

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	13824
Total RAM Bits	110592
Number of I/O	97
Number of Gates	600000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 85°C (TA)
Package / Case	144-LBGA
Supplier Device Package	144-FPBGA (13x13)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/agl600v5-fg144i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

field upgrades with confidence that valuable intellectual property cannot be compromised or copied. Secure ISP can be performed using the industry-standard AES algorithm. The IGLOO family device architecture mitigates the need for ASIC migration at higher user volumes. This makes the IGLOO family a cost-effective ASIC replacement solution, especially for applications in the consumer, networking/communications, computing, and avionics markets.

Firm-Error Immunity

Firm errors occur most commonly when high-energy neutrons, generated in the upper atmosphere, strike a configuration cell of an SRAM FPGA. The energy of the collision can change the state of the configuration cell and thus change the logic, routing, or I/O behavior in an unpredictable way. These errors are impossible to prevent in SRAM FPGAs. The consequence of this type of error can be a complete system failure. Firm errors do not exist in the configuration memory of IGLOO flash-based FPGAs. Once it is programmed, the flash cell configuration element of IGLOO FPGAs cannot be altered by high-energy neutrons and is therefore immune to them. Recoverable (or soft) errors occur in the user data SRAM of all FPGA devices. These can easily be mitigated by using error detection and correction (EDAC) circuitry built into the FPGA fabric.

Advanced Flash Technology

The IGLOO family offers many benefits, including nonvolatility and reprogrammability, through an advanced flashbased, 130-nm LVCMOS process with seven layers of metal. Standard CMOS design techniques are used to implement logic and control functions. The combination of fine granularity, enhanced flexible routing resources, and abundant flash switches allows for very high logic utilization without compromising device routability or performance. Logic functions within the device are interconnected through a four-level routing hierarchy.

IGLOO family FPGAs utilize design and process techniques to minimize power consumption in all modes of operation.

Advanced Architecture

The proprietary IGLOO architecture provides granularity comparable to standard-cell ASICs. The IGLOO device consists of five distinct and programmable architectural features (Figure 1-1 on page 1-4 and Figure 1-2 on page 1-4):

- Flash*Freeze technology
- FPGA VersaTiles
- Dedicated FlashROM
- Dedicated SRAM/FIFO memory[†]
- Extensive CCCs and PLLs[†]
- Advanced I/O structure

The FPGA core consists of a sea of VersaTiles. Each VersaTile can be configured as a three-input logic function, a D-flip-flop (with or without enable), or a latch by programming the appropriate flash switch interconnections. The versatility of the IGLOO core tile as either a three-input lookup table (LUT) equivalent or a D-flip-flop/latch with enable allows for efficient use of the FPGA fabric. The VersaTile capability is unique to the ProASIC[®] family of third-generation-architecture flash FPGAs.

[†] The AGL015 and AGL030 do not support PLL or SRAM.

Ramping up (V2 devices): 0.65 V < trip_point_up < 1.05 V Ramping down (V2 devices): 0.55 V < trip_point_down < 0.95 V

VCC and VCCI ramp-up trip points are about 100 mV higher than ramp-down trip points. This specifically built-in hysteresis prevents undesirable power-up oscillations and current surges. Note the following:

- During programming, I/Os become tristated and weakly pulled up to VCCI.
- JTAG supply, PLL power supplies, and charge pump VPUMP supply have no influence on I/O behavior.

PLL Behavior at Brownout Condition

Microsemi recommends using monotonic power supplies or voltage regulators to ensure proper power-up behavior. Power ramp-up should be monotonic at least until VCC and VCCPLX exceed brownout activation levels (see Figure 2-1 and Figure 2-2 on page 2-5 for more details).

When PLL power supply voltage and/or VCC levels drop below the VCC brownout levels (0.75 V \pm 0.25 V for V5 devices, and 0.75 V \pm 0.2 V for V2 devices), the PLL output lock signal goes low and/or the output clock is lost. Refer to the Brownout Voltage section in the "Power-Up/-Down Behavior of Low Power Flash Devices" chapter of the *ProASIC*[®]3 and *ProASIC3E* FPGA fabric user guides for information on clock and lock recovery.

Internal Power-Up Activation Sequence

- 1. Core
- 2. Input buffers
- 3. Output buffers, after 200 ns delay from input buffer activation

To make sure the transition from input buffers to output buffers is clean, ensure that there is no path longer than 100 ns from input buffer to output buffer in your design.

