

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Details	
Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	13824
Total RAM Bits	110592
Number of I/O	97
Number of Gates	600000
Voltage - Supply	1.14V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 70°C (TA)
Package / Case	144-LBGA
Supplier Device Package	144-FPBGA (13x13)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/agl600v2-fg144

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Flash Advantages

Low Power

Flash-based IGLOO devices exhibit power characteristics similar to those of an ASIC, making them an ideal choice for power-sensitive applications. IGLOO devices have only a very limited power-on current surge and no high-current transition period, both of which occur on many FPGAs.

IGLOO devices also have low dynamic power consumption to further maximize power savings; power is even further reduced by the use of a 1.2 V core voltage.

Low dynamic power consumption, combined with low static power consumption and Flash*Freeze technology, gives the IGLOO device the lowest total system power offered by any FPGA.

Security

Nonvolatile, flash-based IGLOO devices do not require a boot PROM, so there is no vulnerable external bitstream that can be easily copied. IGLOO devices incorporate FlashLock, which provides a unique combination of reprogrammability and design security without external overhead, advantages that only an FPGA with nonvolatile flash programming can offer.

IGLOO devices utilize a 128-bit flash-based lock and a separate AES key to provide the highest level of protection in the FPGA industry for intellectual property and configuration data. In addition, all FlashROM data in IGLOO devices can be encrypted prior to loading, using the industry-leading AES-128 (FIPS192) bit block cipher encryption standard. AES was adopted by the National Institute of Standards and Technology (NIST) in 2000 and replaces the 1977 DES standard. IGLOO devices have a built-in AES decryption engine and a flash-based AES key that make them the most comprehensive programmable logic device security solution available today. IGLOO devices with AES-based security provide a high level of protection for remote field updates over public networks such as the Internet, and are designed to ensure that valuable IP remains out of the hands of system overbuilders, system cloners, and IP thieves.

Security, built into the FPGA fabric, is an inherent component of the IGLOO family. The flash cells are located beneath seven metal layers, and many device design and layout techniques have been used to make invasive attacks extremely difficult. The IGLOO family, with FlashLock and AES security, is unique in being highly resistant to both invasive and noninvasive attacks. Your valuable IP is protected with industry-standard security, making remote ISP possible. An IGLOO device provides the best available security for programmable logic designs.

Single Chip

Flash-based FPGAs store their configuration information in on-chip flash cells. Once programmed, the configuration data is an inherent part of the FPGA structure, and no external configuration data needs to be loaded at system powerup (unlike SRAM-based FPGAs). Therefore, flash-based IGLOO FPGAs do not require system configuration components such as EEPROMs or microcontrollers to load device configuration data. This reduces bill-of-materials costs and PCB area, and increases security and system reliability.

Instant On

Flash-based IGLOO devices support Level 0 of the Instant On classification standard. This feature helps in system component initialization, execution of critical tasks before the processor wakes up, setup and configuration of memory blocks, clock generation, and bus activity management. The Instant On feature of flash-based IGLOO devices greatly simplifies total system design and reduces total system cost, often eliminating the need for CPLDs and clock generation, and unlike SRAM-based FPGAs, the device will not have to be reloaded when system power is restored. This enables the reduction or complete removal of the configuration PROM, expensive voltage monitor, brownout detection, and clock generator devices from the PCB design. Flash-based IGLOO devices simplify total system design and reduce cost and design risk while increasing system reliability and improving system initialization time.

IGLOO flash FPGAs allow the user to quickly enter and exit Flash*Freeze mode. This is done almost instantly (within 1 µs) and the device retains configuration and data in registers and RAM. Unlike SRAM-based FPGAs the device does not need to reload configuration and design state from external memory components; instead it retains all necessary information to resume operation immediately.

Reduced Cost of Ownership

Advantages to the designer extend beyond low unit cost, performance, and ease of use. Unlike SRAM-based FPGAs, Flash-based IGLOO devices allow all functionality to be Instant On; no external boot PROM is required. On-board security mechanisms prevent access to all the programming information and enable secure remote updates of the FPGA logic. Designers can perform secure remote in-system reprogramming to support future design iterations and

User Nonvolatile FlashROM

IGLOO devices have 1 kbit of on-chip, user-accessible, nonvolatile FlashROM. The FlashROM can be used in diverse system applications:

- Internet protocol addressing (wireless or fixed)
- System calibration settings
- Device serialization and/or inventory control
- Subscription-based business models (for example, set-top boxes)
- Secure key storage for secure communications algorithms
- Asset management/tracking
- Date stamping
- Version management

The FlashROM is written using the standard IGLOO IEEE 1532 JTAG programming interface. The core can be individually programmed (erased and written), and on-chip AES decryption can be used selectively to securely load data over public networks (except in the AGL015 and AGL030 devices), as in security keys stored in the FlashROM for a user design.

The FlashROM can be programmed via the JTAG programming interface, and its contents can be read back either through the JTAG programming interface or via direct FPGA core addressing. Note that the FlashROM can only be programmed from the JTAG interface and cannot be programmed from the internal logic array.

