

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

ĿXF

Details	
Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	24576
Total RAM Bits	147456
Number of I/O	97
Number of Gates	1000000
Voltage - Supply	1.14V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 85°C (TA)
Package / Case	144-LBGA
Supplier Device Package	144-FPBGA (13x13)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/m1agl1000v2-fg144

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

User Nonvolatile FlashROM

IGLOO devices have 1 kbit of on-chip, user-accessible, nonvolatile FlashROM. The FlashROM can be used in diverse system applications:

- Internet protocol addressing (wireless or fixed)
- System calibration settings
- Device serialization and/or inventory control
- Subscription-based business models (for example, set-top boxes)
- Secure key storage for secure communications algorithms
- Asset management/tracking
- Date stamping
- Version management

The FlashROM is written using the standard IGLOO IEEE 1532 JTAG programming interface. The core can be individually programmed (erased and written), and on-chip AES decryption can be used selectively to securely load data over public networks (except in the AGL015 and AGL030 devices), as in security keys stored in the FlashROM for a user design.

The FlashROM can be programmed via the JTAG programming interface, and its contents can be read back either through the JTAG programming interface or via direct FPGA core addressing. Note that the FlashROM can only be programmed from the JTAG interface and cannot be programmed from the internal logic array.

The FlashROM is programmed as 8 banks of 128 bits; however, reading is performed on a byte-by-byte basis using a synchronous interface. A 7-bit address from the FPGA core defines which of the 8 banks and which of the 16 bytes within that bank are being read. The three most significant bits (MSBs) of the FlashROM address determine the bank, and the four least significant bits (LSBs) of the FlashROM address define the byte.

The Microsemi development software solutions, Libero[®] System-on-Chip (SoC) and Designer, have extensive support for the FlashROM. One such feature is auto-generation of sequential programming files for applications requiring a unique serial number in each part. Another feature allows the inclusion of static data for system version control. Data for the FlashROM can be generated quickly and easily using Libero SoC and Designer software tools. Comprehensive programming file support is also included to allow for easy programming of large numbers of parts with differing FlashROM contents.

SRAM and FIFO

IGLOO devices (except the AGL015 and AGL030 devices) have embedded SRAM blocks along their north and south sides. Each variable-aspect-ratio SRAM block is 4,608 bits in size. Available memory configurations are 256×18, 512×9, 1k×4, 2k×2, and 4k×1 bits. The individual blocks have independent read and write ports that can be configured with different bit widths on each port. For example, data can be sent through a 4-bit port and read as a single bitstream. The embedded SRAM blocks can be initialized via the device JTAG port (ROM emulation mode) using the UJTAG macro (except in the AGL015 and AGL030 devices).

In addition, every SRAM block has an embedded FIFO control unit. The control unit allows the SRAM block to be configured as a synchronous FIFO without using additional core VersaTiles. The FIFO width and depth are programmable. The FIFO also features programmable Almost Empty (AEMPTY) and Almost Full (AFULL) flags in addition to the normal Empty and Full flags. The embedded FIFO control unit contains the counters necessary for generation of the read and write address pointers. The embedded SRAM/FIFO blocks can be cascaded to create larger configurations.

PLL and CCC

IGLOO devices provide designers with very flexible clock conditioning circuit (CCC) capabilities. Each member of the IGLOO family contains six CCCs. One CCC (center west side) has a PLL. The AGL015 and AGL030 do not have a PLL.

The six CCC blocks are located at the four corners and the centers of the east and west sides. One CCC (center west side) has a PLL.

All six CCC blocks are usable; the four corner CCCs and the east CCC allow simple clock delay operations as well as clock spine access.

The inputs of the six CCC blocks are accessible from the FPGA core or from one of several inputs located near the CCC that have dedicated connections to the CCC block.