Figure 2-1 • V5 Devices – I/O State as a Function of VCCI and VCC Voltage Levels

Table 2-22 • Different Components Contributing to the Static Power Consumption in IGLOO Device For IGLOO V2 Devices, 1.2 V DC Core Supply Voltage

				Device	Specific S	tatic Powe	er (mW)		
Parameter	Definition	AGL1000	AGL600	AGL400	AGL250	AGL125	AGL060	AGL030	AGL015
PDC1	Array static power in Active mode			See	Table 2-12	on page 2	-9.		
PDC2	Array static power in Static (Idle) mode			See	Table 2-11	on page 2	-8.		
PDC3	Array static power in Flash*Freeze mode			See	e Table 2-9	on page 2·	-7.		
PDC4	Static PLL contribution				0.9	0			
PDC5	Bank quiescent power (VCCI-Dependent)			See	Table 2-12	on page 2	-9.		
PDC6	I/O input pin static power (standard-dependent)		See Table	2-13 on pa	ge 2-10 thr	ough Table	e 2-15 on p	age 2-11.	
PDC7	I/O output pin static power (standard-dependent)		See Table	2-16 on pa	ge 2-11 thr	ough Table	e 2-18 on p	age 2-12.	

Note: For a different output load, drive strength, or slew rate, Microsemi recommends using the Microsemi power spreadsheet calculator or SmartPower tool in Libero SoC.

Combinatorial Cells Contribution—P_{C-CELL}

 $\mathsf{P}_{\text{C-CELL}} = \mathsf{N}_{\text{C-CELL}} * \alpha_1 / 2 * \mathsf{P}_{\text{AC7}} * \mathsf{F}_{\text{CLK}}$

N_{C-CELL} is the number of VersaTiles used as combinatorial modules in the design.

 α_1 is the toggle rate of VersaTile outputs—guidelines are provided in Table 2-23 on page 2-19.

 F_{CLK} is the global clock signal frequency.

Routing Net Contribution—P_{NET}

 $\mathsf{P}_{\mathsf{NET}} = (\mathsf{N}_{\mathsf{S}\text{-}\mathsf{CELL}} + \mathsf{N}_{\mathsf{C}\text{-}\mathsf{CELL}}) * \alpha_1 / 2 * \mathsf{P}_{\mathsf{AC8}} * \mathsf{F}_{\mathsf{CLK}}$

N_{S-CELL} is the number of VersaTiles used as sequential modules in the design.

 $N_{C\text{-}CELL}$ is the number of VersaTiles used as combinatorial modules in the design.

 α_1 is the toggle rate of VersaTile outputs—guidelines are provided in Table 2-23 on page 2-19.

 F_{CLK} is the global clock signal frequency.

I/O Input Buffer Contribution—P_{INPUTS}

 $P_{INPUTS} = N_{INPUTS} * \alpha_2 / 2 * P_{AC9} * F_{CLK}$

 $N_{\mbox{\rm INPUTS}}$ is the number of I/O input buffers used in the design.

 α_2 is the I/O buffer toggle rate—guidelines are provided in Table 2-23 on page 2-19.

F_{CLK} is the global clock signal frequency.

I/O Output Buffer Contribution—P_{OUTPUTS}

 $P_{OUTPUTS} = N_{OUTPUTS} * \alpha_2 / 2 * \beta_1 * P_{AC10} * F_{CLK}$

 $N_{OUTPUTS}$ is the number of I/O output buffers used in the design.

 α_2 is the I/O buffer toggle rate—guidelines are provided in Table 2-23 on page 2-19.

 β_1 is the I/O buffer enable rate—guidelines are provided in Table 2-24 on page 2-19.

F_{CLK} is the global clock signal frequency.

RAM Contribution—P_{MEMORY}

 $P_{MEMORY} = P_{AC11} * N_{BLOCKS} * F_{READ-CLOCK} * \beta_2 + P_{AC12} * N_{BLOCK} * F_{WRITE-CLOCK} * \beta_3$

 $N_{\mbox{\scriptsize BLOCKS}}$ is the number of RAM blocks used in the design.

F_{READ-CLOCK} is the memory read clock frequency.

 β_2 is the RAM enable rate for read operations.

F_{WRITE-CLOCK} is the memory write clock frequency.

 β_3 is the RAM enable rate for write operations—guidelines are provided in Table 2-24 on page 2-19.

