

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

E·XFI

Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	9216
Total RAM Bits	55296
Number of I/O	178
Number of Gates	400000
Voltage - Supply	1.14V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 85°C (TA)
Package / Case	256-LBGA
Supplier Device Package	256-FPBGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/agl400v2-fg256i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Temperature Grade Offerings

	AGL015 ¹	AGL030	AGL060	AGL125	AGL250	AGL400	AGL600	AGL1000
Package					M1AGL250		M1AGL600	M1AGL1000
QN48	-	C, I	-	-	-	-	-	_
QN68	C, I	-	-	-	-	-	-	-
UC81	-	C, I	-	-	-	-	-	-
CS81	-	C, I	-	-	-	-	-	-
CS121	-	_	C, I	C, I	-	-	_	-
VQ100	-	C, I	C, I	C, I	C, I	-	-	-
QN132 ²	-	C, I	C, I ²	C, I	-	-	-	-
CS196	-	-	-	C, I	C, I	C, I	-	-
FG144	-	-	-	C, I	C, I	C, I	C, I	C, I
FG256	-	-	-	-	-	C, I	C, I	C, I
CS281	-	-	-	-	-	-	C, I	C, I
FG484	-	-	-	-	-	C, I	C, I	C, I

Notes:

1. AGL015 is not recommended for new designs.

2. Package not available.

C = Commercial temperature range: 0°C to 85°C junction temperature.

I = Industrial temperature range: -40°C to 100°C junction temperature.

IGLOO Device Status

IGLOO Devices	Status	M1 IGLOO Devices	Status
AGL015	Not recommended for new designs.		
AGL030	Production		
AGL060	Production		
AGL125	Production		
AGL250	Production	M1AGL250	Production
AGL400	Production		
AGL600	Production	M1AGL600	Production
AGL1000	Production	M1AGL1000	Production

References made to IGLOO devices also apply to ARM-enabled IGLOOe devices. The ARM-enabled part numbers start with M1 (Cortex-M1).

Contact your local Microsemi SoC Products Group representative for device availability: www.microsemi.com/soc/contact/default.aspx.

AGL015 and AGL030

The AGL015 and AGL030 are architecturally compatible; there are no RAM or PLL features.

Devices Not Recommended For New Designs

AGL015 is not recommended for new designs.

Power Consumption of Various Internal Resources

 Table 2-19 • Different Components Contributing to Dynamic Power Consumption in IGLOO Devices

 For IGLOO V2 or V5 Devices, 1.5 V DC Core Supply Voltage

		Device Specific Dynamic Power (µW/MHz)										
Parameter	Definition	AGL1000	AGL600	AGL400	AGL250	AGL125	AGL060	AGL030	AGL015			
PAC1	Clock contribution of a Global Rib	7.778	6.221	6.082	4.460	4.446	2.736	0.000	0.000			
PAC2	Clock contribution of a Global Spine	4.334	3.512	2.759	2.718	1.753	1.971	3.483	3.483			
PAC3	Clock contribution of a VersaTile row	1.379	1.445	1.377	1.483	1.467	1.503	1.472	1.472			
PAC4	Clock contribution of a VersaTile used as a sequential module	0.151	0.149	0.151	0.149	0.149	0.151	0.146	0.146			
PAC5	First contribution of a VersaTile used as a sequential module	0.057										
PAC6	Second contribution of a VersaTile used as a sequential module	0.207	0.207									
PAC7	Contribution of a VersaTile used as a combinatorial module	0.276	0.262	0.279	0.277	0.280	0.300	0.281	0.273			
PAC8	Average contribution of a routing net	1.161	1.147	1.193	1.273	1.076	1.088	1.134	1.153			
PAC9	Contribution of an I/O input pin (standard-dependent)		See Table	2-13 on pa	age 2-10 th	rough Table	e 2-15 on p	age 2-11.				
PAC10	Contribution of an I/O output pin (standard-dependent)		See Table	2-16 on pa	age 2-11 th	rough Table	e 2-18 on p	age 2-12.				
PAC11	Average contribution of a RAM block during a read operation		25.00									
PAC12	Average contribution of a RAM block during a write operation				30.	00						
PAC13	Dynamic PLL contribution				2.7	70						

Note: For a different output load, drive strength, or slew rate, Microsemi recommends using the Microsemi power spreadsheet calculator or SmartPower tool in Libero SoC.

