

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

E·XFI

Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	13824
Total RAM Bits	110592
Number of I/O	177
Number of Gates	600000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 85°C (TA)
Package / Case	256-LBGA
Supplier Device Package	256-FPBGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/agl600v5-fgg256i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

field upgrades with confidence that valuable intellectual property cannot be compromised or copied. Secure ISP can be performed using the industry-standard AES algorithm. The IGLOO family device architecture mitigates the need for ASIC migration at higher user volumes. This makes the IGLOO family a cost-effective ASIC replacement solution, especially for applications in the consumer, networking/communications, computing, and avionics markets.

Firm-Error Immunity

Firm errors occur most commonly when high-energy neutrons, generated in the upper atmosphere, strike a configuration cell of an SRAM FPGA. The energy of the collision can change the state of the configuration cell and thus change the logic, routing, or I/O behavior in an unpredictable way. These errors are impossible to prevent in SRAM FPGAs. The consequence of this type of error can be a complete system failure. Firm errors do not exist in the configuration memory of IGLOO flash-based FPGAs. Once it is programmed, the flash cell configuration element of IGLOO FPGAs cannot be altered by high-energy neutrons and is therefore immune to them. Recoverable (or soft) errors occur in the user data SRAM of all FPGA devices. These can easily be mitigated by using error detection and correction (EDAC) circuitry built into the FPGA fabric.

Advanced Flash Technology

The IGLOO family offers many benefits, including nonvolatility and reprogrammability, through an advanced flashbased, 130-nm LVCMOS process with seven layers of metal. Standard CMOS design techniques are used to implement logic and control functions. The combination of fine granularity, enhanced flexible routing resources, and abundant flash switches allows for very high logic utilization without compromising device routability or performance. Logic functions within the device are interconnected through a four-level routing hierarchy.

IGLOO family FPGAs utilize design and process techniques to minimize power consumption in all modes of operation.

Advanced Architecture

The proprietary IGLOO architecture provides granularity comparable to standard-cell ASICs. The IGLOO device consists of five distinct and programmable architectural features (Figure 1-1 on page 1-4 and Figure 1-2 on page 1-4):

- Flash*Freeze technology
- FPGA VersaTiles
- Dedicated FlashROM
- Dedicated SRAM/FIFO memory[†]
- Extensive CCCs and PLLs[†]
- Advanced I/O structure

The FPGA core consists of a sea of VersaTiles. Each VersaTile can be configured as a three-input logic function, a D-flip-flop (with or without enable), or a latch by programming the appropriate flash switch interconnections. The versatility of the IGLOO core tile as either a three-input lookup table (LUT) equivalent or a D-flip-flop/latch with enable allows for efficient use of the FPGA fabric. The VersaTile capability is unique to the ProASIC[®] family of third-generation-architecture flash FPGAs.

[†] The AGL015 and AGL030 do not support PLL or SRAM.

Table 2-2 •	Recommended Ope	erating Conditions ¹
-------------	-----------------	---------------------------------

Symbol	Para	ameter	Commercial	Industrial	Units
TJ	Junction Temperature ²		0 to +85	-40 to +100	°C
VCC ³	1.5 V DC core supply voltage ⁵		1.425 to 1.575	1.425 to 1.575	V
	1.2 V–1.5 V wide range DC core supply voltage ^{4,6}		1.14 to 1.575	1.14 to 1.575	V
VJTAG	JTAG DC voltage		1.4 to 3.6	1.4 to 3.6	V
VPUMP	Programming voltage	Programming Mode	3.15 to 3.45	3.15 to 3.45	V
		Operation ⁷	0 to 3.6	0 to 3.6	V
VCCPLL ⁸	Analog power supply (PLL)	1.5 V DC core supply voltage ⁵	1.425 to 1.575	1.425 to 1.575	V
		1.2 V - 1.5 V DC core supply voltage ^{4,6}	1.14 to 1.575	1.14 to 1.575	V
VCCI and	1.2 V DC core supply voltage ⁶		1.14 to 1.26	1.14 to 1.26	V
VMV ⁹	1.2 V DC wide range DC supply voltage ⁶		1.14 to 1.575	1.14 to 1.575	V
	1.5 V DC supply voltage		1.425 to 1.575	1.425 to 1.575	V
	1.8 V DC supply voltage		1.7 to 1.9	1.7 to 1.9	V
	2.5 V DC supply voltage		2.3 to 2.7	2.3 to 2.7	V
	3.0 V DC supply voltage ¹⁰		2.7 to 3.6	2.7 to 3.6	V
	3.3 V DC supply voltage		3.0 to 3.6	3.0 to 3.6	V
	LVDS differential I/O		2.375 to 2.625	2.375 to 2.625	V
	LVPECL differential I/O		3.0 to 3.6	3.0 to 3.6	V

Notes:

1. All parameters representing voltages are measured with respect to GND unless otherwise specified.

- 2. Software Default Junction Temperature Range in the Libero SoC software is set to 0°C to +70°C for commercial, and -40°C to +85°C for industrial. To ensure targeted reliability standards are met across the full range of junction temperatures, Microsemi recommends using custom settings for temperature range before running timing and power analysis tools. For more information on custom settings, refer to the New Project Dialog Box in the Libero SoC Online Help.
- 3. The ranges given here are for power supplies only. The recommended input voltage ranges specific to each I/O standard are given in Table 2-25 on page 2-24. VCCI should be at the same voltage within a given I/O bank.
- 4. All IGLOO devices (V5 and V2) must be programmed with the VCC core voltage at 1.5 V. Applications using the V2 devices powered by 1.2 V supply must switch the core supply to 1.5 V for in-system programming.
- 5. For $IGLOO^{\mathbb{R}}$ V5 devices
- 6. For IGLOO V2 devices only, operating at VCCI \geq VCC.
- 7. VPUMP can be left floating during operation (not programming mode).
- 8. VCCPLL pins should be tied to VCC pins. See the "Pin Descriptions" chapter of the IGLOO FPGA Fabric User Guide for further information.
- 9. VMV and VCCI must be at the same voltage within a given I/O bank. VMV pins must be connected to the corresponding VCCI pins. See the "VMVx I/O Supply Voltage (quiet)" on page 3-1 for further information.
- 10. 3.3 V wide range is compliant to the JESD-8B specification and supports 3.0 V VCCI operation.