PLL Contribution—P_{PLL}

 $P_{PLL} = P_{DC4} + P_{AC13} * F_{CLKOUT}$

F_{CLKOUT} is the output clock frequency.[†]

[†] If a PLL is used to generate more than one output clock, include each output clock in the formula by adding its corresponding contribution (P_{AC13}* F_{CLKOUT} product) to the total PLL contribution.

3.3 V LVCMOS Wide Range

 Table 2-63 •
 Minimum and Maximum DC Input and Output Levels for LVCMOS 3.3 V Wide Range

 Applicable to Advanced I/O Banks

3.3 V LVCMOS Wide Range		VIL		VIH		VOL	VOL VOH		IOH	IOSL	IOSH	IIL ²	IIH ³
Drive Strength	Equivalent Software Default Drive Strength Option ¹	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	μΑ	μΑ	Max. mA ⁴	Max. mA ⁴	μA ⁵	μ Α ⁵
100 µA	2 mA	-0.3	0.8	2	3.6	0.2	VDD - 0.2	100	100	25	27	10	10
100 µA	4 mA	-0.3	0.8	2	3.6	0.2	VDD - 0.2	100	100	25	27	10	10
100 µA	6 mA	-0.3	0.8	2	3.6	0.2	VDD - 0.2	100	100	51	54	10	10
100 µA	8 mA	-0.3	0.8	2	3.6	0.2	VDD – 0.2	100	100	51	54	10	10
100 µA	12 mA	-0.3	0.8	2	3.6	0.2	VDD - 0.2	100	100	103	109	10	10
100 µA	16 mA	-0.3	0.8	2	3.6	0.2	VDD - 0.2	100	100	132	127	10	10
100 µA	24 mA	-0.3	0.8	2	3.6	0.2	VDD – 0.2	100	100	268	181	10	10

Notes:

1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ± 100 μA. Drive strengths displayed in software are supported for normal range only. For a detailed I/V curve, refer to the IBIS models.

2. IIL is the input leakage current per I/O pin over recommended operation conditions where -0.3 V < VIN < VIL.

3. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges

4. Currents are measured at 100°C junction temperature and maximum voltage.

5. Currents are measured at 85°C junction temperature.

6. Software default selection highlighted in gray.

Table 2-123 • 1.5 V LVCMOS Low Slew – Applies to 1.2 V DC Core VoltageCommercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.4 VApplicable to Standard Plus Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{ZHS}	Units
2 mA	Std.	1.55	6.43	0.26	1.27	1.10	6.54	5.95	2.82	2.83	12.32	11.74	ns
4 mA	Std.	1.55	5.59	0.26	1.27	1.10	5.68	5.27	3.07	3.27	11.47	11.05	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.

Table 2-124 • 1.5 V LVCMOS High Slew – Applies to 1.2 V DC Core Voltage

Commercial-Case Conditions: $T_J = 70^{\circ}$ C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.4 V Applicable to Standard Plus Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
2 mA	Std.	1.55	3.02	0.26	1.27	1.10	3.07	2.81	2.82	2.92	8.85	8.59	ns
4 mA	Std.	1.55	2.68	0.26	1.27	1.10	2.72	2.39	3.07	3.37	8.50	8.18	ns

Notes:

1. Software default selection highlighted in gray.

2. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.

Table 2-125 • 1.5 V LVCMOS Low Slew – Applies to 1.2 V DC Core Voltage

Commercial-Case Conditions: $T_J = 70^{\circ}$ C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.4 V Applicable to Standard Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	Units
2 mA	Std.	1.55	6.35	0.26	1.22	1.10	6.46	5.93	2.40	2.46	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.

Table 2-126 • 1.5 V LVCMOS High Slew – Applies to 1.2 V DC Core Voltage

Commercial-Case Conditions: $T_J = 70^{\circ}$ C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.4 V Applicable to Standard Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	Units
2 mA	Std.	1.55	2.92	0.26	1.22	1.10	2.96	2.60	2.40	2.56	ns

Notes:

1. Software default selection highlighted in gray.

2. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.

3.3 V PCI, 3.3 V PCI-X

Peripheral Component Interface for 3.3 V standard specifies support for 33 MHz and 66 MHz PCI Bus applications.