Table 2-22 • Different Components Contributing to the Static Power Consumption in IGLOO Device For IGLOO V2 Devices, 1.2 V DC Core Supply Voltage

			Device Specific Static Power (mW)										
Parameter	Definition	AGL1000	AGL600	AGL400	AGL250	AGL125	AGL060	AGL030	AGL015				
PDC1	Array static power in Active mode			See	Table 2-12	2 on page 2	-9.						
PDC2	Array static power in Static (Idle) mode			See	Table 2-11	on page 2	-8.						
PDC3	Array static power in Flash*Freeze mode		See Table 2-9 on page 2-7.										
PDC4	Static PLL contribution				0.9	90							
PDC5	Bank quiescent power (VCCI-Dependent)			See	Table 2-12	2 on page 2	-9.						
PDC6	I/O input pin static power (standard-dependent)		See Table 2-13 on page 2-10 through Table 2-15 on page 2-11.										
PDC7	I/O output pin static power (standard-dependent)		See Table	2-16 on pa	ge 2-11 thr	ough Table	e 2-18 on p	age 2-12.					

Note: For a different output load, drive strength, or slew rate, Microsemi recommends using the Microsemi power spreadsheet calculator or SmartPower tool in Libero SoC.

Table 2-26 • Summary of Maximum and Minimum DC Input and Output Levels Applicable to Commercial and Industrial Conditions—Software Default Settings Applicable to Standard Plus I/O Banks

		Equivalent			VIL	VIH		VOL	VOH	I _{OL}	I _{ОН}
I/O Standard	Drive Strength	Software Default Drive Strength Option ²	Slew Rate	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA
3.3 V LVTTL / 3.3 V LVCMOS	12 mA	12 mA	High	-0.3	0.8	2	3.6	0.4	2.4	12	12
3.3 V LVCMOS Wide Range ³	100 µA	12 mA	High	-0.3	0.8	2	3.6	0.2	VDD-0.2	0.1	0.1
2.5 V LVCMOS	12 mA	12 mA	High	-0.3	0.7	1.7	2.7	0.7	1.7	12	12
1.8 V LVCMOS	8 mA	8 mA	High	-0.3	0.35 * VCCI	0.65 * VCCI	1.9	0.45	VCCI – 0.45	8	8
1.5 V LVCMOS	4 mA	4 mA	High	-0.3	0.35 * VCCI	0.65 * VCCI	1.575	0.25 * VCCI	0.75 * VCCI	4	4
1.2 V LVCMOS ⁴	2 mA	2 mA	High	-0.3	0.35 * VCCI	0.65 * VCCI	1.26	0.25 * VCCI	0.75 * VCCI	2	2
1.2 V LVCMOS Wide Range ⁴	100 µA	2 mA	High	-0.3	0.3 * VCCI	0.7 * VCCI	1.575	0.1	VCCI - 0.1	0.1	0.1
3.3 V PCI		•			Per F	CI specification	ons		•		
3.3 V PCI-X					Per P(CI-X specificat	ions				

Notes:

1. Currents are measured at 85°C junction temperature.

 The minimum drive strength for any LVCMOS 1.2 V or LVCMOS 3.3 V software configuration when run in wide range is ±100 μA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.

3. All LVMCOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD-8B specification.

4. Applicable to V2 Devices operating at VCCI \geq VCC.

5. All LVCMOS 1.2 V software macros support LVCMOS 1.2 V wide range as specified in the JESD8-12 specification.

Table 2-40 • I/O Output Buffer Maximum Resistances¹ Applicable to Standard I/O Banks

Standard	Drive Strength	R _{PULL-DOWN} (Ω) ²	R _{PULL-UP} (Ω) ³
3.3 V LVTTL / 3.3 V LVCMOS	2 mA	100	300
	4 mA	100	300
	6 mA	50	150
	8 mA	50	150
3.3 V LVCMOS Wide Range	100 μA	Same as regular 3.3 V LVCMOS	Same as regular 3.3 V LVCMOS
2.5 V LVCMOS	2 mA	100	200
	4 mA	100	200
	6 mA	50	100
	8 mA	50	100
1.8 V LVCMOS	2 mA	200	225
	4 mA	100	112
1.5 V LVCMOS	2 mA	200	224
1.2 V LVCMOS	1 mA	158	164
1.2 V LVCMOS Wide Range ⁴	100 μA	Same as regular 1.2 V LVCMOS	Same as regular 1.2 V LVCMOS

Notes:

1. These maximum values are provided for informational reasons only. Minimum output buffer resistance values depend on VCCI, drive strength selection, temperature, and process. For board design considerations and detailed output buffer resistances, use the corresponding IBIS models located at http://www.microsemi.com/soc/download/ibis/default.aspx.