The FlashROM is programmed as 8 banks of 128 bits; however, reading is performed on a byte-by-byte basis using a synchronous interface. A 7-bit address from the FPGA core defines which of the 8 banks and which of the 16 bytes within that bank are being read. The three most significant bits (MSBs) of the FlashROM address determine the bank, and the four least significant bits (LSBs) of the FlashROM address define the byte.

The Microsemi development software solutions, Libero[®] System-on-Chip (SoC) and Designer, have extensive support for the FlashROM. One such feature is auto-generation of sequential programming files for applications requiring a unique serial number in each part. Another feature allows the inclusion of static data for system version control. Data for the FlashROM can be generated quickly and easily using Libero SoC and Designer software tools. Comprehensive programming file support is also included to allow for easy programming of large numbers of parts with differing FlashROM contents.

SRAM and FIFO

IGLOO devices (except the AGL015 and AGL030 devices) have embedded SRAM blocks along their north and south sides. Each variable-aspect-ratio SRAM block is 4,608 bits in size. Available memory configurations are 256×18, 512×9, 1k×4, 2k×2, and 4k×1 bits. The individual blocks have independent read and write ports that can be configured with different bit widths on each port. For example, data can be sent through a 4-bit port and read as a single bitstream. The embedded SRAM blocks can be initialized via the device JTAG port (ROM emulation mode) using the UJTAG macro (except in the AGL015 and AGL030 devices).

In addition, every SRAM block has an embedded FIFO control unit. The control unit allows the SRAM block to be configured as a synchronous FIFO without using additional core VersaTiles. The FIFO width and depth are programmable. The FIFO also features programmable Almost Empty (AEMPTY) and Almost Full (AFULL) flags in addition to the normal Empty and Full flags. The embedded FIFO control unit contains the counters necessary for generation of the read and write address pointers. The embedded SRAM/FIFO blocks can be cascaded to create larger configurations.

PLL and CCC

IGLOO devices provide designers with very flexible clock conditioning circuit (CCC) capabilities. Each member of the IGLOO family contains six CCCs. One CCC (center west side) has a PLL. The AGL015 and AGL030 do not have a PLL.

The six CCC blocks are located at the four corners and the centers of the east and west sides. One CCC (center west side) has a PLL.

All six CCC blocks are usable; the four corner CCCs and the east CCC allow simple clock delay operations as well as clock spine access.

The inputs of the six CCC blocks are accessible from the FPGA core or from one of several inputs located near the CCC that have dedicated connections to the CCC block.

The CCC block has these key features:

Wide Range I/O Support

IGLOO devices support JEDEC-defined wide range I/O operation. IGLOO devices support both the JESD8-B specification, covering 3 V and 3.3 V supplies, for an effective operating range of 2.7 V to 3.6 V, and JESD8-12 with its 1.2 V nominal, supporting an effective operating range of 1.14 V to 1.575 V.

Wider I/O range means designers can eliminate power supplies or power conditioning components from the board or move to less costly components with greater tolerances. Wide range eases I/O bank management and provides enhanced protection from system voltage spikes, while providing the flexibility to easily run custom voltage applications.

Specifying I/O States During Programming

You can modify the I/O states during programming in FlashPro. In FlashPro, this feature is supported for PDB files generated from Designer v8.5 or greater. See the *FlashPro User Guide* for more information.

- Note: PDB files generated from Designer v8.1 to Designer v8.4 (including all service packs) have limited display of Pin Numbers only.
 - 1. Load a PDB from the FlashPro GUI. You must have a PDB loaded to modify the I/O states during programming.
 - 2. From the FlashPro GUI, click PDB Configuration. A FlashPoint Programming File Generator window appears.
 - 3. Click the Specify I/O States During Programming button to display the Specify I/O States During Programming dialog box.
 - 4. Sort the pins as desired by clicking any of the column headers to sort the entries by that header. Select the I/Os you wish to modify (Figure 1-5 on page 1-9).
 - 5. Set the I/O Output State. You can set Basic I/O settings if you want to use the default I/O settings for your pins, or use Custom I/O settings to customize the settings for each pin. Basic I/O state settings:
 - 1 I/O is set to drive out logic High
 - 0 I/O is set to drive out logic Low

Last Known State – I/O is set to the last value that was driven out prior to entering the programming mode, and then held at that value during programming

Z -Tri-State: I/O is tristated

Table 2-17 • Summary of I/O Output Buffer Power (per pin) – Default I/O Software Settings¹ Applicable to Standard Plus I/O Banks

	C _{LOAD} (pF)	VCCI (V)	Static Power PDC7 (mW) ²	Dynamic Power PAC10 (µW/MHz) ³
Single-Ended				
3.3 V LVTTL / 3.3 V LVCMOS	5	3.3	-	122.16
3.3 V LVCMOS Wide Range ⁴	5	3.3	-	122.16
2.5 V LVCMOS	5	2.5	-	68.37
1.8 V LVCMOS	5	1.8	-	34.53
1.5 V LVCMOS (JESD8-11)	5	1.5	-	23.66
1.2 V LVCMOS ⁵	5	1.2	-	14.90
1.2 V LVCMOS Wide Range ⁵	5	1.2	-	14.90
3.3 V PCI	10	3.3	-	181.06
3.3 V PCI-X	10	3.3	-	181.06

Notes:

1. Dynamic power consumption is given for standard load and software default drive strength and output slew.

2. P_{DC7} is the static power (where applicable) measured on VCCI.

3. P_{AC10} is the total dynamic power measured on VCCI.

4. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD-8B specification.