 Table 2-141 • Minimum and Maximum DC Input and Output Levels

 Applicable to Advanced and Standard Plus I/Os

3.3 V PCI/PCI-X	VIL VIH			VOL	VOH	IOL	IOH	IOSH	IOSL	IIL	IIH	
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ¹	Max. mA ¹	μA ²	μA ²
Per PCI specification					Per PC	l curves					10	10

Notes:

1. Currents are measured at 100°C junction temperature and maximum voltage.

2. Currents are measured at 85°C junction temperature.

AC loadings are defined per the PCI/PCI-X specifications for the datapath; Microsemi loadings for enable path characterization are described in Figure 2-12.

Figure 2-12 • AC Loading

AC loadings are defined per PCI/PCI-X specifications for the datapath; Microsemi loading for tristate is described in Table 2-142.

Table 2-142 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	C _{LOAD} (pF)
0	3.3	0.285 * VCCI for t _{DP(R)} 0.615 * VCCI for t _{DP(F)}	10

Note: *Measuring point = Vtrip. See Table 2-29 on page 2-28 for a complete table of trip points.

Timing Characteristics

1.5 V DC Core Voltage

Table 2-143 • 3.3 V PCI/PCI-X

Commercial-Case Conditions: $T_J = 70^{\circ}$ C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V Applicable to Advanced I/O Banks

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{ZHS}	Units
Std.	0.97	2.32	0.19	0.70	0.66	2.37	1.78	2.67	3.05	5.96	5.38	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

Table 2-144 • 3.3 V PCI/PCI-X

Commercial-Case Conditions: $T_J = 70^{\circ}$ C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V Applicable to Standard Plus I/O Banks

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{ZHS}	Units
Std.	0.97	1.97	0.19	0.70	0.66	2.01	1.50	2.36	2.79	5.61	5.10	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

Parameter Name	Parameter Definition	Measuring Nodes (from, to)*
t _{OCLKQ}	Clock-to-Q of the Output Data Register	H, DOUT
tOSUD	Data Setup Time for the Output Data Register	F, H
t _{OHD}	Data Hold Time for the Output Data Register	F, H
t _{OSUE}	Enable Setup Time for the Output Data Register	G, H
t _{OHE}	Enable Hold Time for the Output Data Register	G, H
t _{OPRE2Q}	Asynchronous Preset-to-Q of the Output Data Register	L, DOUT
t _{OREMPRE}	Asynchronous Preset Removal Time for the Output Data Register	L, H
t _{ORECPRE}	Asynchronous Preset Recovery Time for the Output Data Register	L, H
t _{OECLKQ}	Clock-to-Q of the Output Enable Register	H, EOUT
tOESUD	Data Setup Time for the Output Enable Register	J, H
t _{OEHD}	Data Hold Time for the Output Enable Register	J, H
tOESUE	Enable Setup Time for the Output Enable Register	K, H
t _{OEHE}	Enable Hold Time for the Output Enable Register	К, Н
t _{OEPRE2Q}	Asynchronous Preset-to-Q of the Output Enable Register	I, EOUT
t _{OEREMPRE}	Asynchronous Preset Removal Time for the Output Enable Register	I, H
t _{OERECPRE}	Asynchronous Preset Recovery Time for the Output Enable Register	I, H
t _{ICLKQ}	Clock-to-Q of the Input Data Register	A, E
t _{ISUD}	Data Setup Time for the Input Data Register	C, A
t _{IHD}	Data Hold Time for the Input Data Register	C, A
t _{ISUE}	Enable Setup Time for the Input Data Register	B, A
t _{IHE}	Enable Hold Time for the Input Data Register	B, A
t _{IPRE2Q}	Asynchronous Preset-to-Q of the Input Data Register	D, E
t _{IREMPRE}	Asynchronous Preset Removal Time for the Input Data Register	D, A
tIRECPRE	Asynchronous Preset Recovery Time for the Input Data Register	D, A

Table 2-155 • Parameter Definition and Measuring Nodes

Note: *See Figure 2-16 on page 2-84 for more information.

