

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Detans	
Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	9216
Total RAM Bits	55296
Number of I/O	143
Number of Gates	400000
Voltage - Supply	1.14V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 70°C (TA)
Package / Case	196-TFBGA, CSBGA
Supplier Device Package	196-CSP (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/agl400v2-cs196

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 2-2 •	Recommended Ope	erating Conditions ¹
-------------	-----------------	---------------------------------

Symbol	Para	ameter	Commercial	Industrial	Units
TJ	Junction Temperature ²		0 to +85	-40 to +100	°C
VCC ³	1.5 V DC core supply voltage ⁵		1.425 to 1.575	1.425 to 1.575	V
	1.2 V–1.5 V wide range DC core supply voltage ^{4,6}		1.14 to 1.575	1.14 to 1.575	V
VJTAG	JTAG DC voltage		1.4 to 3.6	1.4 to 3.6	V
VPUMP	Programming voltage	Programming Mode	3.15 to 3.45	3.15 to 3.45	V
		Operation ⁷	0 to 3.6	0 to 3.6	V
VCCPLL ⁸	Analog power supply (PLL)	1.5 V DC core supply voltage ⁵	1.425 to 1.575	1.425 to 1.575	V
		1.2 V - 1.5 V DC core supply voltage ^{4,6}	1.14 to 1.575	1.14 to 1.575	V
VCCI and VMV ⁹	1.2 V DC core supply voltage ⁶		1.14 to 1.26	1.14 to 1.26	V
	1.2 V DC wide range DC supply voltage ⁶		1.14 to 1.575	1.14 to 1.575	V
	1.5 V DC supply voltage		1.425 to 1.575	1.425 to 1.575	V
	1.8 V DC supply voltage		1.7 to 1.9	1.7 to 1.9	V
	2.5 V DC supply voltage		2.3 to 2.7	2.3 to 2.7	V
	3.0 V DC supply voltage ¹⁰		2.7 to 3.6	2.7 to 3.6	V
	3.3 V DC supply voltage		3.0 to 3.6	3.0 to 3.6	V
	LVDS differential I/O		2.375 to 2.625	2.375 to 2.625	V
	LVPECL differential I/O		3.0 to 3.6	3.0 to 3.6	V

Notes:

1. All parameters representing voltages are measured with respect to GND unless otherwise specified.

- 2. Software Default Junction Temperature Range in the Libero SoC software is set to 0°C to +70°C for commercial, and -40°C to +85°C for industrial. To ensure targeted reliability standards are met across the full range of junction temperatures, Microsemi recommends using custom settings for temperature range before running timing and power analysis tools. For more information on custom settings, refer to the New Project Dialog Box in the Libero SoC Online Help.
- 3. The ranges given here are for power supplies only. The recommended input voltage ranges specific to each I/O standard are given in Table 2-25 on page 2-24. VCCI should be at the same voltage within a given I/O bank.
- 4. All IGLOO devices (V5 and V2) must be programmed with the VCC core voltage at 1.5 V. Applications using the V2 devices powered by 1.2 V supply must switch the core supply to 1.5 V for in-system programming.
- 5. For $IGLOO^{\mathbb{R}}$ V5 devices
- 6. For IGLOO V2 devices only, operating at VCCI \geq VCC.
- 7. VPUMP can be left floating during operation (not programming mode).
- 8. VCCPLL pins should be tied to VCC pins. See the "Pin Descriptions" chapter of the IGLOO FPGA Fabric User Guide for further information.
- 9. VMV and VCCI must be at the same voltage within a given I/O bank. VMV pins must be connected to the corresponding VCCI pins. See the "VMVx I/O Supply Voltage (quiet)" on page 3-1 for further information.
- 10. 3.3 V wide range is compliant to the JESD-8B specification and supports 3.0 V VCCI operation.