5. Applicable for IGLOO V2 devices only.

Table 2-18 • Summary of I/O Output Buffer Power (per pin) – Default I/O Software Settings¹ Applicable to Standard I/O Banks

	C _{LOAD} (pF)	VCCI (V)	Static Power PDC7 (mW) ²	Dynamic Power PAC10 (µW/MHz) ³
Single-Ended				
3.3 V LVTTL / 3.3 V LVCMOS	5	3.3	-	104.38
3.3 V LVCMOS Wide Range ⁴	5	3.3	-	104.38
2.5 V LVCMOS	5	2.5	-	59.86
1.8 V LVCMOS	5	1.8	-	31.26
1.5 V LVCMOS (JESD8-11)	5	1.5	-	21.96
1.2 V LVCMOS ⁵	5	1.2	-	13.49
1.2 V LVCMOS Wide Range ⁵	5	1.2	-	13.49

Notes:

1. Dynamic power consumption is given for standard load and software default drive strength and output slew.

2. PDC7 is the static power (where applicable) measured on VCCI.

3. PAC10 is the total dynamic power measured on VCCI.

4. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD-8B specification.

5. Applicable for IGLOO V2 devices only.

Table 2-65 • Minimum and Maximum DC Input and Output Levels for LVCMOS 3.3 V Wide Range Applicable to Standard I/O Banks

3.3 V LVCMO	3.3 V LVCMOS Wide Range		IL	V	/IH	VOL	VOH	IOL	IOH	IOSL	IOSH	IIL ²	IIH ³
Drive Strength	Equivalent Software Default Drive Strength Option ¹	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	μΑ	μΑ	Max. mA ⁴	Max. mA ⁴	μ Α ⁵	μA ⁵
100 µA	2 mA	-0.3	0.8	2	3.6	0.2	VDD - 0.2	100	100	25	27	10	10
100 µA	4 mA	-0.3	0.8	2	3.6	0.2	VDD - 0.2	100	100	25	27	10	10
100 µA	6 mA	-0.3	0.8	2	3.6	0.2	VDD – 0.2	100	100	51	54	10	10
100 µA	8 mA	-0.3	0.8	2	3.6	0.2	VDD - 0.2	100	100	51	54	10	10

Notes:

1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ± 100 μA. Drive strengths displayed in software are supported for normal range only. For a detailed I/V curve, refer to the IBIS models.

2. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.

3. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges

4. Currents are measured at 100°C junction temperature and maximum voltage.

5. Currents are measured at 85°C junction temperature.

6. Software default selection highlighted in gray.

Table 2-66 • 3.3 V LVCMOS Wide Range AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	C _{LOAD} (pF)
0	3.3	1.4	5

Note: *Measuring point = Vtrip. See Table 2-29 on page 2-28 for a complete table of trip points.

Table 2-75 • 3.3 V LVCMOS Wide Range Low Slew – Applies to 1.2 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 2.7
Applicable to Standard Plus Banks

	/ ppilouble to	otanidai												
Drive Strength	Equivalent Software Default Drive Strength Option ¹	Speed Grade	t _{dout}	t _{DP}	t _{DIN}	t _{PY}	t _{eout}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
100 µA	2 mA	Std.	1.55	6.69	0.26	1.32	1.10	6.69	5.73	3.41	3.72	12.48	11.52	ns
100 µA	4 mA	Std.	1.55	6.69	0.26	1.32	1.10	6.69	5.73	3.41	3.72	12.48	11.52	ns
100 µA	6 mA	Std.	1.55	5.58	0.26	1.32	1.10	5.58	5.01	3.77	4.35	11.36	10.79	ns
100 µA	8 mA	Std.	1.55	5.58	0.26	1.32	1.10	5.58	5.01	3.77	4.35	11.36	10.79	ns
100 µA	12 mA	Std.	1.55	4.82	0.26	1.32	1.10	4.82	4.44	4.02	4.76	10.61	10.23	ns
100 µA	16 mA	Std.	1.55	4.82	0.26	1.32	1.10	4.82	4.44	4.02	4.76	10.61	10.23	ns

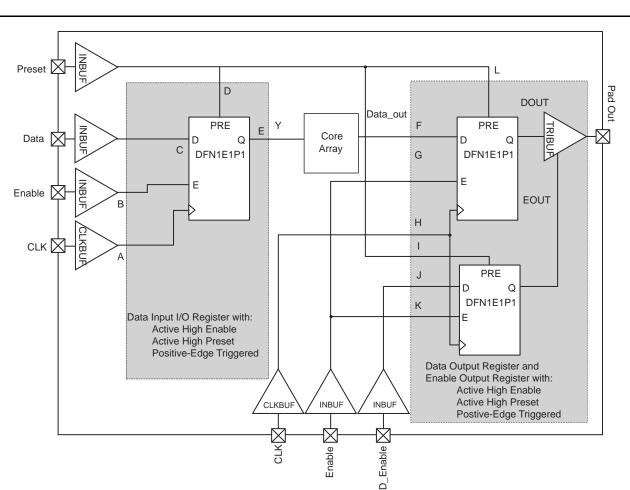
Notes:

1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ± 100 μA. Drive strengths displayed in software are supported for normal range only. For a detailed I/V curve, refer to the IBIS models.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

Table 2-76 • 3.3 V LVCMOS Wide Range High Slew – Applies to 1.2 V DC Core Voltage
Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 2.7
Applicable to Standard Plus Banks

Drive Strength	Equivalent Software Default Drive Strength Option ¹	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{ZHS}	Units
100 µA	2 mA	Std.	1.55	4.10	0.26	1.32	1.10	4.10	3.30	3.40	3.92	9.89	9.09	ns
100 µA	4 mA	Std.	1.55	4.10	0.26	1.32	1.10	4.10	3.30	3.40	3.92	9.89	9.09	ns
100 µA	6 mA	Std.	1.55	3.51	0.26	1.32	1.10	3.51	2.79	3.76	4.56	9.30	8.57	ns
100 µA	8 mA	Std.	1.55	3.51	0.26	1.32	1.10	3.51	2.79	3.76	4.56	9.30	8.57	ns
100 µA	12 mA	Std.	1.55	3.20	0.26	1.32	1.10	3.20	2.52	4.01	4.97	8.99	8.31	ns
100 µA	16 mA	Std.	1.55	3.20	0.26	1.32	1.10	3.20	2.52	4.01	4.97	8.99	8.31	ns


Notes:

1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ± 100 μA. Drive strengths displayed in software are supported for normal range only. For a detailed I/V curve, refer to the IBIS models.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

3. Software default selection highlighted in gray.

I/O Register Specifications

Fully Registered I/O Buffers with Synchronous Enable and Asynchronous Preset

Figure 2-16 • Timing Model of Registered I/O Buffers with Synchronous Enable and Asynchronous Preset

1.2 V DC Core Voltage

Table 2-168 • Output DDR Propagation DelaysCommercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V

Parameter	Description	Std.	Units
t _{DDROCLKQ}	Clock-to-Out of DDR for Output DDR	1.60	ns
t _{DDROSUD1}	Data_F Data Setup for Output DDR	1.09	ns
t _{DDROSUD2}	Data_R Data Setup for Output DDR	1.16	ns
t _{DDROHD1}	Data_F Data Hold for Output DDR	0.00	ns
t _{DDROHD2}	Data_R Data Hold for Output DDR	0.00	ns
t _{DDROCLR2Q}	Asynchronous Clear-to-Out for Output DDR	1.99	ns
t _{DDROREMCLR}	Asynchronous Clear Removal Time for Output DDR	0.00	ns
t _{DDRORECCLR}	Asynchronous Clear Recovery Time for Output DDR	0.24	ns
t _{DDROWCLR1}	Asynchronous Clear Minimum Pulse Width for Output DDR	0.19	ns
t _{DDROCKMPWH}	Clock Minimum Pulse Width High for the Output DDR	0.31	ns
t _{DDROCKMPWL}	Clock Minimum Pulse Width Low for the Output DDR	0.28	ns
F _{DDOMAX}	Maximum Frequency for the Output DDR	160.00	MHz

Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.

Timing Waveforms

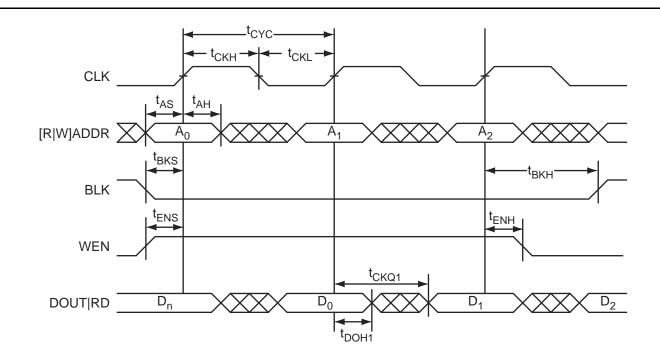


Figure 2-32 • RAM Read for Pass-Through Output. Applicable to Both RAM4K9 and RAM512x18.

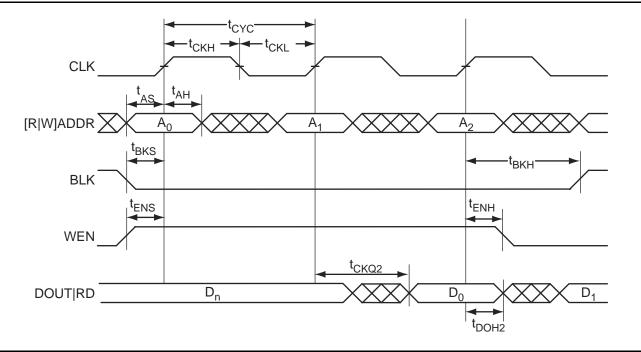


Figure 2-33 • RAM Read for Pipelined Output. Applicable to Both RAM4K9 and RAM512x18.