Table 2-44 • I/O Short Currents IOSH/IOSL Applicable to Standard I/O Banks

	Drive Strength	IOSL (mA)*	IOSH (mA)*
3.3 V LVTTL / 3.3 V LVCMOS	2 mA	25	27
	4 mA	25	27
	6 mA	51	54
	8 mA	51	54
3.3 V LVCMOS Wide Range	100 μA	Same as regular 3.3 V LVCMOS	Same as regular 3.3 V LVCMOS
2.5 V LVCMOS	2 mA	16	18
	4 mA	16	18
	6 mA	32	37
	8 mA	32	37
1.8 V LVCMOS	2 mA	9	11
	4 mA	17	22
1.5 V LVCMOS	2 mA	13	16
1.2 V LVCMOS	1 mA	20	26
1.2 V LVCMOS Wide Range	100 μA	20	26

Note: $^{*}T_{J} = 100^{\circ}C$

The length of time an I/O can withstand I_{OSH}/I_{OSL} events depends on the junction temperature. The reliability data below is based on a 3.3 V, 12 mA I/O setting, which is the worst case for this type of analysis.

For example, at 100°C, the short current condition would have to be sustained for more than six months to cause a reliability concern. The I/O design does not contain any short circuit protection, but such protection would only be needed in extremely prolonged stress conditions.

Table 2-45 • Duration of Short Circuit Event before Failure

Temperature	Time before Failure
-40°C	> 20 years
–20°C	> 20 years
0°C	> 20 years
25°C	> 20 years
70°C	5 years
85°C	2 years
100°C	6 months

Table 2-46 • I/O Input Rise Time, Fall Time, and Related I/O Reliability1

Input Buffer	Input Rise/Fall Time (min.)	Input Rise/Fall Time (max.)	Reliability
LVTTL/LVCMOS	No requirement	10 ns *	20 years (100°C)
LVDS/B-LVDS/M-LVDS/ LVPECL	No requirement	10 ns *	10 years (100°C)

Note: The maximum input rise/fall time is related to the noise induced into the input buffer trace. If the noise is low, then the rise time and fall time of input buffers can be increased beyond the maximum value. The longer the rise/fall times, the more susceptible the input signal is to the board noise. Microsemi recommends signal integrity evaluation/characterization of the system to ensure that there is no excessive noise coupling into input signals.

Table 2-60 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew – Applies to 1.2 V DC Core VoltageCommercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 3.0 VApplicable to Standard Plus Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
2 mA	Std.	1.55	2.89	0.26	0.97	1.10	2.93	2.38	2.53	2.96	8.72	8.17	ns
4 mA	Std.	1.55	2.89	0.26	0.97	1.10	2.93	2.38	2.53	2.96	8.72	8.17	ns
6 mA	Std.	1.55	2.50	0.26	0.97	1.10	2.54	2.04	2.77	3.37	8.33	7.82	ns
8 mA	Std.	1.55	2.50	0.26	0.97	1.10	2.54	2.04	2.77	3.37	8.33	7.82	ns
12 mA	Std.	1.55	2.31	0.26	0.97	1.10	2.34	1.86	2.93	3.64	8.12	7.65	ns
16 mA	Std.	1.55	2.31	0.26	0.97	1.10	2.34	1.86	2.93	3.64	8.12	7.65	ns

Notes:

1. Software default selection highlighted in gray.

2. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.

Table 2-61 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew – Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 3.0 V Applicable to Standard Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	Units
2 mA	Std.	1.55	4.39	0.26	0.94	1.10	4.46	3.91	2.17	2.44	ns
4 mA	Std.	1.55	4.39	0.26	0.94	1.10	4.46	3.91	2.17	2.44	ns
6 mA	Std.	1.55	3.72	0.26	0.94	1.10	3.78	3.43	2.40	2.85	ns
8 mA	Std.	1.55	3.72	0.26	0.94	1.10	3.78	3.43	2.40	2.85	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.

Table 2-62 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew – Applies to 1.2 V DC Core Voltage

Commercial-Case Conditions: $T_J = 70^{\circ}$ C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 3.0 V Applicable to Standard Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	Units
2 mA	Std.	1.55	2.74	0.26	0.94	1.10	2.78	2.26	2.17	2.55	ns
4 mA	Std.	1.55	2.74	0.26	0.94	1.10	2.78	2.26	2.17	2.55	ns
6 mA	Std.	1.55	2.38	0.26	0.94	1.10	2.41	1.92	2.40	2.96	ns
8 mA	Std.	1.55	2.38	0.26	0.94	1.10	2.41	1.92	2.40	2.96	ns

Notes:

1. Software default selection highlighted in gray.

2. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.

Table 2-107 • 1.8 V LVCMOS Low Slew – Applies to 1.2 V DC Core VoltageCommercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.7 VApplicable to Standard Plus Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{ZHS}	Units
2 mA	Std.	1.55	6.32	0.26	1.11	1.10	6.43	5.81	2.47	2.16	12.22	11.60	ns
4 mA	Std.	1.55	5.27	0.26	1.11	1.10	5.35	5.01	2.78	2.92	11.14	10.79	ns
6 mA	Std.	1.55	4.56	0.26	1.11	1.10	4.64	4.44	3.00	3.30	10.42	10.22	ns
8 mA	Std.	1.55	4.56	0.26	1.11	1.10	4.64	4.44	3.00	3.30	10.42	10.22	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.