2. R_(PULL-DOWN-MAX) = (VOLspec) / I_{OLspec}

3. R_(PULL-UP-MAX) = (VCCImax - VOHspec) / I_{OHspec}

Table 2-41 • I/O Weak Pull-Up/Pull-Down Resistances Minimum and Maximum Weak Pull-Up/Pull-Down Resistance Values

	R _{(WEAK I}	PULL-UP) ¹ 2)	R _(WEAK PULL-DOWN) ² (Ω)			
VCCI	Min.	Max.	Min.	Max.		
3.3 V	10 K	45 K	10 K	45 K		
3.3 V Wide Range I/Os	10 K	45 K	10 K	45 K		
2.5 V	11 K	55 K	12 K	74 K		
1.8 V	18 K	70 K	17 K	110 K		
1.5 V	19 K	90 K	19 K	140 K		
1.2 V	25 K	110 K	25 K	150 K		
1.2 V Wide Range I/Os	19 K	110 K	19 K	150 K		

Notes:

1. R_(WEAK PULL-UP-MAX) = (VCCImax – VOHspec) / I_(WEAK PULL-UP-MIN)

2. R_(WEAK PULLDOWN-MAX) = (VOLspec) / I_(WEAK PULLDOWN-MIN)

3.3 V LVTTL / 3.3 V LVCMOS	VIL		VIH		V _{OL}	νон	IOL	юн	IOSL	IOSH	IIL ¹	IIH ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
2 mA	-0.3	0.8	2	3.6	0.4	2.4	2	2	25	27	10	10
4 mA	-0.3	0.8	2	3.6	0.4	2.4	4	4	25	27	10	10
6 mA	-0.3	0.8	2	3.6	0.4	2.4	6	6	51	54	10	10
8 mA	-0.3	0.8	2	3.6	0.4	2.4	8	8	51	54	10	10

Table 2-49 • Minimum and Maximum DC Input and Output Levels Applicable to Standard I/O Banks

Notes:

1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.

2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges

3. Currents are measured at 100°C junction temperature and maximum voltage.

- 4. Currents are measured at 85°C junction temperature.
- 5. Software default selection highlighted in gray.

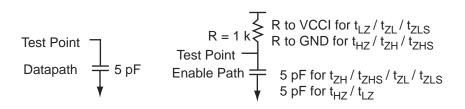
Test Point
Datapath
$$\downarrow$$
 5 pF $R = 1 k$
Enable Path \downarrow $R = 1 k$
 $Test Point$
Enable Path \downarrow $Test Point$
 $F = 1 k$
 $R to VCCI for t_{LZ} / t_{ZL} / t_{ZLS}$
 $R to GND for t_{HZ} / t_{ZH} / t_{ZHS} / t_{ZL} / t_{ZLS}$

Figure 2-7 • AC Loading

Table 2-50 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	C _{LOAD} (pF)		
0	3.3	1.4	5		

Note: *Measuring point = Vtrip. See Table 2-29 on page 2-28 for a complete table of trip points.


Table 2-97 •	Minimum and Maximum DC Input and Output Levels
	Applicable to Standard I/O Banks

1.8 V LVCMOS		VIL VIH		VOL	VOH	IOL	ЮН	IOSH	IOSL	IIL ¹	IIH ²	
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
2 mA	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.45	VCCI - 0.45	2	2	9	11	10	10
4 mA	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.45	VCCI – 0.45	4	4	17	22	10	10

Notes:

1. IIL is the input leakage current per I/O pin over recommended operation conditions where -0.3 V < VIN < VIL.

- 2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges
- 3. Currents are measured at 100°C junction temperature and maximum voltage.
- 4. Currents are measured at 85°C junction temperature.
- 5. Software default selection highlighted in gray.

Figure 2-9 • AC Loading

Table 2-98 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	C _{LOAD} (pF)
0	1.8	0.9	5

Note: *Measuring point = Vtrip. See Table 2-29 on page 2-28 for a complete table of trip points.