1.2 V DC Core Voltage

Table 2-193 • RAM4K9

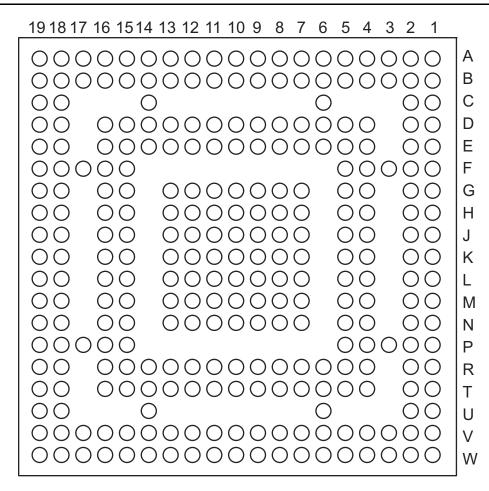
Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V

Parameter	Description	Std.	Units
t _{AS}	Address setup time	1.53	ns
t _{AH}	Address hold time	0.29	ns
t _{ENS}	REN WEN setup time	1.50	ns
t _{ENH}	REN, WEN hold time	0.29	ns
t _{BKS}	BLK setup time	3.05	ns
t _{BKH}	BLK hold time	0.29	ns
t _{DS}	Input data (DIN) setup time	1.33	ns
t _{DH}	Input data (DIN) hold time	0.66	ns
t _{CKQ1}	Clock High to new data valid on DOUT (output retained, WMODE = 0)	6.61	ns
	Clock High to new data valid on DOUT (flow-through, WMODE = 1)	5.72	ns
t _{CKQ2}	Clock High to new data valid on DOUT (pipelined)	3.38	ns
t _{C2CWWL} 1	Address collision clk-to-clk delay for reliable write after write on same address – Applicable to Closing Edge	0.30	ns
t _{C2CRWH} 1	Address collision clk-to-clk delay for reliable read access after write on same address – Applicable to Opening Edge	0.89	ns
t _{C2CWRH} 1	Address collision clk-to-clk delay for reliable write access after read on same address – Applicable to Opening Edge	1.01	ns
t _{RSTBQ}	RESET Low to data out Low on DOUT (flow-through)	3.86	ns
	RESET Low to data out Low on DOUT (pipelined)	3.86	ns
t _{REMRSTB}	RESET removal	1.12	ns
t _{RECRSTB}	RESET recovery	5.93	ns
t _{MPWRSTB}	RESET minimum pulse width	1.18	ns
t _{CYC}	Clock cycle time	10.90	ns
F _{MAX}	Maximum frequency	92	MHz

Notes:

1. For more information, refer to the application note Simultaneous Read-Write Operations in Dual-Port SRAM for Flash-Based cSoCs and FPGAs.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.



Package Pin Assignments

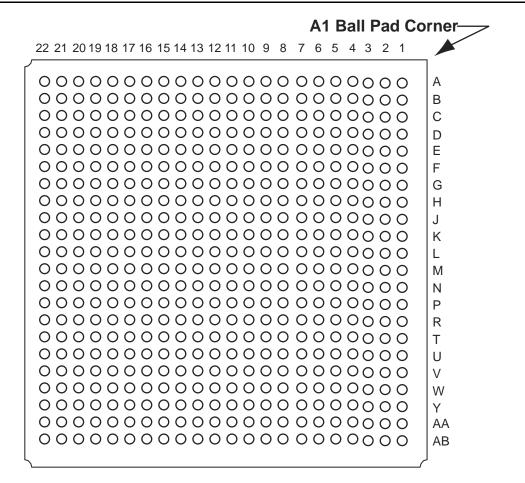
	CS121
Pin Number	AGL060 Function
K10	VPUMP
K11	GDB1/IO47RSB0
L1	VMV1
L2	GNDQ
L3	IO65RSB1
L4	IO63RSB1
L5	IO61RSB1
L6	IO58RSB1
L7	IO57RSB1
L8	IO55RSB1
L9	GNDQ
L10	GDA0/IO50RSB0
L11	VMV1

Package Pin Assignments

CS281

Note: This is the bottom view of the package.

Note


For more information on package drawings, see PD3068: Package Mechanical Drawings.