Table 2-108 • 1.8 V LVCMOS High Slew – Applies to 1.2 V DC Core Voltage

Commercial-Case Conditions: $T_J = 70^{\circ}$ C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.7 V Applicable to Standard Plus Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{ZHS}	Units
2 mA	Std.	1.55	3.22	0.26	1.11	1.10	3.26	3.18	2.47	2.20	9.05	8.97	ns
4 mA	Std.	1.55	2.72	0.26	1.11	1.10	2.75	2.50	2.78	3.01	8.54	8.29	ns
6 mA	Std.	1.55	2.43	0.26	1.11	1.10	2.47	2.16	2.99	3.39	8.25	7.94	ns
8 mA	Std.	1.55	2.43	0.26	1.11	1.10	2.47	2.16	2.99	3.39	8.25	7.94	ns

Notes:

1. Software default selection highlighted in gray.

2. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.

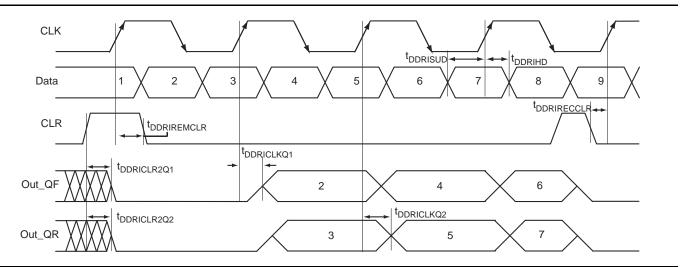
Table 2-109 • 1.8 V LVCMOS Low Slew – Applies to 1.2 V DC Core Voltage

Commercial-Case Conditions: $T_J = 70^{\circ}$ C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.7 V Applicable to Standard Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	Units
2 mA	Std.	1.55	6.13	0.26	1.08	1.10	6.24	5.79	2.08	1.78	ns
4 mA	Std.	1.55	5.17	0.26	1.08	1.10	5.26	4.98	2.38	2.54	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.

Table 2-110 • 1.8 V LVCMOS High Slew – Applies to 1.2 V DC Core Voltage


Commercial-Case Conditions: $T_J = 70^{\circ}$ C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.7 V Applicable to Standard Banks

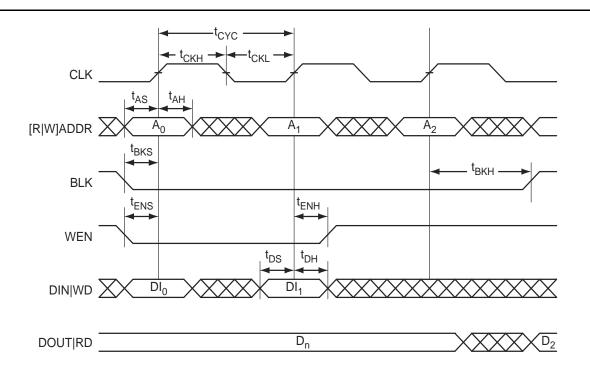
Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	Units
2 mA	Std.	3.06	0.26	1.08	1.10	3.10	3.01	2.08	1.83	3.06	ns
4 mA	Std.	2.60	0.26	1.08	1.10	2.64	2.33	2.38	2.62	2.60	ns

Notes:

1. Software default selection highlighted in gray.

2. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.

Figure 2-22 • Input DDR Timing Diagram


Timing Characteristics

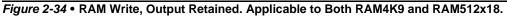

1.5 V DC Core Voltage

Table 2-164 • Input DDR Propagation DelaysCommercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V

Parameter	Description	Std.	Units
t _{DDRICLKQ1}	Clock-to-Out Out_QR for Input DDR	0.48	ns
t _{DDRICLKQ2}	Clock-to-Out Out_QF for Input DDR	0.65	ns
t _{DDRISUD1}	Data Setup for Input DDR (negedge)	0.50	ns
t _{DDRISUD2}	Data Setup for Input DDR (posedge)	0.40	ns
t _{DDRIHD1}	Data Hold for Input DDR (negedge)	0.00	ns
t _{DDRIHD2}	Data Hold for Input DDR (posedge)	0.00	ns
t _{DDRICLR2Q1}	Asynchronous Clear-to-Out Out_QR for Input DDR	0.82	ns
t _{DDRICLR2Q2}	Asynchronous Clear-to-Out Out_QF for Input DDR	0.98	ns
t _{DDRIREMCLR}	Asynchronous Clear Removal Time for Input DDR	0.00	ns
t _{DDRIRECCLR}	Asynchronous Clear Recovery Time for Input DDR	0.23	ns
t _{DDRIWCLR}	Asynchronous Clear Minimum Pulse Width for Input DDR	0.19	ns
t _{DDRICKMPWH}	Clock Minimum Pulse Width High for Input DDR	0.31	ns
t _{DDRICKMPWL}	Clock Minimum Pulse Width Low for Input DDR	0.28	ns
F _{DDRIMAX}	Maximum Frequency for Input DDR	250.00	MHz

Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.

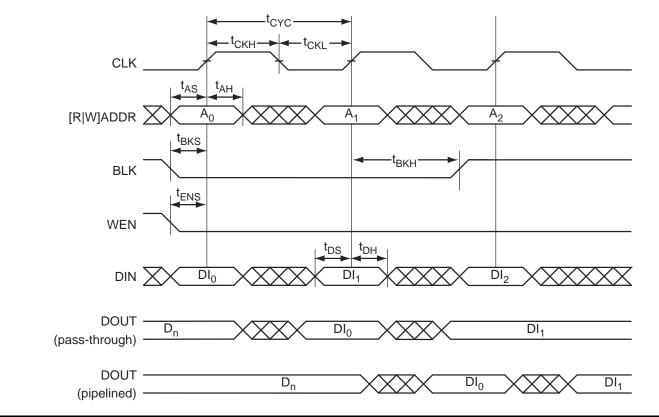


Figure 2-35 • RAM Write, Output as Write Data (WMODE = 1). Applicable to RAM4K9 only.