Timing Characteristics

1.5 V DC Core Voltage

Table 2-99 • 1.8 V LVCMOS Low Slew – Applies to 1.5 V DC Core Voltage

Commercial-Case Conditions: $T_J = 70^{\circ}$ C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.7 V Applicable to Advanced I/O Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{ZHS}	Units
2 mA	Std.	0.97	6.38	0.18	1.01	0.66	6.51	5.93	2.33	1.56	10.10	9.53	ns
4 mA	Std.	0.97	5.35	0.18	1.01	0.66	5.46	5.04	2.67	2.38	9.05	8.64	ns
6 mA	Std.	0.97	4.62	0.18	1.01	0.66	4.71	4.44	2.90	2.79	8.31	8.04	ns
8 mA	Std.	0.97	4.37	0.18	1.01	0.66	4.46	4.31	2.95	2.89	8.05	7.90	ns
12 mA	Std.	0.97	4.32	0.18	1.01	0.66	4.37	4.32	3.03	3.30	7.97	7.92	ns
16 mA	Std.	0.97	4.32	0.18	1.01	0.66	4.37	4.32	3.03	3.30	7.97	7.92	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

Table 2-104 • 1.8 V LVCMOS High Slew – Applies to 1.5 V DC Core Voltage

Commercial-Case Conditions: $T_J = 70^{\circ}$ C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.7 V Applicable to Standard Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	Units
2 mA	Std.	2.62	0.18	0.98	0.66	2.67	2.59	1.67	1.29	2.62	ns
4 mA	Std.	2.18	0.18	0.98	0.66	2.22	1.93	1.97	2.06	2.18	ns

Notes:

1. Software default selection highlighted in gray.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

1.2 V DC Core Voltage

Table 2-105 • 1.8 V LVCMOS Low Slew – Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.7 V Applicable to Advanced I/O Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
2 mA	Std.	1.55	6.97	0.26	1.11	1.10	7.08	6.48	2.87	2.29	12.87	12.27	ns
4 mA	Std.	1.55	5.91	0.26	1.11	1.10	6.01	5.57	3.21	3.14	11.79	11.36	ns
6 mA	Std.	1.55	5.16	0.26	1.11	1.10	5.24	4.95	3.45	3.55	11.03	10.74	ns
8 mA	Std.	1.55	4.90	0.26	1.11	1.10	4.98	4.81	3.50	3.66	10.77	10.60	ns
12 mA	Std.	1.55	4.83	0.26	1.11	1.10	4.90	4.83	3.58	4.08	10.68	10.61	ns
16 mA	Std.	1.55	4.83	0.26	1.11	1.10	4.90	4.83	3.58	4.08	10.68	10.61	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.

Table 2-106 • 1.8 V LVCMOS High Slew – Applies to 1.2 V DC Core Voltage

Commercial-Case Conditions: $T_J = 70^{\circ}$ C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.7 V Applicable to Advanced I/O Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{ZHS}	Units
2 mA	Std.	1.55	3.73	0.26	1.11	1.10	3.71	3.73	2.86	2.34	9.49	9.51	ns
4 mA	Std.	1.55	3.12	0.26	1.11	1.10	3.16	2.97	3.21	3.22	8.95	8.75	ns
6 mA	Std.	1.55	2.79	0.26	1.11	1.10	2.83	2.59	3.45	3.65	8.62	8.38	ns
8 mA	Std.	1.55	2.73	0.26	1.11	1.10	2.77	2.52	3.50	3.75	8.56	8.30	ns
12 mA	Std.	1.55	2.72	0.26	1.11	1.10	2.76	2.43	3.58	4.19	8.55	8.22	ns
16 mA	Std.	1.55	2.72	0.26	1.11	1.10	2.76	2.43	3.58	4.19	8.55	8.22	ns

Notes:

1. Software default selection highlighted in gray.

2. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.

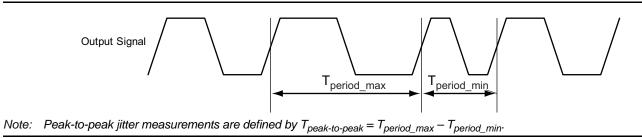


Figure 2-30 • Peak-to-Peak Jitter Definition

VJTAG JTAG Supply Voltage

Low power flash devices have a separate bank for the dedicated JTAG pins. The JTAG pins can be run at any voltage from 1.5 V to 3.3 V (nominal). Isolating the JTAG power supply in a separate I/O bank gives greater flexibility in supply selection and simplifies power supply and PCB design. If the JTAG interface is neither used nor planned for use, the VJTAG pin together with the TRST pin could be tied to GND. It should be noted that VCC is required to be powered for JTAG operation; VJTAG alone is insufficient. If a device is in a JTAG chain of interconnected boards, the board containing the device can be powered down, provided both VJTAG and VCC to the part remain powered; otherwise, JTAG signals will not be able to transition the device, even in bypass mode.