Table 2-175 • AGL060 Global Resource

Commercial-Case Conditions: T_J = 70°C, VCC = 1.425 V

		Std.		
Parameter	Description	Min. ¹	Max. ²	Units
t _{RCKL}	Input Low Delay for Global Clock	1.33	1.55	ns
t _{RCKH}	Input High Delay for Global Clock	1.35	1.62	ns
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock	1.18		ns
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock	1.15		ns
t _{RCKSW}	Maximum Skew for Global Clock		0.27	ns

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

Table 2-176 • AGL125 Global Resource

Commercial-Case Conditions: T_J = 70°C, VCC = 1.425 V

		S	td.	
Parameter	Description	Min. ¹	Max. ²	Units
t _{RCKL}	Input Low Delay for Global Clock	1.36	1.71	ns
t _{RCKH}	Input High Delay for Global Clock	1.39	1.82	ns
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock	1.18		ns
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock	1.15		ns
t _{RCKSW}	Maximum Skew for Global Clock		0.43	ns

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

1.2 V DC Core Voltage

Table 2-181 • AGL015 Global ResourceCommercial-Case Conditions: TJ = 70°C, VCC = 1.14 V

		Std.		
Parameter	Description	Min. ¹	Max. ²	Units
t _{RCKL}	Input Low Delay for Global Clock	1.79	2.09	ns
t _{RCKH}	Input High Delay for Global Clock	1.87	2.26	ns
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock	1.40		ns
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock	1.65		ns
t _{RCKSW}	Maximum Skew for Global Clock		0.39	ns

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

Table 2-182 • AGL030 Global Resource

Commercial-Case Conditions: $T_J = 70^{\circ}C$, VCC = 1.14 V

			Std.		
Parameter	Description	Ν	Min. ¹	Max. ²	Units
t _{RCKL}	Input Low Delay for Global Clock		1.80	2.09	ns
t _{RCKH}	Input High Delay for Global Clock		1.88	2.27	ns
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock		1.40		ns
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock		1.65		ns
t _{RCKSW}	Maximum Skew for Global Clock			0.39	ns

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

UC81		UC81		
Pin Number	AGL030 Function	Pin Number	AGL030 Function	
A1	IO00RSB0	E1	GEB0/IO71RSB1	
A2	IO02RSB0	E2	GEA0/IO72RSB1	
A3	IO06RSB0	E3	GEC0/IO73RSB1	
A4	IO11RSB0	E4	VCCIB1	
A5	IO16RSB0	E5	VCC	
A6	IO19RSB0	E6	VCCIB0	
A7	IO22RSB0	E7	GDC0/IO32RSB0	
A8	IO24RSB0	E8	GDA0/IO33RSB0	
A9	IO26RSB0	E9	GDB0/IO34RSB0	
B1	IO81RSB1	F1	IO68RSB1	
B2	IO04RSB0	F2	IO67RSB1	
B3	IO10RSB0	F3	IO64RSB1	
B4	IO13RSB0	F4	GND	
B5	IO15RSB0	F5	VCCIB1	
B6	IO20RSB0	F6	IO47RSB1	
B7	IO21RSB0	F7	IO36RSB0	
B8	IO28RSB0	F8	IO38RSB0	
B9	IO25RSB0	F9	IO40RSB0	
C1	IO79RSB1	G1	IO65RSB1	
C2	IO80RSB1	G2	IO66RSB1	
C3	IO08RSB0	G3	IO57RSB1	
C4	IO12RSB0	G4	IO53RSB1	
C5	IO17RSB0	G5	IO49RSB1	
C6	IO14RSB0	G6	IO45RSB1	
C7	IO18RSB0	G7	IO46RSB1	
C8	IO29RSB0	G8	VJTAG	
C9	IO27RSB0	G9	TRST	
D1	IO74RSB1	H1	IO62RSB1	
D2	IO76RSB1	H2	FF/IO60RSB1	
D3	IO77RSB1	H3	IO58RSB1	
D4	VCC	H4	IO54RSB1	
D5	VCCIB0	H5	IO48RSB1	
D6	GND	H6	IO43RSB1	
D7	IO23RSB0	H7	IO42RSB1	
D8	IO31RSB0	H8	TDI	
D9	IO30RSB0	H9	TDO	

UC81		
Pin Number	AGL030 Function	
J1	IO63RSB1	
J2	IO61RSB1	
J3	IO59RSB1	
J4	IO56RSB1	
J5	IO52RSB1	
J6	IO44RSB1	
J7	ТСК	
J8	TMS	
J9	VPUMP	

