO39RSB0 | | A11 | GBA1/IO40RSB0 | | A12 | GNDQ | | B1 | GAB2/IO69RSB1 | | B2 | GND | | В3 | GAA0/IO00RSB0 | | B4 | GAA1/IO01RSB0 | | B5 | IO08RSB0 | | B6 | IO14RSB0 | | B7 | IO19RSB0 | | B8 | IO22RSB0 | | B9 | GBB0/IO37RSB0 | | B10 | GBB1/IO38RSB0 | | B11 | GND | | B12 | VMV0 | | C1 | IO132RSB1 | | C2 | GFA2/IO120RSB1 | | C3 | GAC2/IO131RSB1 | | C4 | VCC | | C5 | IO10RSB0 | | C6 | IO12RSB0 | | C7 | IO21RSB0 | | C8 | IO24RSB0 | | C9 | IO27RSB0 | | C10 | GBA2/IO41RSB0 | | C11 | IO42RSB0 | | C12 | GBC2/IO45RSB0 | | FG144 | | |------------|-----------------| | Pin Number | AGL125 Function | | D1 | IO128RSB1 | | D2 | IO129RSB1 | | D3 | IO130RSB1 | | D4 | GAA2/IO67RSB1 | | D5 | GAC0/IO04RSB0 | | D6 | GAC1/IO05RSB0 | | D7 | GBC0/IO35RSB0 | | D8 | GBC1/IO36RSB0 | | D9 | GBB2/IO43RSB0 | | D10 | IO28RSB0 | | D11 | IO44RSB0 | | D12 | GCB1/IO53RSB0 | | E1 | VCC | | E2 | GFC0/IO125RSB1 | | E3 | GFC1/IO126RSB1 | | E4 | VCCIB1 | | E5 | IO68RSB1 | | E6 | VCCIB0 | | E7 | VCCIB0 | | E8 | GCC1/IO51RSB0 | | E9 | VCCIB0 | | E10 | VCC | | E11 | GCA0/IO56RSB0 | | E12 | IO46RSB0 | | F1 | GFB0/IO123RSB1 | | F2 | VCOMPLF | | F3 | GFB1/IO124RSB1 | | F4 | IO127RSB1 | | F5 | GND | | F6 | GND | | F7 | GND | | F8 | GCC0/IO52RSB0 | | F9 | GCB0/IO54RSB0 | | F10 | GND | | F11 | GCA1/IO55RSB0 | | F12 | GCA2/IO57RSB0 | | FG144 | | |------------|-----------------| | Pin Number | AGL125 Function | | G1 | GFA1/IO121RSB1 | | G2 | GND | | G3 | VCCPLF | | G4 | GFA0/IO122RSB1 | | G5 | GND | | G6 | GND | | G7 | GND | | G8 | GDC1/IO61RSB0 | | G9 | IO48RSB0 | | G10 | GCC2/IO59RSB0 | | G11 | IO47RSB0 | | G12 | GCB2/IO58RSB0 | | H1 | VCC | | H2 | GFB2/IO119RSB1 | | НЗ | GFC2/IO118RSB1 | | H4 | GEC1/IO112RSB1 | | H5 | VCC | | H6 | IO50RSB0 | | H7 | IO60RSB0 | | H8 | GDB2/IO71RSB1 | | H9 | GDC0/IO62RSB0 | | H10 | VCCIB0 | | H11 | IO49RSB0 | | H12 | VCC | | J1 | GEB1/IO110RSB1 | | J2 | IO115RSB1 | | J3 | VCCIB1 | | J4 | GEC0/IO111RSB1 | | J5 | IO116RSB1 | | J6 | IO117RSB1 | | J7 | VCC | | J8 | TCK | | J9 | GDA2/IO70RSB1 | | J10 | TDO | | J11 | GDA1/IO65RSB0 | | J12 | GDB1/IO63RSB0 | # Package Pin Assignments | FG256 | | |------------|-------------------| | Pin Number | AGL1000 Function | | R5 | IO168RSB2 | | R6 | IO163RSB2 | | R7 | IO157RSB2 | | R8 | IO149RSB2 | | R9 | IO143RSB2 | | R10 | IO138RSB2 | | R11 | IO131RSB2 | | R12 | IO125RSB2 | | R13 | GDB2/IO115RSB2 | | R14 | TDI | | R15 | GNDQ | | R16 | TDO | | T1 | GND | | T2 | IO183RSB2 | | Т3 | FF/GEB2/IO186RSB2 | | T4 | IO172RSB2 | | T5 | IO170RSB2 | | T6 | IO164RSB2 | | T7 | IO158RSB2 | | Т8 | IO153RSB2 | | Т9 | IO142RSB2 | | T10 | IO135RSB2 | | T11 | IO130RSB2 | | T12 | GDC2/IO116RSB2 | | T13 | IO120RSB2 | | T14 | GDA2/IO114RSB2 | | T15 | TMS | | T16 | GND | 4-62 Revision 27 | FG484 | | |----------------------------|----------------| | Pin Number AGL400 Function | | | U1 | NC NC | | U2 | NC
NC | | U3 | NC NC | | | | | U4 | GEB1/IO136PDB3 | | U5 | GEB0/IO136NDB3 | | U6 | VMV2 | | U7 | IO129RSB2 | | U8 | IO128RSB2 | | U9 | IO122RSB2 | | U10 | IO115RSB2 | | U11 | IO110RSB2 | | U12 | IO98RSB2 | | U13 | IO95RSB2 | | U14 | IO88RSB2 | | U15 | IO84RSB2 | | U16 | TCK | | U17 | VPUMP | | U18 | TRST | | U19 | GDA0/IO79VDB1 | | U20 | NC | | U21 | NC | | U22 | NC | | V1 | NC | | V2 | NC | | V3 | GND | | V4 | GEA1/IO135PDB3 | | V5 | GEA0/IO135NDB3 | | V6 | IO127RSB2 | | V7 | GEC2/IO132RSB2 | | V8 | IO123RSB2 | | V9 | IO118RSB2 | | V10 | IO112RSB2 | | V11 | IO106RSB2 | | V12 | IO100RSB2 | | V13 | IO96RSB2 | | V14 | IO89RSB2 | | | | | FG484 | | |------------|-----------------| | Pin Number | AGL600 Function | | Y7 | NC | | Y8 | VCC | | Y9 | VCC | | Y10 | NC | | Y11 | NC | | Y12 | NC | | Y13 | NC | | Y14 | VCC | | Y15 | VCC | | Y16 | NC | | Y17 | NC | | Y18 | GND | | Y19 | NC | | Y20 | NC | | Y21 | NC | | Y22 | VCCIB1 | | FG484 | | |-------------------------------|----------------| | Pin Number AGL1000 Function | | | C21 | NC | | C22 | VCCIB1 | | D1 | IO219PDB3 | | D2 | IO220NDB3 | | D3 | NC | | D4 | GND | | D5 | GAA0/IO00RSB0 | | D6 | GAA1/IO01RSB0 | | D7 | GAB0/IO02RSB0 | | D8 | IO16RSB0 | | D9 | IO22RSB0 | | D10 | IO28RSB0 | | D11 | IO35RSB0 | | D12 | IO45RSB0 | | D13 | IO50RSB0 | | D14 | IO55RSB0 | | D15 | IO61RSB0 | | D16 | GBB1/IO75RSB0 | | D17 | GBA0/IO76RSB0 | | D18 | GBA1/IO77RSB0 | | D19 | GND | | D20 | NC | | D21 | NC | | D22 | NC | | E1 | IO219NDB3 | | E2 | NC | | E3 | GND | | E4 | GAB2/IO224PDB3 | | E5 | GAA2/IO225PDB3 | | E6 | GNDQ | | E7 | GAB1/IO03RSB0 | | E8 | IO17RSB0 | | E9 | IO21RSB0 | | E10 | IO27RSB0 | | E11 | IO34RSB0 | | E12 | IO44RSB0 |