Microsemi recommends that VPUMP and VJTAG power supplies be kept separate with independent filtering capacitors rather than supplying them from a common rail.

VPUMP Programming Supply Voltage

IGLOO devices support single-voltage ISP of the configuration flash and FlashROM. For programming, VPUMP should be 3.3 V nominal. During normal device operation, VPUMP can be left floating or can be tied (pulled up) to any voltage between 0 V and the VPUMP maximum. Programming power supply voltage (VPUMP) range is listed in the datasheet.

When the VPUMP pin is tied to ground, it will shut off the charge pump circuitry, resulting in no sources of oscillation from the charge pump circuitry.

For proper programming, 0.01 μ F and 0.33 μ F capacitors (both rated at 16 V) are to be connected in parallel across VPUMP and GND, and positioned as close to the FPGA pins as possible.

Microsemi recommends that VPUMP and VJTAG power supplies be kept separate with independent filtering capacitors rather than supplying them from a common rail.

User Pins

I/O

User Input/Output

The I/O pin functions as an input, output, tristate, or bidirectional buffer. Input and output signal levels are compatible with the I/O standard selected.

During programming, I/Os become tristated and weakly pulled up to VCCI. With VCCI, VMV, and VCC supplies continuously powered up, when the device transitions from programming to operating mode, the I/Os are instantly configured to the desired user configuration.

Unused I/Os are configured as follows:

- Output buffer is disabled (with tristate value of high impedance)
- Input buffer is disabled (with tristate value of high impedance)
- Weak pull-up is programmed

GL Globals

GL I/Os have access to certain clock conditioning circuitry (and the PLL) and/or have direct access to the global network (spines). Additionally, the global I/Os can be used as regular I/Os, since they have identical capabilities. Unused GL pins are configured as inputs with pull-up resistors.

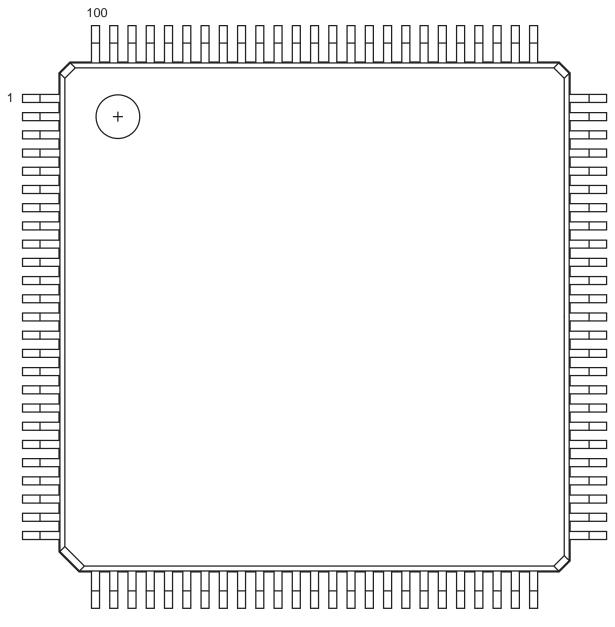
See more detailed descriptions of global I/O connectivity in the "Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs" chapter of the *IGLOO FPGA Fabric User Guide*. All inputs labeled GC/GF are direct inputs into the quadrant clocks. For example, if GAA0 is used for an input, GAA1 and GAA2 are no longer available for input to the quadrant globals. All inputs labeled GC/GF are direct inputs into the chip-level globals, and the rest are connected to the quadrant globals. The inputs to the global network are multiplexed, and only one input can be used as a global input.

Refer to the "I/O Structures in IGLOO and ProASIC3 Devices" chapter of the *IGLOO FPGA Fabric User Guide* for an explanation of the naming of global pins.

FF

Flash*Freeze Mode Activation Pin

Flash*Freeze mode is available on IGLOO devices. The FF pin is a dedicated input pin used to enter and exit Flash*Freeze mode. The FF pin is active low, has the same characteristics as a single-ended I/O, and must meet the maximum rise and fall times. When Flash*Freeze mode is not used in the design, the FF pin is available as a regular I/O.