IGLOO Low Power Flash FPGAs

CS196			CS196
Pin Number	AGL250 Function	Pin Number	AGL250 Function
H11	GCB0/IO49NDB1	L5	IO89RSB2
H12	GCA1/IO50PDB1	L6	IO92RSB2
H13	IO51NDB1	L7	IO75RSB2
H14	GCA2/IO51PDB1	L8	IO66RSB2
J1	GFC2/IO105PDB3	L9	IO65RSB2
J2	IO104PPB3	L10	IO71RSB2
J3	IO106NPB3	L11	VPUMP
J4	IO103PDB3	L12	VJTAG
J5	IO103NDB3	L13	GDA0/IO60VPB1
J6	IO80RSB2	L14	GDB0/IO59VDB1
J7	VCC	M1	GEB0/IO99NDB3
J8	VCC	M2	GEA1/IO98PPB3
J9	IO64RSB2	M3	GNDQ
J10	IO56PDB1	M4	VCCIB2
J11	GCB2/IO52PDB1	M5	IO88RSB2
J12	IO52NDB1	M6	IO87RSB2
J13	GDC1/IO58UDB1	M7	IO82RSB2
J14	GDC0/IO58VDB1	M8	VCCIB2
K1	IO105NDB3	M9	IO67RSB2
K2	GND	M10	GDB2/IO62RSB2
K3	IO104NPB3	M11	VCCIB2
K4	VCCIB3	M12	VMV2
K5	IO101PPB3	M13	TRST
K6	IO91RSB2	M14	VCCIB1
K7	IO81RSB2	N1	GEA0/IO98NPB3
K8	IO73RSB2	N2	VMV3
K9	IO77RSB2	N3	GEC2/IO95RSB2
K10	IO56NDB1	N4	IO94RSB2
K11	VCCIB1	N5	GND
K12	GDA1/IO60UPB1	N6	IO86RSB2
K13	GND	N7	IO78RSB2
K14	GDB1/IO59UDB1	N8	IO74RSB2
L1	GEB1/IO99PDB3	N9	IO69RSB2
L2	GEC1/IO100PDB3	N10	GND
L3	GEC0/IO100NDB3	N11	ТСК
L4	IO101NPB3	N12	TDI

CS196			
Pin Number	AGL250 Function		
N13	GNDQ		
N14	TDO		
P1	GND		
P2	GEA2/IO97RSB2		
P3	FF/GEB2/IO96RSB2		
P4	IO90RSB2		
P5	IO85RSB2		
P6	IO83RSB2		
P7	IO79RSB2		
P8	IO76RSB2		
P9	IO72RSB2		
P10	IO68RSB2		
P11	GDC2/IO63RSB2		
P12	GDA2/IO61RSB2		
P13	TMS		
P14	GND		

IGLOO Low Power Flash FPGAs

CS281			CS281		CS281
Pin Number	AGL600 Function	Pin Number	AGL600 Function	Pin Number	AGL600 Function
A1	GND	B18	VCCIB1	E13	IO46RSB0
A2	GAB0/IO02RSB0	B19	IO61NDB1	E14	GBB1/IO57RSB0
A3	GAC1/IO05RSB0	C1	GAB2/IO173PPB3	E15	IO62NPB1
A4	IO07RSB0	C2	IO174NPB3	E16	IO63PPB1
A5	IO10RSB0	C6	IO12RSB0	E18	IO64PPB1
A6	IO14RSB0	C14	IO50RSB0	E19	IO65NPB1
A7	IO18RSB0	C18	IO60NPB1	F1	IO168NPB3
A8	IO21RSB0	C19	GBB2/IO61PDB1	F2	GND
A9	IO22RSB0	D1	IO170PPB3	F3	IO169PPB3
A10	VCCIB0	D2	IO172NPB3	F4	IO170NPB3
A11	IO33RSB0	D4	GAA0/IO00RSB0	F5	IO173NPB3
A12	IO40RSB0	D5	GAA1/IO01RSB0	F15	IO63NPB1
A13	IO37RSB0	D6	IO09RSB0	F16	IO65PPB1
A14	IO48RSB0	D7	IO16RSB0	F17	IO64NPB1
A15	IO51RSB0	D8	IO19RSB0	F18	GND
A16	IO53RSB0	D9	IO26RSB0	F19	IO68PPB1
A17	GBC1/IO55RSB0	D10	GND	G1	IO167NPB3
A18	GBA0/IO58RSB0	D11	IO34RSB0	G2	IO165NDB3
A19	GND	D12	IO45RSB0	G4	IO168PPB3
B1	GAA2/IO174PPB3	D13	IO49RSB0	G5	IO167PPB3
B2	VCCIB0	D14	IO47RSB0	G7	GAC2/IO172PPB3
B3	GAB1/IO03RSB0	D15	GBB0/IO56RSB0	G8	VCCIB0
B4	GAC0/IO04RSB0	D16	GBA2/IO60PPB1	G9	IO28RSB0
B5	IO06RSB0	D18	GBC2/IO62PPB1	G10	IO32RSB0
B6	GND	D19	IO66NPB1	G11	IO43RSB0
B7	IO15RSB0	E1	IO169NPB3	G12	VCCIB0
B8	IO20RSB0	E2	IO171PPB3	G13	IO66PPB1
B9	IO23RSB0	E4	IO171NPB3	G15	IO67NDB1
B10	IO24RSB0	E5	IO08RSB0	G16	IO67PDB1
B11	IO36RSB0	E6	IO11RSB0	G18	GCC0/IO69NPB1
B12	IO35RSB0	E7	IO13RSB0	G19	GCB1/IO70PPB1
B13	IO44RSB0	E8	IO17RSB0	H1	GFB0/IO163NPB3
B14	GND	E9	IO25RSB0	H2	IO165PDB3
B15	IO52RSB0	E10	IO30RSB0	H4	GFC1/IO164PPB3
B16	GBC0/IO54RSB0	E11	IO41RSB0	H5	GFB1/IO163PPB3
B17	GBA1/IO59RSB0	E12	IO42RSB0	H7	VCCIB3