	QN132		QN132	QN132		
Pin Number	AGL030 Function	Pin Number	AGL030 Function	Pin Number	AGL030 Function	
A1	IO80RSB1	A37	IO22RSB0	B25	GND	
A2	IO77RSB1	A38	IO19RSB0	B26	NC	
A3	NC	A39	NC	B27	IO37RSB0	
A4	IO76RSB1	A40	IO18RSB0	B28	GND	
A5	GEC0/IO73RSB1	A41	IO16RSB0	B29	GDA0/IO33RSB0	
A6	NC	A42	IO14RSB0	B30	NC	
A7	GEB0/IO71RSB1	A43	VCC	B31	GND	
A8	IO69RSB1	A44	IO11RSB0	B32	IO29RSB0	
A9	NC	A45	IO08RSB0	B33	IO26RSB0	
A10	VCC	A46	IO06RSB0	B34	IO23RSB0	
A11	IO67RSB1	A47	IO05RSB0	B35	IO20RSB0	
A12	IO64RSB1	A48	IO02RSB0	B36	GND	
A13	IO59RSB1	B1	IO81RSB1	B37	IO17RSB0	
A14	IO56RSB1	B2	IO78RSB1	B38	IO15RSB0	
A15	NC	B3	GND	B39	GND	
A16	IO55RSB1	B4	IO75RSB1	B40	IO12RSB0	
A17	IO53RSB1	B5	NC	B41	IO09RSB0	
A18	VCC	B6	GND	B42	GND	
A19	IO50RSB1	B7	IO70RSB1	B43	IO04RSB0	
A20	IO48RSB1	B8	NC	B44	IO01RSB0	
A21	IO45RSB1	B9	GND	C1	IO82RSB1	
A22	IO44RSB1	B10	IO66RSB1	C2	IO79RSB1	
A23	IO43RSB1	B11	IO63RSB1	C3	NC	
A24	TDI	B12	FF/IO60RSB1	C4	IO74RSB1	
A25	TRST	B13	IO57RSB1	C5	GEA0/IO72RSB1	
A26	IO40RSB0	B14	GND	C6	NC	
A27	NC	B15	IO54RSB1	C7	NC	
A28	IO39RSB0	B16	IO52RSB1	C8	VCCIB1	
A29	IO38RSB0	B17	GND	C9	IO65RSB1	
A30	IO36RSB0	B18	IO49RSB1	C10	IO62RSB1	
A31	IO35RSB0	B19	IO46RSB1	C11	IO61RSB1	
A32	GDC0/IO32RSB0	B20	GND	C12	IO58RSB1	
A33	NC	B21	IO42RSB1	C13	NC	
A34	VCC	B22	TMS	C14	NC	
A35	IO30RSB0	B23	TDO	C15	IO51RSB1	
A36	IO27RSB0	B24	IO41RSB0	C16	VCCIB1	

	FG144		FG144	FG144		
Pin Number	AGL125 Function	Pin Number	AGL125 Function	Pin Number	AGL125 Function	
A1	GNDQ	D1	IO128RSB1	G1	GFA1/IO121RSB1	
A2	VMV0	D2	IO129RSB1	G2	GND	
A3	GAB0/IO02RSB0	D3	IO130RSB1	G3	VCCPLF	
A4	GAB1/IO03RSB0	D4	GAA2/IO67RSB1	G4	GFA0/IO122RSB1	
A5	IO11RSB0	D5	GAC0/IO04RSB0	G5	GND	
A6	GND	D6	GAC1/IO05RSB0	G6	GND	
A7	IO18RSB0	D7	GBC0/IO35RSB0	G7	GND	
A8	VCC	D8	GBC1/IO36RSB0	G8	GDC1/IO61RSB0	
A9	IO25RSB0	D9	GBB2/IO43RSB0	G9	IO48RSB0	
A10	GBA0/IO39RSB0	D10	IO28RSB0	G10	GCC2/IO59RSB0	
A11	GBA1/IO40RSB0	D11	IO44RSB0	G11	IO47RSB0	
A12	GNDQ	D12	GCB1/IO53RSB0	G12	GCB2/IO58RSB0	
B1	GAB2/IO69RSB1	E1	VCC	H1	VCC	
B2	GND	E2	GFC0/IO125RSB1	H2	GFB2/IO119RSB1	
B3	GAA0/IO00RSB0	E3	GFC1/IO126RSB1	H3	GFC2/IO118RSB1	
B4	GAA1/IO01RSB0	E4	VCCIB1	H4	GEC1/IO112RSB1	
B5	IO08RSB0	E5	IO68RSB1	H5	VCC	
B6	IO14RSB0	E6	VCCIB0	H6	IO50RSB0	
B7	IO19RSB0	E7	VCCIB0	H7	IO60RSB0	
B8	IO22RSB0	E8	GCC1/IO51RSB0	H8	GDB2/IO71RSB1	
B9	GBB0/IO37RSB0	E9	VCCIB0	H9	GDC0/IO62RSB0	
B10	GBB1/IO38RSB0	E10	VCC	H10	VCCIB0	
B11	GND	E11	GCA0/IO56RSB0	H11	IO49RSB0	
B12	VMV0	E12	IO46RSB0	H12	VCC	
C1	IO132RSB1	F1	GFB0/IO123RSB1	J1	GEB1/IO110RSB1	
C2	GFA2/IO120RSB1	F2	VCOMPLF	J2	IO115RSB1	
C3	GAC2/IO131RSB1	F3	GFB1/IO124RSB1	J3	VCCIB1	
C4	VCC	F4	IO127RSB1	J4	GEC0/IO111RSB1	
C5	IO10RSB0	F5	GND	J5	IO116RSB1	
C6	IO12RSB0	F6	GND	J6	IO117RSB1	
C7	IO21RSB0	F7	GND	J7	VCC	
C8	IO24RSB0	F8	GCC0/IO52RSB0	J8	ТСК	
C9	IO27RSB0	F9	GCB0/IO54RSB0	J9	GDA2/IO70RSB1	
C10	GBA2/IO41RSB0	F10	GND	J10	TDO	
C11	IO42RSB0	F11	GCA1/IO55RSB0	J11	GDA1/IO65RSB0	
C12	GBC2/IO45RSB0	F12	GCA2/IO57RSB0	J12	GDB1/IO63RSB0	