1.2 V DC Core Voltage

Table 2-196 • FIFO

Worst Commercial-Case Conditions: $T_J = 70^{\circ}C$, VCC = 1.14 V

Parameter	Description	Std.	Units
t _{ENS}	REN, WEN Setup Time	4.13	ns
t _{ENH}	REN, WEN Hold Time	0.31	ns
t _{BKS}	BLK Setup Time	0.47	ns
t _{BKH}	BLK Hold Time	0.00	ns
t _{DS}	Input Data (WD) Setup Time	1.56	ns
t _{DH}	Input Data (WD) Hold Time	0.49	ns
t _{CKQ1}	Clock High to New Data Valid on RD (flow-through)	6.80	ns
t _{CKQ2}	Clock High to New Data Valid on RD (pipelined)	3.62	ns
t _{RCKEF}	RCLK High to Empty Flag Valid	7.23	ns
t _{WCKFF}	WCLK High to Full Flag Valid	6.85	ns
t _{CKAF}	Clock High to Almost Empty/Full Flag Valid	26.61	ns
t _{RSTFG}	RESET Low to Empty/Full Flag Valid	7.12	ns
t _{RSTAF}	RESET Low to Almost Empty/Full Flag Valid	26.33	ns
t _{RSTBQ}	RESET Low to Data Out Low on RD (flow-through)	4.09	ns
	RESET Low to Data Out Low on RD (pipelined)	4.09	ns
t _{REMRSTB}	RESET Removal	1.23	ns
t _{RECRSTB}	RESET Recovery	6.58	ns
t _{MPWRSTB}	RESET Minimum Pulse Width	1.18	ns
t _{CYC}	Clock Cycle Time	10.90	ns
F _{MAX}	Maximum Frequency for FIFO	92	MHz

Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.

3 – Pin Descriptions

Supply Pins

GND

Ground

Ground supply voltage to the core, I/O outputs, and I/O logic.

GNDQ Ground (quiet)

Quiet ground supply voltage to input buffers of I/O banks. Within the package, the GNDQ plane is decoupled from the simultaneous switching noise originated from the output buffer ground domain. This minimizes the noise transfer within the package and improves input signal integrity. GNDQ must always be connected to GND on the board.

VCC

Core Supply Voltage

Supply voltage to the FPGA core, nominally 1.5 V for IGLOO V5 devices, and 1.2 V or 1.5 V for IGLOO V2 devices. VCC is required for powering the JTAG state machine in addition to VJTAG. Even when a device is in bypass mode in a JTAG chain of interconnected devices, both VCC and VJTAG must remain powered to allow JTAG signals to pass through the device.

For IGLOO V2 devices, VCC can be switched dynamically from 1.2 V to 1.5 V or vice versa. This allows in-system programming (ISP) when VCC is at 1.5 V and the benefit of low power operation when VCC is at 1.2 V.

VCCIBx I/O Supply Voltage

Supply voltage to the bank's I/O output buffers and I/O logic. Bx is the I/O bank number. There are up to eight I/O banks on IGLOO devices plus a dedicated VJTAG bank. Each bank can have a separate VCCI connection. All I/Os in a bank will run off the same VCCIBx supply. VCCI can be 1.2 V, 1.5 V, 1.8 V, 2.5 V, or 3.3 V, nominal voltage. Unused I/O banks should have their corresponding VCCI pins tied to GND.

VMVx I/O Supply Voltage (quiet)

Quiet supply voltage to the input buffers of each I/O bank. *x* is the bank number. Within the package, the VMV plane biases the input stage of the I/Os in the I/O banks. This minimizes the noise transfer within the package and improves input signal integrity. Each bank must have at least one VMV connection, and no VMV should be left unconnected. All I/Os in a bank run off the same VMVx supply. VMV is used to provide a quiet supply voltage to the input buffers of each I/O bank. VMVx can be 1.2 V, 1.5 V, 1.8 V, 2.5 V, or 3.3 V, nominal voltage. Unused I/O banks should have their corresponding VMV pins tied to GND. VMV and VCCI should be at the same voltage within a given I/O bank. Used VMV pins must be connected to the corresponding VCCI pins of the same bank (i.e., VMV0 to VCCIB0, VMV1 to VCCIB1, etc.).

VCCPLA/B/C/D/E/F PLL Supply Voltage

Supply voltage to analog PLL, nominally 1.5 V or 1.2 V.

- 1.5 V for IGLOO V5 devices
- 1.2 V or 1.5 V for IGLOO V2 devices

When the PLLs are not used, the Microsemi Designer place-and-route tool automatically disables the unused PLLs to lower power consumption. The user should tie unused VCCPLx and VCOMPLx pins to ground. Microsemi recommends tying VCCPLx to VCC and using proper filtering circuits to decouple VCC noise from the PLLs. Refer to the PLL Power Supply Decoupling section of the "Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs" chapter of the *IGLOO FPGA Fabric User Guide* for a complete board solution for the PLL analog power supply and ground.

• There is one VCCPLF pin on IGLOO devices.

VCOMPLA/B/C/D/E/F PLL Ground

Ground to analog PLL power supplies. When the PLLs are not used, the Microsemi Designer place-androute tool automatically disables the unused PLLs to lower power consumption. The user should tie unused VCCPLx and VCOMPLx pins to ground.

There is one VCOMPLF pin on IGLOO devices.

JTAG Pins

IGLOO devices have a separate bank for the dedicated JTAG pins. The JTAG pins can be run at any voltage from 1.5 V to 3.3 V (nominal). VCC must also be powered for the JTAG state machine to operate, even if the device is in bypass mode; VJTAG alone is insufficient. Both VJTAG and VCC to the part must be supplied to allow JTAG signals to transition the device. Isolating the JTAG power supply in a separate I/O bank gives greater flexibility in supply selection and simplifies power supply and PCB design. If the JTAG interface is neither used nor planned for use, the VJTAG pin together with the TRST pin could be tied to GND.