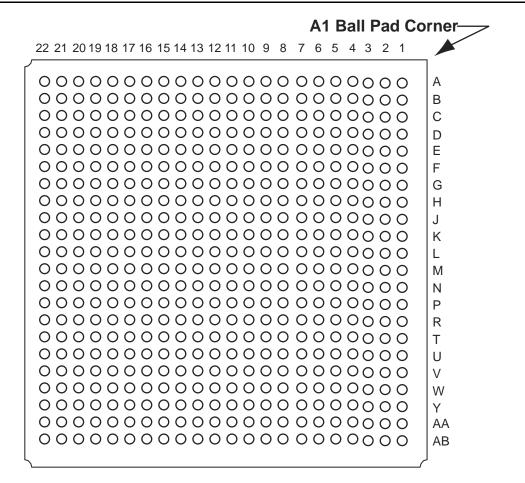

When Flash*Freeze mode is used, the FF pin must not be left floating to avoid accidentally entering Flash*Freeze mode. While in Flash*Freeze mode, the Flash*Freeze pin should be constantly asserted.

Microsemi

	CS81	CS81				
Pin Number	AGL030 Function	Pin Number	AGL030 Function			
A1	IO00RSB0	E1	GEB0/IO71RSE			
A2	IO02RSB0	E2	GEA0/IO72RSE			
A3	IO06RSB0	E3	GEC0/IO73RSE			
A4	IO11RSB0	E4	VCCIB1			
A5	IO16RSB0	E5	VCC			
A6	IO19RSB0	E6	VCCIB0			
A7	IO22RSB0	E7	GDC0/IO32RSE			
A8	IO24RSB0	E8	GDA0/IO33RSE			
A9	IO26RSB0	E9	GDB0/IO34RSE			
B1	IO81RSB1	F1	IO68RSB1			
B2	IO04RSB0	F2	IO67RSB1			
B3	IO10RSB0	F3	IO64RSB1			
B4	IO13RSB0	F4	GND			
B5	IO15RSB0	F5	VCCIB1			
B6	IO20RSB0	F6	IO47RSB1			
B7	IO21RSB0	F7	IO36RSB0			
B8	IO28RSB0	F8	IO38RSB0			
B9	IO25RSB0	F9	IO40RSB0			
C1	IO79RSB1	G1	IO65RSB1			
C2	IO80RSB1	G2	IO66RSB1			
C3	IO08RSB0	G3	IO57RSB1			
C4	IO12RSB0	G4	IO53RSB1			
C5	IO17RSB0	G5	IO49RSB1			
C6	IO14RSB0	G6	IO44RSB1			
C7	IO18RSB0	G7	IO46RSB1			
C8	IO29RSB0	G8	VJTAG			
C9	IO27RSB0	G9	TRST			
D1	IO74RSB1	H1	IO62RSB1			
D2	IO76RSB1	H2	FF/IO60RSB1			
D3	IO77RSB1	H3	IO58RSB1			
D4	VCC	H4	IO54RSB1			
D5	VCCIB0	H5	IO48RSB1			
D6	GND	H6	IO43RSB1			
D7	IO23RSB0	H7	IO42RSB1			
D8	IO31RSB0	H8	TDI			
D9	IO30RSB0	H9	TDO			

CS81					
Pin Number	AGL030 Function				
J1	IO63RSB1				
J2	IO61RSB1				
J3	IO59RSB1				
J4	IO56RSB1				
J5	IO52RSB1				
J6	IO45RSB1				
J7	ТСК				
J8	TMS				
J9	VPUMP				

VQ100


Note: This is the top view of the package.

Note

For more information on package drawings, see PD3068: Package Mechanical Drawings.