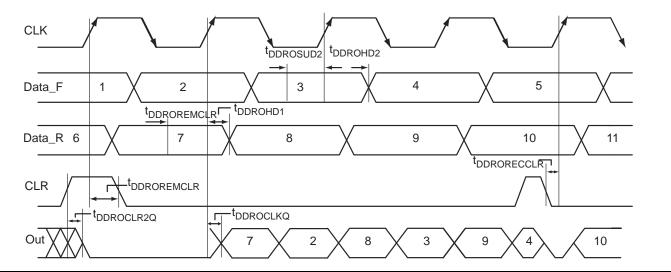


Figure 2-24 • Output DDR Timing Diagram

Timing Characteristics

1.5 V DC Core Voltage

Table 2-167 • Output DDR Propagation Delays

Commercial-Case Conditions: $T_J = 70^{\circ}$ C, Worst-Case VCC = 1.425 V

Parameter	Description	Std.	Units
t _{DDROCLKQ}	Clock-to-Out of DDR for Output DDR	1.07	ns
t _{DDROSUD1}	Data_F Data Setup for Output DDR		ns
t _{DDROSUD2}	Data_R Data Setup for Output DDR	0.67	ns
t _{DDROHD1}	Data_F Data Hold for Output DDR	0.00	ns
t _{DDROHD2}	Data_R Data Hold for Output DDR	0.00	ns
t _{DDROCLR2Q}	Asynchronous Clear-to-Out for Output DDR		ns
t _{DDROREMCLR}	Asynchronous Clear Removal Time for Output DDR		ns
t _{DDRORECCLR}	Asynchronous Clear Recovery Time for Output DDR		ns
t _{DDROWCLR1}	CLR1 Asynchronous Clear Minimum Pulse Width for Output DDR		ns
t _{DDROCKMPWH}	DROCKMPWH Clock Minimum Pulse Width High for the Output DDR		ns
t _{DDROCKMPWL}	PWL Clock Minimum Pulse Width Low for the Output DDR		ns
F _{DDOMAX}	Maximum Frequency for the Output DDR	250.00	MHz

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

1.2 V DC Core Voltage

Table 2-172 • Register Delays

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V

Parameter	Description	Std.	Units
t _{CLKQ}	Clock-to-Q of the Core Register	1.61	ns
t _{SUD}	Data Setup Time for the Core Register	1.17	ns
t _{HD}	Data Hold Time for the Core Register	0.00	ns
t _{SUE}	Enable Setup Time for the Core Register	1.29	ns
t _{HE}	Enable Hold Time for the Core Register	0.00	ns
t _{CLR2Q}	Asynchronous Clear-to-Q of the Core Register	0.87	ns
t _{PRE2Q}	Asynchronous Preset-to-Q of the Core Register	0.89	ns
t _{REMCLR}	Asynchronous Clear Removal Time for the Core Register	0.00	ns
t _{RECCLR}	Asynchronous Clear Recovery Time for the Core Register	0.24	ns
t _{REMPRE}	Asynchronous Preset Removal Time for the Core Register	0.00	ns
t _{RECPRE}	Asynchronous Preset Recovery Time for the Core Register	0.24	ns
t _{WCLR}	Asynchronous Clear Minimum Pulse Width for the Core Register	0.46	ns
t _{WPRE}	Asynchronous Preset Minimum Pulse Width for the Core Register	0.46	ns
t _{CKMPWH}	Clock Minimum Pulse Width High for the Core Register	0.95	ns
t _{CKMPWL}	Clock Minimum Pulse Width Low for the Core Register	0.95	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.

Table 2-175 • AGL060 Global Resource

Commercial-Case Conditions: T_J = 70°C, VCC = 1.425 V

		Si	Std.	
Parameter	Description	Min. ¹	Max. ²	Units
t _{RCKL}	Input Low Delay for Global Clock	1.33	1.55	ns
t _{RCKH}	Input High Delay for Global Clock	1.35	1.62	ns
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock	1.18		ns
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock	1.15		ns
t _{RCKSW}	Maximum Skew for Global Clock		0.27	ns

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

Table 2-176 • AGL125 Global Resource

Commercial-Case Conditions: T_J = 70°C, VCC = 1.425 V

		S	td.	
Parameter	Description	Min. ¹	Max. ²	Units
t _{RCKL}	Input Low Delay for Global Clock	1.36	1.71	ns
t _{RCKH}	Input High Delay for Global Clock	1.39	1.82	ns
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock	1.18		ns
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock	1.15		ns
t _{RCKSW}	Maximum Skew for Global Clock		0.43	ns