TCK Test Clock

Test clock input for JTAG boundary scan, ISP, and UJTAG. The TCK pin does not have an internal pull-up/-down resistor. If JTAG is not used, Microsemi recommends tying off TCK to GND through a resistor placed close to the FPGA pin. This prevents JTAG operation in case TMS enters an undesired state.

Note that to operate at all VJTAG voltages, 500 Ω to 1 k Ω will satisfy the requirements. Refer to Table 3-2 for more information.

Table 3-2 • Recommended Tie-Off Values for the TCK and TRST Pins

VJTAG	Tie-Off Resistance ^{1,2}
VJTAG at 3.3 V	200 Ω to 1 kΩ
VJTAG at 2.5 V	200 Ω to 1 kΩ
VJTAG at 1.8 V	500 Ω to 1 kΩ
VJTAG at 1.5 V	500 Ω to 1 kΩ

Notes:

1. The TCK pin can be pulled-up or pulled-down.

2. The TRST pin is pulled-down.

TDI

3. Equivalent parallel resistance if more than one device is on the JTAG chain

Table 3-3 • TRST and TCK Pull-Down Recommendations

VJTAG	Tie-Off Resistance*
VJTAG at 3.3 V	200 Ω to 1 k Ω
VJTAG at 2.5 V	200 Ω to 1 kΩ
VJTAG at 1.8 V	500 Ω to 1 k Ω
VJTAG at 1.5 V	500 Ω to 1 k Ω

Note: Equivalent parallel resistance if more than one device is on the JTAG chain

Test Data Input

Serial input for JTAG boundary scan, ISP, and UJTAG usage. There is an internal weak pull-up resistor on the TDI pin.

TDO Test Data Output

Serial output for JTAG boundary scan, ISP, and UJTAG usage.

TMS Test Mode Select

The TMS pin controls the use of the IEEE 1532 boundary scan pins (TCK, TDI, TDO, TRST). There is an internal weak pull-up resistor on the TMS pin.

TRST Boundary Scan Reset Pin

The TRST pin functions as an active-low input to asynchronously initialize (or reset) the boundary scan circuitry. There is an internal weak pull-up resistor on the TRST pin. If JTAG is not used, an external pull-down resistor could be included to ensure the test access port (TAP) is held in reset mode. The resistor values must be chosen from Table 3-2 and must satisfy the parallel resistance value requirement. The values in Table 3-2 correspond to the resistor recommended when a single device is used, and the equivalent parallel resistor when multiple devices are connected via a JTAG chain.

In critical applications, an upset in the JTAG circuit could allow entrance to an undesired JTAG state. In such cases, Microsemi recommends tying off TRST to GND through a resistor placed close to the FPGA pin.

Package Pin Assignments

CS81		CS81		
Pin Number	AGL030 Function	Pin Number	AGL030 Function	
A1	IO00RSB0	E1	GEB0/IO71RSE	
A2	IO02RSB0	E2	GEA0/IO72RSE	
A3	IO06RSB0	E3	GEC0/IO73RSE	
A4	IO11RSB0	E4	VCCIB1	
A5	IO16RSB0	E5	VCC	
A6	IO19RSB0	E6	VCCIB0	
A7	IO22RSB0	E7	GDC0/IO32RSE	
A8	IO24RSB0	E8	GDA0/IO33RSE	
A9	IO26RSB0	E9	GDB0/IO34RSE	
B1	IO81RSB1	F1	IO68RSB1	
B2	IO04RSB0	F2	IO67RSB1	
B3	IO10RSB0	F3	IO64RSB1	
B4	IO13RSB0	F4	GND	
B5	IO15RSB0	F5	VCCIB1	
B6	IO20RSB0	F6	IO47RSB1	
B7	IO21RSB0	F7	IO36RSB0	
B8	IO28RSB0	F8	IO38RSB0	
B9	IO25RSB0	F9	IO40RSB0	
C1	IO79RSB1	G1	IO65RSB1	
C2	IO80RSB1	G2	IO66RSB1	
C3	IO08RSB0	G3	IO57RSB1	
C4	IO12RSB0	G4	IO53RSB1	
C5	IO17RSB0	G5	IO49RSB1	
C6	IO14RSB0	G6	IO44RSB1	
C7	IO18RSB0	G7	IO46RSB1	
C8	IO29RSB0	G8	VJTAG	
C9	IO27RSB0	G9	TRST	
D1	IO74RSB1	H1	IO62RSB1	
D2	IO76RSB1	H2	FF/IO60RSB1	
D3	IO77RSB1	H3	IO58RSB1	
D4	VCC	H4	IO54RSB1	
D5	VCCIB0	H5	IO48RSB1	
D6	GND	H6	IO43RSB1	
D7	IO23RSB0	H7	IO42RSB1	
D8	IO31RSB0	H8	TDI	
D9	IO30RSB0	H9	TDO	

CS81				
Pin Number	AGL030 Function			
J1	IO63RSB1			
J2	IO61RSB1			
J3	IO59RSB1			
J4	IO56RSB1			
J5	IO52RSB1			
J6	IO45RSB1			
J7	ТСК			
J8	TMS			
J9	VPUMP			