Package Pin Assignments

	FG256		FG256		FG256	
Pin Number	AGL1000 Function	Pin Number	AGL1000 Function	Pin Number	AGL1000 Function	
A1	GND	C7	IO25RSB0	E13	GBC2/IO80PDB1	
A2	GAA0/IO00RSB0	C8	IO36RSB0	E14	IO83PPB1	
A3	GAA1/IO01RSB0	C9	IO42RSB0	E15	IO86PPB1	
A4	GAB0/IO02RSB0	C10	IO49RSB0	E16	IO87PDB1	
A5	IO16RSB0	C11	IO56RSB0	F1	IO217NDB3	
A6	IO22RSB0	C12	GBC0/IO72RSB0	F2	IO218NDB3	
A7	IO28RSB0	C13	IO62RSB0	F3	IO216PDB3	
A8	IO35RSB0	C14	VMV0	F4	IO216NDB3	
A9	IO45RSB0	C15	IO78NDB1	F5	VCCIB3	
A10	IO50RSB0	C16	IO81NDB1	F6	GND	
A11	IO55RSB0	D1	IO222NDB3	F7	VCC	
A12	IO61RSB0	D2	IO222PDB3	F8	VCC	
A13	GBB1/IO75RSB0	D3	GAC2/IO223PDB3	F9	VCC	
A14	GBA0/IO76RSB0	D4	IO223NDB3	F10	VCC	
A15	GBA1/IO77RSB0	D5	GNDQ	F11	GND	
A16	GND	D6	IO23RSB0	F12	VCCIB1	
B1	GAB2/IO224PDB3	D7	IO29RSB0	F13	IO83NPB1	
B2	GAA2/IO225PDB3	D8	IO33RSB0	F14	IO86NPB1	
B3	GNDQ	D9	IO46RSB0	F15	IO90PPB1	
B4	GAB1/IO03RSB0	D10	IO52RSB0	F16	IO87NDB1	
B5	IO17RSB0	D11	IO60RSB0	G1	IO210PSB3	
B6	IO21RSB0	D12	GNDQ	G2	IO213NDB3	
B7	IO27RSB0	D13	IO80NDB1	G3	IO213PDB3	
B8	IO34RSB0	D14	GBB2/IO79PDB1	G4	GFC1/IO209PPB3	
B9	IO44RSB0	D15	IO79NDB1	G5	VCCIB3	
B10	IO51RSB0	D16	IO82NSB1	G6	VCC	
B11	IO57RSB0	E1	IO217PDB3	G7	GND	
B12	GBC1/IO73RSB0	E2	IO218PDB3	G8	GND	
B13	GBB0/IO74RSB0	E3	IO221NDB3	G9	GND	
B14	IO71RSB0	E4	IO221PDB3	G10	GND	
B15	GBA2/IO78PDB1	E5	VMV0	G11	VCC	
B16	IO81PDB1	E6	VCCIB0	G12	VCCIB1	
C1	IO224NDB3	E7	VCCIB0	G13	GCC1/IO91PPB1	
C2	IO225NDB3	E8	IO38RSB0	G14	IO90NPB1	
C3	VMV3	E9	IO47RSB0	G15	IO88PDB1	
C4	IO11RSB0	E10	VCCIB0	G16	IO88NDB1	
C5	GAC0/IO04RSB0	E11	VCCIB0	H1	GFB0/IO208NPB3	
C6	GAC1/IO05RSB0	E12	VMV1	H2	GFA0/IO207NDB3	

Note: This is the bottom view of the package.

Note

For more information on package drawings, see PD3068: Package Mechanical Drawings.

FG484		
Pin Number	AGL400 Function	
C21	NC	
C22	VCCIB1	
D1	NC	
D2	NC	
D3	NC	
D4	GND	
D5	GAA0/IO00RSB0	
D6	GAA1/IO01RSB0	
D7	GAB0/IO02RSB0	
D8	IO16RSB0	
D9	IO17RSB0	
D10	IO22RSB0	
D11	IO28RSB0	
D12	IO34RSB0	
D13	IO37RSB0	
D14	IO41RSB0	
D15	IO43RSB0	
D16	GBB1/IO57RSB0	
D17	GBA0/IO58RSB0	
D18	GBA1/IO59RSB0	
D19	GND	
D20	NC	
D21	NC	
D22	NC	
E1	NC	
E2	NC	
E3	GND	
E4	GAB2/IO154UDB3	
E5	GAA2/IO155UDB3	
E6	IO12RSB0	
E7	GAB1/IO03RSB0	
E8	IO13RSB0	
E9	IO14RSB0	
E10	IO21RSB0	
E11	IO27RSB0	
E12	IO32RSB0	

FG484		
Pin Number	AGL400 Function	
Y7	NC	
Y8	VCC	
Y9	VCC	
Y10	NC	
Y11	NC	
Y12	NC	
Y13	NC	
Y14	VCC	
Y15	VCC	
Y16	NC	
Y17	NC	
Y18	GND	
Y19	NC	
Y20	NC	
Y21	NC	
Y22	VCCIB1	