Microsemi

VQ100			VQ100		VQ100
Pin Number	AGL125 Function	Pin Number	AGL125 Function	Pin Number	AGL125 Function
1	GND	36	IO93RSB1	72	IO42RSB0
2	GAA2/IO67RSB1	37	VCC	73	GBA2/IO41RSB0
3	IO68RSB1	38	GND	74	VMV0
4	GAB2/IO69RSB1	39	VCCIB1	75	GNDQ
5	IO132RSB1	40	IO87RSB1	76	GBA1/IO40RSB0
6	GAC2/IO131RSB1	41	IO84RSB1	77	GBA0/IO39RSB0
7	IO130RSB1	42	IO81RSB1	78	GBB1/IO38RSB0
8	IO129RSB1	43	IO75RSB1	79	GBB0/IO37RSB0
9	GND	44	GDC2/IO72RSB1	80	GBC1/IO36RSB0
10	GFB1/IO124RSB1	45	GDB2/IO71RSB1	81	GBC0/IO35RSB0
11	GFB0/IO123RSB1	46	GDA2/IO70RSB1	82	IO32RSB0
12	VCOMPLF	47	TCK	83	IO28RSB0
13	GFA0/IO122RSB1	48	TDI	84	IO25RSB0
14	VCCPLF	49	TMS	85	IO22RSB0
15	GFA1/IO121RSB1	50	VMV1	86	IO19RSB0
16	GFA2/IO120RSB1	51	GND	87	VCCIB0
17	VCC	52	VPUMP	88	GND
18	VCCIB1	53	NC	89	VCC
19	GEC0/IO111RSB1	54	TDO	90	IO15RSB0
20	GEB1/IO110RSB1	55	TRST	91	IO13RSB0
21	GEB0/IO109RSB1	56	VJTAG	92	IO11RSB0
22	GEA1/IO108RSB1	57	GDA1/IO65RSB0	93	IO09RSB0
23	GEA0/IO107RSB1	58	GDC0/IO62RSB0	94	IO07RSB0
24	VMV1	59	GDC1/IO61RSB0	95	GAC1/IO05RSB0
25	GNDQ	60	GCC2/IO59RSB0	96	GAC0/IO04RSB0
26	GEA2/IO106RSB1	61	GCB2/IO58RSB0	97	GAB1/IO03RSB0
27	FF/GEB2/IO105RSB	62	GCA0/IO56RSB0	98	GAB0/IO02RSB0
	1	63	GCA1/IO55RSB0	99	GAA1/IO01RSB0
28	GEC2/IO104RSB1	64	GCC0/IO52RSB0	100	GAA0/IO00RSB0
29	IO102RSB1	65	GCC1/IO51RSB0		
30	IO100RSB1	66	VCCIB0		
31	IO99RSB1	67	GND		
32	IO97RSB1	68	VCC		
33	IO96RSB1	69	IO47RSB0		
34	IO95RSB1	70	GBC2/IO45RSB0		
35	IO94RSB1	71	GBB2/IO43RSB0		

Note: This is the bottom view of the package.

Note

For more information on package drawings, see PD3068: Package Mechanical Drawings.

FG484						
Pin Number	AGL400 Function					
E13	IO38RSB0					
E14	IO42RSB0					
E15	GBC1/IO55RSB0					
E16	GBB0/IO56RSB0					
E17	IO44RSB0					
E18	GBA2/IO60PDB1					
E19	IO60NDB1					
E20	GND					
E21	NC					
E22	NC					
F1	NC					
F2	NC					
F3	NC					
F4	IO154VDB3					
F5	IO155VDB3					
F6	IO11RSB0					
F7	IO07RSB0					
F8	GAC0/IO04RSB0					
F9	GAC1/IO05RSB0					
F10	IO20RSB0					
F11	IO24RSB0					
F12	IO33RSB0					
F13	IO39RSB0					
F14	IO45RSB0					
F15	GBC0/IO54RSB0					
F16	IO48RSB0					
F17	VMV0					
F18	IO61NPB1					
F19	IO63PDB1					
F20	NC					
F21	NC					
F22	NC					
G1	NC					
G2	NC					
G3	NC					
G4	IO151VDB3					

FG484						
Pin Number	AGL400 Function					
K11	GND					
K12	GND					
K13	GND					
K14	VCC					
K15	VCCIB1					
K16	GCC1/IO67PPB1					
K17	IO64NPB1					
K18	IO73PDB1					
K19	IO73NDB1					
K20	NC					
K21	NC					
K22	NC					
L1	NC					
L2	NC					
L3	NC					
L4	GFB0/IO146NPB3					
L5	GFA0/IO145NDB3					
L6	GFB1/IO146PPB3					
L7	VCOMPLF					
L8	GFC0/IO147NPB3					
L9	VCC					
L10	GND					
L11	GND					
L12	GND					
L13	GND					
L14	VCC					
L15	GCC0/IO67NPB1					
L16	GCB1/IO68PPB1					
L17	GCA0/IO69NPB1					
L18	NC					
L19	GCB0/IO68NPB1					
L20	NC					
L21	NC					
L22	NC					
M1	NC					
M2	NC					