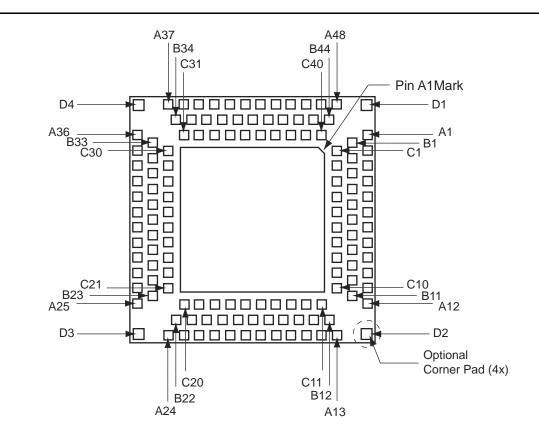
IGLOO Low Power Flash FPGAs

CS81			CS81
Pin Number	AGL250 Function	Pin Number	AGL250 Funct
A1	GAA0/IO00RSB0	E1	GFB0/IO109ND
A2	GAA1/IO01RSB0	E2	GFB1/IO109PD
A3	GAC0/IO04RSB0	E3	GFA1/IO108PS
A4	IO13RSB0	E4	VCCIB3
A5	IO21RSB0	E5	VCC
A6	IO27RSB0	E6	VCCIB1
A7	GBB0/IO37RSB0	E7	GCA0/IO50ND
A8	GBA1/IO40RSB0	E8	GCA1/IO50PD
A9	GBA2/IO41PPB1	E9	GCB2/IO52PPI
B1	GAA2/IO118UPB3	F1	VCCPLF
B2	GAB0/IO02RSB0	F2	VCOMPLF
B3	GAC1/IO05RSB0	F3	GND
B4	IO11RSB0	F4	GND
B5	IO23RSB0	F5	VCCIB2
B6	GBC0/IO35RSB0	F6	GND
B7	GBB1/IO38RSB0	F7	GDA1/IO60US
B8	IO41NPB1	F8	GDC1/IO58UD
B9	GBB2/IO42PSB1	F9	GDC0/IO58VD
C1	GAB2/IO117UPB3	G1	GEA0/IO98ND
C2	IO118VPB3	G2	GEC1/IO100PD
C3	GND	G3	GEC0/IO100ND
C4	IO15RSB0	G4	IO91RSB2
C5	IO25RSB0	G5	IO86RSB2
C6	GND	G6	IO71RSB2
C7	GBA0/IO39RSB0	G7	GDB2/IO62RS
C8	GBC2/IO43PDB1	G8	VJTAG
C9	IO43NDB1	G9	TRST
D1	GAC2/IO116USB3	H1	GEA1/IO98PDI
D2	IO117VPB3	H2	FF/GEB2/IO96R
D3	GFA2/IO107PSB3	H3	IO93RSB2
D4	VCC	H4	IO90RSB2
D5	VCCIB0	H5	IO85RSB2
D6	GND	H6	IO77RSB2
D7	IO52NPB1	H7	GDA2/IO61RS
D8	GCC1/IO48PDB1	H8	TDI
D9	GCC0/IO48NDB1	H9	TDO

CS81				
Pin Number	AGL250 Function			
J1	GEA2/IO97RSB2			
J2	GEC2/IO95RSB2			
J3	IO92RSB2			
J4	IO88RSB2			
J5	IO84RSB2			
J6	IO74RSB2			
J7	ТСК			
J8	TMS			
J9	VPUMP			

Package Pin Assignments

CS196			CS196		CS196
Pin Number	AGL250 Function	Pin Number	AGL250 Function	Pin Number	AGL250 Function
A1	GND	C9	IO30RSB0	F3	IO111PDB3
A2	GAA0/IO00RSB0	C10	IO33RSB0	F4	IO111NDB3
A3	GAC0/IO04RSB0	C11	VCCIB0	F5	IO113NPB3
A4	GAC1/IO05RSB0	C12	IO41NPB1	F6	IO06RSB0
A5	IO10RSB0	C13	GNDQ	F7	VCC
A6	IO13RSB0	C14	IO42NDB1	F8	VCC
A7	IO17RSB0	D1	IO116VDB3	F9	IO28RSB0
A8	IO19RSB0	D2	IO117VDB3	F10	IO54PDB1
A9	IO23RSB0	D3	GAA2/IO118UDB3	F11	IO54NDB1
A10	GBC0/IO35RSB0	D4	IO113PPB3	F12	IO47NDB1
A11	GBB0/IO37RSB0	D5	IO08RSB0	F13	IO47PDB1
A12	GBB1/IO38RSB0	D6	IO14RSB0	F14	IO45NDB1
A13	GBA1/IO40RSB0	D7	IO15RSB0	G1	GFB1/IO109PDB3
A14	GND	D8	IO18RSB0	G2	GFA0/IO108NDB3
B1	VCCIB3	D9	IO25RSB0	G3	GFA2/IO107PPB3
B2	VMV0	D10	IO32RSB0	G4	VCOMPLF
B3	GAA1/IO01RSB0	D11	IO44PPB1	G5	GFC0/IO110NDB3
B4	GAB1/IO03RSB0	D12	VMV1	G6	VCC
B5	GND	D13	IO43NDB1	G7	GND
B6	IO12RSB0	D14	GBC2/IO43PDB1	G8	GND
B7	IO16RSB0	E1	IO112PDB3	G9	VCC
B8	IO22RSB0	E2	GND	G10	GCC0/IO48NDB1
B9	IO24RSB0	E3	IO118VDB3	G11	GCB1/IO49PDB1
B10	GND	E4	VCCIB3	G12	GCA0/IO50NDB1
B11	GBC1/IO36RSB0	E5	IO114USB3	G13	IO53NDB1
B12	GBA0/IO39RSB0	E6	IO07RSB0	G14	GCC2/IO53PDB1
B13	GBA2/IO41PPB1	E7	IO09RSB0	H1	GFB0/IO109NDB3
B14	GBB2/IO42PDB1	E8	IO21RSB0	H2	GFA1/IO108PDB3
C1	GAC2/IO116UDB3	E9	IO31RSB0	H3	VCCPLF
C2	GAB2/IO117UDB3	E10	IO34RSB0	H4	GFB2/IO106PPB3
C3	GNDQ	E11	VCCIB1	H5	GFC1/IO110PDB3
C4	VCCIB0	E12	IO44NPB1	H6	VCC
C5	GAB0/IO02RSB0	E13	GND	H7	GND
C6	IO11RSB0	E14	IO45PDB1	H8	GND
C7	VCCIB0	F1	IO112NDB3	H9	VCC
C8	IO20RSB0	F2	IO107NPB3	H10	GCC1/IO48PDB1