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

Clock Conditioning Circuits

CCC Electrical Specifications

Timing Characteristics

Table 2-189 • IGLOO CCC/PLL Specification

For IGLOO V2 or V5 Devices, 1.5 V DC Core Supply Voltage

Parameter	Min.	Тур.	Max.	Units
Clock Conditioning Circuitry Input Frequency fIN_CCC	1.5		250	MHz
Clock Conditioning Circuitry Output Frequency f _{OUT_CCC}	0.75		250	MHz
Delay Increments in Programmable Delay Blocks ^{1, 2}		360 ³		ps
Number of Programmable Values in Each Programmable Delay Block			32	
Serial Clock (SCLK) for Dynamic PLL ^{4, 5}			100	ns
Input Cycle-to-Cycle Jitter (peak magnitude)			1	ns
Acquisition Time				
LockControl = 0			300	μs
LockControl = 1			6.0	ms
Tracking Jitter ⁶				
LockControl = 0			2.5	ns
LockControl = 1			1.5	ns
Output Duty Cycle	48.5		51.5	%
Delay Range in Block: Programmable Delay 1 ^{1, 2}	1.25		15.65	ns
Delay Range in Block: Programmable Delay 2 ^{1, 2}	0.469		15.65	ns
Delay Range in Block: Fixed Delay ^{1, 2}		3.5		ns
CCC Output Peak-to-Peak Period Jitter F _{CCC_OUT}	Maxim	um Peak-to-	Peak Jitter Da	ta ⁷
	$SSO \geq 4^8$	$SSO \geq 8^8$	$SSO \geq 16^8$	
0.75 MHz to 50 MHz	0.60%	0.80%	1.20%	
50 MHz to 160 MHz	4.00%	6.00%	12.00%	

Notes:

1. This delay is a function of voltage and temperature. See Table 2-6 on page 2-7 and Table 2-7 on page 2-7 for deratings.

2. $T_J = 25^{\circ}C, V_{CC} = 1.5 V$

3. When the CCC/PLL core is generated by Microsemi core generator software, not all delay values of the specified delay increments are available. Refer to the Libero SoC Online Help associated with the core for more information.

4. The AGL030 device does not support a PLL.

5. Maximum value obtained for a Std. speed grade device in Worst-Case Commercial Conditions. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

6. Tracking jitter is defined as the variation in clock edge position of PLL outputs with reference to the PLL input clock edge. Tracking jitter does not measure the variation in PLL output period, which is covered by the period jitter parameter.

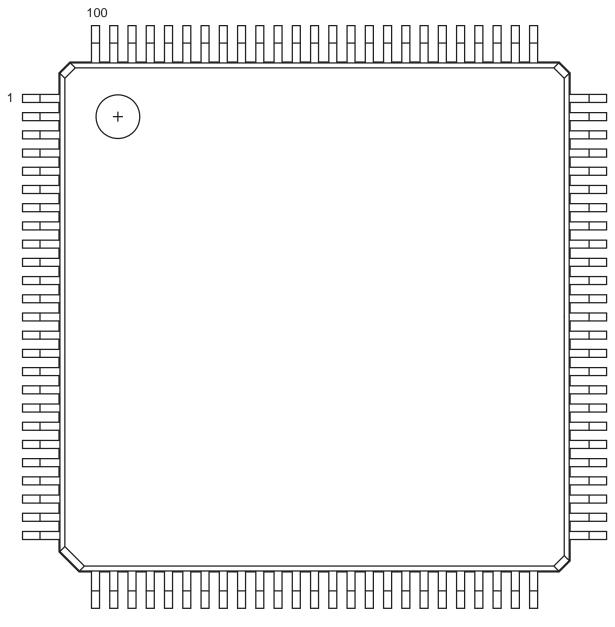
7. Measurements done with LVTTL 3.3 V, 8 mA I/O drive strength, and high slew Rate. VCC/VCCPLL = 1.14 V, VQ/PQ/TQ type of packages, 20 pF load.

8. Simultaneously Switching Outputs (SSOs) are outputs that are synchronous to a single clock domain and have clock-to-out times that are within ±200 ps of each other. Switching I/Os are placed outside of the PLL bank. Refer to the "Simultaneously Switching Outputs (SSOs) and Printed Circuit Board Layout" section in the IGLOO FPGA Fabric User Guide.