FG484						
Pin Number	AGL400 Function					
R9	VCCIB2					
R10	VCCIB2					
R11	IO108RSB2					
R12	IO101RSB2					
R13	VCCIB2					
R14	VCCIB2					
R15	VMV2					
R16	IO83RSB2					
R17	GDB1/IO78UPB1					
R18	GDC1/IO77UDB1					
R19	IO75NDB1					
R20	VCC					
R21	NC					
R22	NC					
T1	NC					
T2	NC					
Т3	NC					
T4	IO140NDB3					
T5	IO138PPB3					
T6	GEC1/IO137PPB3					
T7	IO131RSB2					
Т8	GNDQ					
Т9	GEA2/IO134RSB2					
T10	IO117RSB2					
T11	IO111RSB2					
T12	IO99RSB2					
T13	IO94RSB2					
T14	IO87RSB2					
T15	GNDQ					
T16	IO93RSB2					
T17	VJTAG					
T18	GDC0/IO77VDB1					
T19	GDA1/IO79UDB1					
T20	NC					
T21	NC					
T22	NC					

FG484					
Pin Number	AGL600 Function				
C21	NC				
C22	VCCIB1				
D1	NC				
D2	NC				
D3	NC				
D4	GND				
D5	GAA0/IO00RSB0				
D6	GAA1/IO01RSB0				
D7	GAB0/IO02RSB0				
D8	IO11RSB0				
D9	IO16RSB0				
D10	IO18RSB0				
D11	IO28RSB0				
D12	IO34RSB0				
D13	IO37RSB0				
D14	IO41RSB0				
D15	IO43RSB0				
D16	GBB1/IO57RSB0				
D17	GBA0/IO58RSB0				
D18	GBA1/IO59RSB0				
D19	GND				
D20	NC				
D21	NC				
D22	NC				
E1	NC				
E2	NC				
E3	GND				
E4	GAB2/IO173PDB3				
E5	GAA2/IO174PDB3				
E6	GNDQ				
E7	GAB1/IO03RSB0				
E8	IO13RSB0				
E9	IO14RSB0				
E10	IO21RSB0				
E11	IO27RSB0				
E12	IO32RSB0				

FG484	
Pin Number	AGL1000 Function
G5	IO222PDB3
G6	GAC2/IO223PDB3
G7	IO223NDB3
G8	GNDQ
G9	IO23RSB0
G10	IO29RSB0
G11	IO33RSB0
G12	IO46RSB0
G13	IO52RSB0
G14	IO60RSB0
G15	GNDQ
G16	IO80NDB1
G17	GBB2/IO79PDB1
G18	IO79NDB1
G19	IO82NPB1
G20	IO85PDB1
G21	IO85NDB1
G22	NC
H1	NC
H2	NC
H3	VCC
H4	IO217PDB3
H5	IO218PDB3
H6	IO221NDB3
H7	IO221PDB3
H8	VMV0
H9	VCCIB0
H10	VCCIB0
H11	IO38RSB0
H12	IO47RSB0
H13	VCCIB0
H14	VCCIB0
H15	VMV1
H16	GBC2/IO80PDB1
H17	IO83PPB1
H18	IO86PPB1

Microsemi Corporate Headquarters

One Enterprise, Aliso Viejo, CA 92656 USA Within the USA: +1 (800) 713-4113 Outside the USA: +1 (949) 380-6100 Sales: +1 (949) 380-6136 Fax: +1 (949) 215-4996 E-mail: sales.support@microsemi.com www.microsemi.com

© 2016 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of Microsemi Corporation. All other trademarks and service marks are the property of their respective owners. Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of its products and services for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of the application or use of any product or circuit. The products sold hereunder and any other products sold by Microsemi have been subject to limited testing and should not be used in conjunction with mission-critical equipment or applications. Any performance specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all performance and other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer's responsibility to independently determine suitability of any products and to test and verify the same. The information provided by Microsemi hereunder is provided "as is, where is" and with all faults, and the entire risk associated with such information is entirely with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other IP rights, whether with regard to such information itself or anything described by such information. Information provided in this document is proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in this document or to any products and services at any time without notice.

About Microsemi

Microsemi Corporation (Nasdaq: MSCC) offers a comprehensive portfolio of semiconductor and system solutions for aerospace & defense, communications, data center and industrial markets. Products include high-performance and radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs and ASICs; power management products; timing and synchronization devices and precise time solutions, setting the world's standard for time; voice processing devices; RF solutions; discrete components; enterprise storage and communication solutions, security technologies and scalable anti-tamper products; Ethernet solutions; Power-over-Ethernet ICs and midspans; as well as custom design capabilities and services. Microsemi is headquartered in Aliso Viejo, Calif., and has approximately 4,800 employees globally. Learn more at www.microsemi.com.