Pin Number	ACL 020 Eurotion	_
	AGL030 Function	F
1	IO82RSB1	
2	IO80RSB1	
3	IO78RSB1	
4	IO76RSB1	
5	GEC0/IO73RSB1	
6	GEA0/IO72RSB1	
7	GEB0/IO71RSB1	
8	VCC	
9	GND	
10	VCCIB1	
11	IO68RSB1	
12	IO67RSB1	
13	IO66RSB1	
14	IO65RSB1	
15	IO64RSB1	
16	IO63RSB1	
17	IO62RSB1	
18	FF/IO60RSB1	
19	IO58RSB1	
20	IO56RSB1	
21	IO54RSB1	
22	IO52RSB1	
23	IO51RSB1	
24	VCC	
25	GND	
26	VCCIB1	
27	IO50RSB1	
28	IO48RSB1	
29	IO46RSB1	
30	IO44RSB1	
31	IO42RSB1	
32	ТСК	
33	TDI	
34	TMS	
35	VPUMP	
36	TDO	

٦	QN68				
۱	Pin Number	AGL030 Function			
	37	TRST			
	38	VJTAG			
	39	IO40RSB0			
	40	IO37RSB0			
	41	GDB0/IO34RSB0			
	42	GDA0/IO33RSB0			
	43	GDC0/IO32RSB0			
	44	VCCIB0			
	45	GND			
	46	VCC			
	47	IO31RSB0			
	48	IO29RSB0			
	49	IO28RSB0			
	50	IO27RSB0			
	51	IO25RSB0			
	52	IO24RSB0			
	53	IO22RSB0			
	54	IO21RSB0			
	55	IO19RSB0			
	56	IO17RSB0			
	57	IO15RSB0			
	58	IO14RSB0			
	59	VCCIB0			
	60	GND			
	61	VCC			
	62	IO12RSB0			
	63	IO10RSB0			
	64	IO08RSB0			
	65	IO06RSB0			
	66	IO04RSB0			
	67	IO02RSB0			
	68	IO00RSB0			

Package Pin Assignments

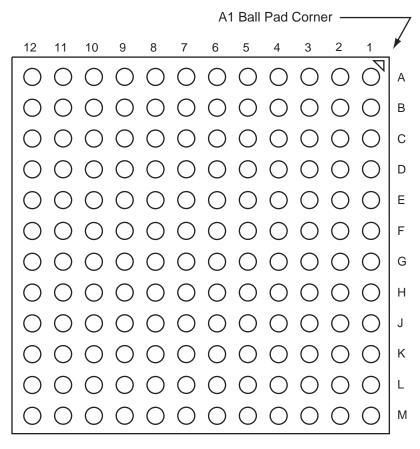
QN132

Notes:

2. The die attach paddle center of the package is tied to ground (GND).

Note

QN132 package is discontinued and is not available for IGLOO devices. For more information on package drawings, see *PD3068: Package Mechanical Drawings*.


^{1.} This is the bottom view of the package.

IGLOO Low Power Flash FPGAs

QN132		QN132		QN132	
Pin Number	AGL030 Function	Pin Number	AGL030 Function	Pin Number	AGL030 Function
A1	IO80RSB1	A37	IO22RSB0	B25	GND
A2	IO77RSB1	A38	IO19RSB0	B26	NC
A3	NC	A39	NC	B27	IO37RSB0
A4	IO76RSB1	A40	IO18RSB0	B28	GND
A5	GEC0/IO73RSB1	A41	IO16RSB0	B29	GDA0/IO33RSB0
A6	NC	A42	IO14RSB0	B30	NC
A7	GEB0/IO71RSB1	A43	VCC	B31	GND
A8	IO69RSB1	A44	IO11RSB0	B32	IO29RSB0
A9	NC	A45	IO08RSB0	B33	IO26RSB0
A10	VCC	A46	IO06RSB0	B34	IO23RSB0
A11	IO67RSB1	A47	IO05RSB0	B35	IO20RSB0
A12	IO64RSB1	A48	IO02RSB0	B36	GND
A13	IO59RSB1	B1	IO81RSB1	B37	IO17RSB0
A14	IO56RSB1	B2	IO78RSB1	B38	IO15RSB0
A15	NC	B3	GND	B39	GND
A16	IO55RSB1	B4	IO75RSB1	B40	IO12RSB0
A17	IO53RSB1	B5	NC	B41	IO09RSB0
A18	VCC	B6	GND	B42	GND
A19	IO50RSB1	B7	IO70RSB1	B43	IO04RSB0
A20	IO48RSB1	B8	NC	B44	IO01RSB0
A21	IO45RSB1	B9	GND	C1	IO82RSB1
A22	IO44RSB1	B10	IO66RSB1	C2	IO79RSB1
A23	IO43RSB1	B11	IO63RSB1	C3	NC
A24	TDI	B12	FF/IO60RSB1	C4	IO74RSB1
A25	TRST	B13	IO57RSB1	C5	GEA0/IO72RSB1
A26	IO40RSB0	B14	GND	C6	NC
A27	NC	B15	IO54RSB1	C7	NC
A28	IO39RSB0	B16	IO52RSB1	C8	VCCIB1
A29	IO38RSB0	B17	GND	C9	IO65RSB1
A30	IO36RSB0	B18	IO49RSB1	C10	IO62RSB1
A31	IO35RSB0	B19	IO46RSB1	C11	IO61RSB1
A32	GDC0/IO32RSB0	B20	GND	C12	IO58RSB1
A33	NC	B21	IO42RSB1	C13	NC
A34	VCC	B22	TMS	C14	NC
A35	IO30RSB0	B23	TDO	C15	IO51RSB1
A36	IO27RSB0	B24	IO41RSB0	C16	VCCIB1

FG144

Note: This is the bottom view of the package.

Note

For more information on package drawings, see PD3068: Package Mechanical Drawings.