1.2 V DC Core Voltage

Table 2-193 • RAM4K9

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V


Parameter	Description	Std.	Units
t _{AS}	Address setup time	1.53	ns
t _{AH}	Address hold time	0.29	ns
t _{ENS}	REN WEN setup time	1.50	ns
t _{ENH}	REN, WEN hold time	0.29	ns
t _{BKS}	BLK setup time	3.05	ns
t _{BKH}	BLK hold time	0.29	ns
t _{DS}	Input data (DIN) setup time	1.33	ns
t _{DH}	Input data (DIN) hold time	0.66	ns
t _{CKQ1}	Clock High to new data valid on DOUT (output retained, WMODE = 0)	6.61	ns
	Clock High to new data valid on DOUT (flow-through, WMODE = 1)	5.72	ns
t _{CKQ2}	Clock High to new data valid on DOUT (pipelined)	3.38	ns
t _{C2CWWL} 1	Address collision clk-to-clk delay for reliable write after write on same address – Applicable to Closing Edge	0.30	ns
t _{C2CRWH} 1	Address collision clk-to-clk delay for reliable read access after write on same address – Applicable to Opening Edge	0.89	ns
t _{C2CWRH} 1	Address collision clk-to-clk delay for reliable write access after read on same address – Applicable to Opening Edge	1.01	ns
t _{RSTBQ}	RESET Low to data out Low on DOUT (flow-through)	3.86	ns
	RESET Low to data out Low on DOUT (pipelined)	3.86	ns
t _{REMRSTB}	RESET removal	1.12	ns
t _{RECRSTB}	RESET recovery	5.93	ns
t _{MPWRSTB}	RESET minimum pulse width	1.18	ns
t _{CYC}	Clock cycle time	10.90	ns
F _{MAX}	Maximum frequency	92	MHz

Notes:

1. For more information, refer to the application note Simultaneous Read-Write Operations in Dual-Port SRAM for Flash-Based cSoCs and FPGAs.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

VQ100

Note: This is the top view of the package.

Note

For more information on package drawings, see PD3068: Package Mechanical Drawings.

FG484		
Pin Number	AGL400 Function	
C21	NC	
C22	VCCIB1	
D1	NC	
D2	NC	
D3	NC	
D4	GND	
D5	GAA0/IO00RSB0	
D6	GAA1/IO01RSB0	
D7	GAB0/IO02RSB0	
D8	IO16RSB0	
D9	IO17RSB0	
D10	IO22RSB0	
D11	IO28RSB0	
D12	IO34RSB0	
D13	IO37RSB0	
D14	IO41RSB0	
D15	IO43RSB0	
D16	GBB1/IO57RSB0	
D17	GBA0/IO58RSB0	
D18	GBA1/IO59RSB0	
D19	GND	
D20	NC	
D21	NC	
D22	NC	
E1	NC	
E2	NC	
E3	GND	
E4	GAB2/IO154UDB3	
E5	GAA2/IO155UDB3	
E6	IO12RSB0	
E7	GAB1/IO03RSB0	
E8	IO13RSB0	
E9	IO14RSB0	
E10	IO21RSB0	
E11	IO27RSB0	
E12	IO32RSB0	

FG484		
Pin Number AGL400 Function		
N17	IO74RSB1	
N18	IO72NPB1	
N19	IO70NDB1	
N20	NC	
N21	NC	
N22	NC	
P1	NC	
P2	NC	
P3	NC	
P4	IO142NDB3	
P5	IO141NPB3	
P6	IO125RSB2	
P7	IO139RSB3	
P8	VCCIB3	
P9	GND	
P10	VCC	
P11	VCC	
P12	VCC	
P13	VCC	
P14	GND	
P15	VCCIB1	
P16	GDB0/IO78VPB1	
P17	IO76VDB1	
P18	IO76UDB1	
P19	IO75PDB1	
P20	NC	
P21	NC	
P22	NC	
R1	NC	
R2	NC	
R3	VCC	
R4	IO140PDB3	
R5	IO130RSB2	
R6	IO138NPB3	
R7	GEC0/IO137NPB3	
R8	VMV3	

Microsemi

Package Pin Assignments

FG484		
Pin Number AGL400 Function		
V15	IO85RSB2	
V16	GDB2/IO81RSB2	
V17	TDI	
V18	NC	
V19	TDO	
V20	GND	
V21	NC	
V22	NC	
W1	NC	
W2	NC	
W3	NC	
W4	GND	
W5	IO126RSB2	
W6	FF/GEB2/IO133RSB2	
W7	IO124RSB2	
W8	IO116RSB2	
W9	IO113RSB2	
W10	IO107RSB2	
W11	IO105RSB2	
W12	IO102RSB2	
W13	IO97RSB2	
W14	IO92RSB2	
W15	GDC2/IO82RSB2	
W16	IO86RSB2	
W17	GDA2/IO80RSB2	
W18	TMS	
W19	GND	
W20	NC	
W21	NC	
W22	NC	
Y1	VCCIB3	
Y2	NC	
Y3	NC	
Y4	NC	
Y5	GND	
Y6	NC	

FG484		
Pin Number	AGL1000 Function	
Y7	IO174RSB2	
Y8	VCC	
Y9	VCC	
Y10	IO154RSB2	
Y11	IO148RSB2	
Y12	IO140RSB2	
Y13	NC	
Y14	VCC	
Y15	VCC	
Y16	NC	
Y17	NC	
Y18	GND	
Y19	NC	
Y20	NC	
Y21	NC	
Y22	VCCIB1	

5 – Datasheet Information

List of Changes

The following tables list critical changes that were made in each revision of the IGLOO datasheet.