	FG484	
Pin Number	AGL600 Function	Pin Number
A1	GND	AA15
A2	GND	AA16
A3	VCCIB0	AA17
A4	NC	AA18
A5	NC	AA19
A6	IO09RSB0	AA20
A7	IO15RSB0	AA21
A8	NC	AA22
A9	NC	AB1
A10	IO22RSB0	AB2
A11	IO23RSB0	AB3
A12	IO29RSB0	AB4
A13	IO35RSB0	AB5
A14	NC	AB6
A15	NC	AB7
A16	IO46RSB0	AB8
A17	IO48RSB0	AB9
A18	NC	AB10
A19	NC	AB11
A20	VCCIB0	AB12
A21	GND	AB13
A22	GND	AB14
AA1	GND	AB15
AA2	VCCIB3	AB16
AA3	NC	AB17
AA4	NC	AB18
AA5	NC	AB19
AA6	IO135RSB2	AB20
AA7	IO133RSB2	AB21
AA8	NC	AB22
AA9	NC	B1
AA10	NC	B2
AA11	NC	B3
AA12	NC	B4
AA13	NC	B5
AA14	NC	B6

	FG484	
n Number	AGL600 Function	Pin
AA15	NC	
AA16	IO101RSB2	
AA17	NC	
AA18	NC	
AA19	NC	
AA20	NC	
AA21	VCCIB1	
AA22	GND	
AB1	GND	
AB2	GND	
AB3	VCCIB2	
AB4	NC	
AB5	NC	
AB6	IO130RSB2	
AB7	IO128RSB2	
AB8	IO122RSB2	
AB9	IO116RSB2	
AB10	NC	
AB11	NC	
AB12	IO113RSB2	
AB13	IO112RSB2	
AB14	NC	
AB15	NC	
AB16	IO100RSB2	
AB17	IO95RSB2	
AB18	NC	
AB19	NC	
AB20	VCCIB2	
AB21	GND	
AB22	GND	
B1	GND	
B2	VCCIB3	
B3	NC	
B4	NC	
B5	NC	
B6	IO08RSB0	

FG484		
Pin Number	AGL600 Function	
B7	IO12RSB0	
B8	NC	
B9	NC	
B10	IO17RSB0	
B11	NC	
B12	NC	
B13	IO36RSB0	
B14	NC	
B15	NC	
B16	IO47RSB0	
B17	IO49RSB0	
B18	NC	
B19	NC	
B20	NC	
B21	VCCIB1	
B22	GND	
C1	VCCIB3	
C2	NC	
C3	NC	
C4	NC	
C5	GND	
C6	NC	
C7	NC	
C8	VCC	
C9	VCC	
C10	NC	
C11	NC	
C12	NC	
C13	NC	
C14	VCC	
C15	VCC	
C16	NC	
C17	NC	
C18	GND	
C19	NC	
C20	NC	

Revision / Version	Changes	Page
Revision 3 (Feb 2008) Product Brief rev. 2	This document was updated to include AGL015 device information. QN68 is a new package offered in the AGL015. The following sections were updated: "Features and Benefits" "IGLOO Ordering Information" "Temperature Grade Offerings" "IGLOO Devices" Product Family Table Table 1 • IGLOO FPGAs Package Sizes Dimensions "AGL015 and AGL030" note The "Temperature Grade Offerings" table was updated to include M1AGL600. In the "IGLOO Ordering Information" table, the QN package measurements were updated to include both 0.4 mm and 0.5 mm.	N/A IV III
	In the "General Description" section, the number of I/Os was updated from 288 to 300.	1-1
Packaging v1.2	The "QN68" section is new.	4-25
Revision 2 (Jan 2008) Packaging v1.1	The "CS196" package and pin table was added for AGL125.	4-10
Revision 1 (Jan 2008) Product Brief rev. 1	The "Low Power" section was updated to change the description of low power active FPGA operation to "from 12 μ W" from "from 25 μ W." The same update was made in the "General Description" section and the "Flash*Freeze Technology" section.	l, 1-1
Revision 0 (Jan 2008)	This document was previously in datasheet Advance v0.7. As a result of moving to the handbook format, Actel has restarted the numbering.	N/A
Advance v0.7 (December 2007)	Table 1 • IGLOO Product Family, the "I/Os Per Package1" table, and the Temperature Grade Offerings table were updated to reflect the following: CS196 is now supported for AGL250; device/package support for QN132 is to be determined for AGL250; the CS281 package was added for AGL600 and AGL1000.	i, ii, iv
	Table 2 • IGLOO FPGAs Package Sizes Dimensions is new, and package sizes were removed from the "I/Os Per Package1" table.	ii
	The "I/Os Per Package1"table was updated to reflect 77 instead of 79 single- ended I/Os for the VG100 package for AGL030.	ii
	The "Timing Model" was updated to be consistent with the revised timing numbers.	2-20
	In Table 2-27 • Summary of Maximum and Minimum DC Input and Output Levels Applicable to Commercial and Industrial Conditions—Software Default Settings, T_J was changed to T_A in notes 1 and 2.	2-26
	All AC Loading figures for single-ended I/O standards were changed from Datapaths at 35 pF to 5 pF.	N/A
	The "1.2 V LVCMOS (JESD8-12A)" section is new.	2-74
	This document was previously in datasheet Advance v0.7. As a result of moving to the handbook format, Actel has restarted the version numbers. The new version number is Advance v0.1.	N/A
	Table 2-4 • IGLOO CCC/PLL Specification and Table 2-5 • IGLOO CCC/PLL Specification were updated.	2-19, 2-20