IGLOO Low Power Flash FPGAs

FG144		FG144		FG144	
Pin Number	AGL125 Function	Pin Number	AGL125 Function	Pin Number	AGL125 Function
A1	GNDQ	D1	IO128RSB1	G1	GFA1/IO121RSB1
A2	VMV0	D2	IO129RSB1	G2	GND
A3	GAB0/IO02RSB0	D3	IO130RSB1	G3	VCCPLF
A4	GAB1/IO03RSB0	D4	GAA2/IO67RSB1	G4	GFA0/IO122RSB1
A5	IO11RSB0	D5	GAC0/IO04RSB0	G5	GND
A6	GND	D6	GAC1/IO05RSB0	G6	GND
A7	IO18RSB0	D7	GBC0/IO35RSB0	G7	GND
A8	VCC	D8	GBC1/IO36RSB0	G8	GDC1/IO61RSB0
A9	IO25RSB0	D9	GBB2/IO43RSB0	G9	IO48RSB0
A10	GBA0/IO39RSB0	D10	IO28RSB0	G10	GCC2/IO59RSB0
A11	GBA1/IO40RSB0	D11	IO44RSB0	G11	IO47RSB0
A12	GNDQ	D12	GCB1/IO53RSB0	G12	GCB2/IO58RSB0
B1	GAB2/IO69RSB1	E1	VCC	H1	VCC
B2	GND	E2	GFC0/IO125RSB1	H2	GFB2/IO119RSB1
B3	GAA0/IO00RSB0	E3	GFC1/IO126RSB1	H3	GFC2/IO118RSB1
B4	GAA1/IO01RSB0	E4	VCCIB1	H4	GEC1/IO112RSB1
B5	IO08RSB0	E5	IO68RSB1	H5	VCC
B6	IO14RSB0	E6	VCCIB0	H6	IO50RSB0
B7	IO19RSB0	E7	VCCIB0	H7	IO60RSB0
B8	IO22RSB0	E8	GCC1/IO51RSB0	H8	GDB2/IO71RSB1
B9	GBB0/IO37RSB0	E9	VCCIB0	H9	GDC0/IO62RSB0
B10	GBB1/IO38RSB0	E10	VCC	H10	VCCIB0
B11	GND	E11	GCA0/IO56RSB0	H11	IO49RSB0
B12	VMV0	E12	IO46RSB0	H12	VCC
C1	IO132RSB1	F1	GFB0/IO123RSB1	J1	GEB1/IO110RSB1
C2	GFA2/IO120RSB1	F2	VCOMPLF	J2	IO115RSB1
C3	GAC2/IO131RSB1	F3	GFB1/IO124RSB1	J3	VCCIB1
C4	VCC	F4	IO127RSB1	J4	GEC0/IO111RSB1
C5	IO10RSB0	F5	GND	J5	IO116RSB1
C6	IO12RSB0	F6	GND	J6	IO117RSB1
C7	IO21RSB0	F7	GND	J7	VCC
C8	IO24RSB0	F8	GCC0/IO52RSB0	J8	ТСК
C9	IO27RSB0	F9	GCB0/IO54RSB0	J9	GDA2/IO70RSB1
C10	GBA2/IO41RSB0	F10	GND	J10	TDO
C11	IO42RSB0	F11	GCA1/IO55RSB0	J11	GDA1/IO65RSB0
C12	GBC2/IO45RSB0	F12	GCA2/IO57RSB0	J12	GDB1/IO63RSB0

	FG484				
Pin Number	AGL1000 Function				
V15	IO125RSB2				
V16	GDB2/IO115RSB2				
V17	TDI				
V18	GNDQ				
V19	TDO				
V20	GND				
V21	NC				
V22	IO109NDB1				
W1	NC				
W2	IO191PDB3				
W3	NC				
W4	GND				
W5	IO183RSB2				
W6	FF/GEB2/IO186RSB2				
W7	IO172RSB2				
W8	IO170RSB2				
W9	IO164RSB2				
W10	IO158RSB2				
W11	IO153RSB2				
W12	IO142RSB2				
W13	IO135RSB2				
W14	IO130RSB2				
W15	GDC2/IO116RSB2				
W16	IO120RSB2				
W17	GDA2/IO114RSB2				
W18	TMS				
W19	GND				
W20	NC				
W21	NC				
W22	NC				
Y1	VCCIB3				
Y2	IO191NDB3				
Y3	NC				
Y4	IO182RSB2				
Y5	GND				
Y6	IO177RSB2				

Microsemi Corporate Headquarters

One Enterprise, Aliso Viejo, CA 92656 USA Within the USA: +1 (800) 713-4113 Outside the USA: +1 (949) 380-6100 Sales: +1 (949) 380-6136 Fax: +1 (949) 215-4996 E-mail: sales.support@microsemi.com www.microsemi.com

© 2016 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of Microsemi Corporation. All other trademarks and service marks are the property of their respective owners. Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of its products and services for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of the application or use of any product or circuit. The products sold hereunder and any other products sold by Microsemi have been subject to limited testing and should not be used in conjunction with mission-critical equipment or applications. Any performance specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all performance and other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer's responsibility to independently determine suitability of any products and to test and verify the same. The information provided by Microsemi hereunder is provided "as is, where is" and with all faults, and the entire risk associated with such information is entirely with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other IP rights, whether with regard to such information itself or anything described by such information. Information provided in this document is proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in this document or to any products and services at any time without notice.

About Microsemi

Microsemi Corporation (Nasdaq: MSCC) offers a comprehensive portfolio of semiconductor and system solutions for aerospace & defense, communications, data center and industrial markets. Products include high-performance and radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs and ASICs; power management products; timing and synchronization devices and precise time solutions, setting the world's standard for time; voice processing devices; RF solutions; discrete components; enterprise storage and communication solutions, security technologies and scalable anti-tamper products; Ethernet solutions; Power-over-Ethernet ICs and midspans; as well as custom design capabilities and services. Microsemi is headquartered in Aliso Viejo, Calif., and has approximately 4,800 employees globally. Learn more at www.microsemi.com.