Revision	Changes	Page
Revision 27 (May 2016)	Added the deleted package FG144 from AGL125 device in "IGLOO Devices" (SAR 79355).	1-I
Revision 26 (March 2016)		1-III and 1-IV
	Ambient temperature row removed in Table 2-2 (SAR 48352).	2-2
	Updated Table 2-2 note 2 from "To ensure targeted reliability standards are met across ambient and junction operating temperatures, Microsemi recommends that the user follow best design practices using Microsemi's timing and power simulation tools." to "Software Default Junction Temperature Range in the Libero SoC software is set to 0°C to +70°C for commercial, and -40°C to +85°C for industrial. To ensure targeted reliability standards are met across the full range of junction temperatures, Microsemi recommends using custom settings for temperature range before running timing and power analysis tools. For more information on custom settings, refer to the New Project Dialog Box in the Libero SoC Online Help." (SAR 77087).	2-2
	Updated Table 2-2 note 9 from "VMV pins must be connected to the corresponding VCCI pins. See the "Pin Descriptions" chapter of the IGLOO FPGA Fabric User Guide for further information." to "VMV and VCCI must be at the same voltage within a given I/O bank. VMV pins must be connected to the corresponding VCCI pins. See the "VMVx I/O Supply Voltage (quiet)" on page 3-1 for further information." (SAR 77087)	2-2
	Added 2 mA drive strengths in tables same as 4 mA (SAR 57179).	NA
	Added reference of Package Mechanical Drawings document in all package pin assignment notes (76777).	NA
Revision 25 (June2015)	Removed package FG144 from AGL060 device in the following tables: "IGLOO Devices", "I/Os Per Package1" and "Temperature Grade Offerings" (SAR 68517)	I, II, and IV
	Removed Package Pin Assignment table of AGL060 device from FG144.(SAR 68517)	-
Revision 24 (March 2014)	Note added for the discontinuance of QN132 package to the following tables: "IGLOO Devices", "I/Os Per Package1", "IGLOO FPGAs Package Sizes Dimensions", and "Temperature Grade Offerings" and "QN132" section (SAR 55117, PDN 1306).	I, II, IV, and 4-28
	Removed packages CS81 and QN132 from AGL250 device in the following tables: "IGLOO Devices", "I/Os Per Package1", and "Temperature Grade Offerings" (SAR 49472).	I, II, and IV

Revision / Version	Changes	Page
Advance v0.4 (September 2007)	Cortex-M1 device information was added to Table 1 • IGLOO Product Family, the "I/Os Per Package1" table, "IGLOO Ordering Information", and Temperature Grade Offerings.	i, ii, iii, iv
	The number of single-ended I/Os for the CS81 package for AGL030 was updated to 66 in the "I/Os Per Package1" table.	ii
	The "Power Conservation Techniques" section was updated to recommend that unused I/O signals be left floating.	2-51
Advance v0.3 (August 2007)	In Table 1 • IGLOO Product Family, the CS81 package was added for AGL030. The CS196 was replaced by the CS121 for AGL060. Table note 3 was moved to the specific packages to which it applies for AGL060: QN132 and FG144.	i
	The CS81 and CS121 packages were added to the "I/Os Per Package1" table. The number of single-ended I/Os was removed for the CS196 package in AGL060. Table note 6 was moved to the specific packages to which it applies for AGL060: QN132 and FG144.	ii
	The CS81 and CS121 packages were added to the Temperature Grade Offerings table. The temperature grade offerings were removed for the CS196 package in AGL060. Table note 3 was moved to the specific packages to which it applies for AGL060: QN132 and FG144.	iv
	The CS81 and CS121 packages were added to Table 2-31 • Flash*Freeze Pin Location in IGLOO Family Packages (device-independent).	2-61
Advance v0.2	The words "ambient temperature" were added to the temperature range in the "IGLOO Ordering Information", Temperature Grade Offerings, and "Speed Grade and Temperature Grade Matrix" sections.	iii, iv
	The T_J parameter in Table 3-2 • Recommended Operating Conditions was changed to T_A , ambient temperature, and table notes 4–6 were added.	3-2