	FG144
Pin Number	AGL250 Function
K1	GEB0/IO99NDB3
K2	GEA1/IO98PDB3
K3	GEA0/IO98NDB3
K4	GEA2/IO97RSB2
K5	IO90RSB2
K6	IO84RSB2
K7	GND
K8	IO66RSB2
K9	GDC2/IO63RSB2
K10	GND
K11	GDA0/IO60VDB1
K12	GDB0/IO59VDB1
L1	GND
L2	VMV3
L3	FF/GEB2/IO96RSB2
L4	IO91RSB2
L5	VCCIB2
L6	IO82RSB2
L7	IO80RSB2
L8	IO72RSB2
L9	TMS
L10	VJTAG
L11	VMV2
L12	TRST
M1	GNDQ
M2	GEC2/IO95RSB2
M3	IO92RSB2
M4	IO89RSB2
M5	IO87RSB2
M6	IO85RSB2
M7	IO78RSB2
M8	IO76RSB2
M9	TDI
M10	VCCIB2
M11	VPUMP
M12	GNDQ

FG256		
Pin Number	AGL600 Function	
R5	IO132RSB2	
R6	IO127RSB2	
R7	IO121RSB2	
R8	IO114RSB2	
R9	IO109RSB2	
R10	IO105RSB2	
R11	IO98RSB2	
R12	IO96RSB2	
R13	GDB2/IO90RSB2	
R14	TDI	
R15	GNDQ	
R16	TDO	
T1	GND	
T2	IO137RSB2	
Т3	FF/GEB2/IO142RSB2	
T4	IO134RSB2	
T5	IO125RSB2	
T6	IO123RSB2	
T7	IO118RSB2	
T8	IO115RSB2	
Т9	IO111RSB2	
T10	IO106RSB2	
T11	IO102RSB2	
T12	GDC2/IO91RSB2	
T13	IO93RSB2	
T14	GDA2/IO89RSB2	
T15	TMS	
T16	GND	

	FG256
Pin Number	AGL1000 Function
R5	IO168RSB2
R6	IO163RSB2
R7	IO157RSB2
R8	IO149RSB2
R9	IO143RSB2
R10	IO138RSB2
R11	IO131RSB2
R12	IO125RSB2
R13	GDB2/IO115RSB2
R14	TDI
R15	GNDQ
R16	TDO
T1	GND
T2	IO183RSB2
Т3	FF/GEB2/IO186RSB2
T4	IO172RSB2
T5	IO170RSB2
T6	IO164RSB2
T7	IO158RSB2
T8	IO153RSB2
Т9	IO142RSB2
T10	IO135RSB2
T11	IO130RSB2
T12	GDC2/IO116RSB2
T13	IO120RSB2
T14	GDA2/IO114RSB2
T15	TMS
T16	GND

FG484		
Pin Number	AGL400 Function	
E13	IO38RSB0	
E14	IO42RSB0	
E15	GBC1/IO55RSB0	
E16	GBB0/IO56RSB0	
E17	IO44RSB0	
E18	GBA2/IO60PDB1	
E19	IO60NDB1	
E20	GND	
E21	NC	
E22	NC	
F1	NC	
F2	NC	
F3	NC	
F4	IO154VDB3	
F5	IO155VDB3	
F6	IO11RSB0	
F7	IO07RSB0	
F8	GAC0/IO04RSB0	
F9	GAC1/IO05RSB0	
F10	IO20RSB0	
F11	IO24RSB0	
F12	IO33RSB0	
F13	IO39RSB0	
F14	IO45RSB0	
F15	GBC0/IO54RSB0	
F16	IO48RSB0	
F17	VMV0	
F18	IO61NPB1	
F19	IO63PDB1	
F20	NC	
F21	NC	
F22	NC	
G1	NC	
G2	NC	
G3	NC	
G4	IO151VDB3	

FG484		
Pin Number	AGL400 Function	
K11	GND	
K12	GND	
K13	GND	
K14	VCC	
K15	VCCIB1	
K16	GCC1/IO67PPB1	
K17	IO64NPB1	
K18	IO73PDB1	
K19	IO73NDB1	
K20	NC	
K21	NC	
K22	NC	
L1	NC	
L2	NC	
L3	NC	
L4	GFB0/IO146NPB3	
L5	GFA0/IO145NDB3	
L6	GFB1/IO146PPB3	
L7	VCOMPLF	
L8	GFC0/IO147NPB3	
L9	VCC	
L10	GND	
L11	GND	
L12	GND	
L13	GND	
L14	VCC	
L15	GCC0/IO67NPB1	
L16	GCB1/IO68PPB1	
L17	GCA0/IO69NPB1	
L18	NC	
L19	GCB0/IO68NPB1	
L20	NC	
L21	NC	
L22	NC	
M1	NC	
M2	NC	

FG484			
Pin Number	AGL600 Function		
G5	IO171PDB3		
G6	GAC2/IO172PDB3		
G7	IO06RSB0		
G8	GNDQ		
G9	IO10RSB0		
G10	IO19RSB0		
G11	IO26RSB0		
G12	IO30RSB0		
G13	IO40RSB0		
G14	IO45RSB0		
G15	GNDQ		
G16	IO50RSB0		
G17	GBB2/IO61PPB1		
G18	IO53RSB0		
G19	IO63NDB1		
G20	NC		
G21	NC		
G22	NC		
H1	NC		
H2	NC		
H3	VCC		
H4	IO166PDB3		
H5	IO167NPB3		
H6	IO172NDB3		
H7	IO169NDB3		
H8	VMV0		
H9	VCCIB0		
H10	VCCIB0		
H11	IO25RSB0		
H12	IO31RSB0		
H13	VCCIB0		
H14	VCCIB0		
H15	VMV1		
H16	GBC2/IO62PDB1		
H17	IO67PPB1		
H18	IO64PPB1		

Revision / Version	Changes	Page
Advance v0.4 (September 2007)	Cortex-M1 device information was added to Table 1 • IGLOO Product Family, the "I/Os Per Package1" table, "IGLOO Ordering Information", and Temperature Grade Offerings.	i, ii, iii, iv
	The number of single-ended I/Os for the CS81 package for AGL030 was updated to 66 in the "I/Os Per Package1" table.	ii
	The "Power Conservation Techniques" section was updated to recommend that unused I/O signals be left floating.	2-51
Advance v0.3 (August 2007)	In Table 1 • IGLOO Product Family, the CS81 package was added for AGL030. The CS196 was replaced by the CS121 for AGL060. Table note 3 was moved to the specific packages to which it applies for AGL060: QN132 and FG144.	i
	The CS81 and CS121 packages were added to the "I/Os Per Package1" table. The number of single-ended I/Os was removed for the CS196 package in AGL060. Table note 6 was moved to the specific packages to which it applies for AGL060: QN132 and FG144.	ï
	The CS81 and CS121 packages were added to the Temperature Grade Offerings table. The temperature grade offerings were removed for the CS196 package in AGL060. Table note 3 was moved to the specific packages to which it applies for AGL060: QN132 and FG144.	iv
	The CS81 and CS121 packages were added to Table 2-31 • Flash*Freeze Pin Location in IGLOO Family Packages (device-independent).	2-61
Advance v0.2	The words "ambient temperature" were added to the temperature range in the "IGLOO Ordering Information", Temperature Grade Offerings, and "Speed Grade and Temperature Grade Matrix" sections.	iii, iv
	The T _J parameter in Table 3-2 \bullet Recommended Operating Conditions was changed to T _A , ambient temperature, and table notes 4–6 were added.	3-2