The CCC block has these key features:

Table 2-27 • Summary of Maximum and Minimum DC Input and Output Levels Applicable to Commercial and Industrial Conditions—Software Default Settings Applicable to Standard I/O Banks

		Equivalent			VIL	V _{IH}		VOL	V _{OH}	I _{OL} 1	I _{OH} 1
I/O Standard	Drive Strength	Software Default Drive Strength Option ²	Slew Rate	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA
3.3 V LVTTL / 3.3 V LVCMOS	8 mA	8 mA	High	-0.3	0.8	2	3.6	0.4	2.4	8	8
3.3 V LVCMOS Wide Range ³	100 µA	8 mA	High	-0.3	0.8	2	3.6	0.2	VDD-0.2	0.1	0.1
2.5 V LVCMOS	8 mA	8 mA	High	-0.3	0.7	1.7	3.6	0.7	1.7	8	8
1.8 V LVCMOS	4 mA	4 mA	High	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.45	VCCI – 0.45	4	4
1.5 V LVCMOS	2 mA	2 mA	High	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.25 * VCCI	0.75 * VCCI	2	2
1.2 V LVCMOS ⁴	1 mA	1 mA	High	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.25 * VCCI	0.75 * VCCI	1	1
1.2 V LVCMOS Wide Range ^{4,5}	100 µA	1 mA	High	-0.3	0.3 * VCCI	0.7 * VCCI	3.6	0.1	VCCI – 0.1	0.1	0.1

Notes:

1. Currents are measured at 85°C junction temperature.

2. The minimum drive strength for any LVCMOS 1.2 V or LVCMOS 3.3 V software configuration when run in wide range is ±100 μA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.

3. All LVMCOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD-8B specification.

4. Applicable to V2 Devices operating at VCCI \geq VCC.

5. All LVCMOS 1.2 V software macros support LVCMOS 1.2 V wide range as specified in the JESD8-12 specification.

Table 2-40 • I/O Output Buffer Maximum Resistances¹ Applicable to Standard I/O Banks

Standard	Drive Strength	R _{PULL-DOWN} (Ω) ²	R _{PULL-UP} (Ω) ³
3.3 V LVTTL / 3.3 V LVCMOS	2 mA	100	300
	4 mA	100	300
	6 mA	50	150
	8 mA	50	150
3.3 V LVCMOS Wide Range	100 μA	Same as regular 3.3 V LVCMOS	Same as regular 3.3 V LVCMOS
2.5 V LVCMOS	2 mA	100	200
	4 mA	100	200
	6 mA	50	100
	8 mA	50	100
1.8 V LVCMOS	2 mA	200	225
	4 mA	100	112
1.5 V LVCMOS	2 mA	200	224
1.2 V LVCMOS	1 mA	158	164
1.2 V LVCMOS Wide Range ⁴	100 μA	Same as regular 1.2 V LVCMOS	Same as regular 1.2 V LVCMOS

Notes:

1. These maximum values are provided for informational reasons only. Minimum output buffer resistance values depend on VCCI, drive strength selection, temperature, and process. For board design considerations and detailed output buffer resistances, use the corresponding IBIS models located at http://www.microsemi.com/soc/download/ibis/default.aspx.

2. R_(PULL-DOWN-MAX) = (VOLspec) / I_{OLspec}

3. R_(PULL-UP-MAX) = (VCCImax - VOHspec) / I_{OHspec}

Table 2-41 • I/O Weak Pull-Up/Pull-Down Resistances Minimum and Maximum Weak Pull-Up/Pull-Down Resistance Values

	R _{(WEAK I}	PULL-UP) ¹ 2)	R _(WEAK PULL-DOWN) ² (Ω)			
VCCI	Min.	Max.	Min.	Max.		
3.3 V	10 K	45 K	10 K	45 K		
3.3 V Wide Range I/Os	10 K	45 K	10 K	45 K		
2.5 V	11 K	55 K	12 K	74 K		
1.8 V	18 K	70 K	17 K	110 K		
1.5 V	19 K	90 K	19 K	140 K		
1.2 V	25 K	110 K	25 K	150 K		
1.2 V Wide Range I/Os	19 K	110 K	19 K	150 K		

Notes:

1. R_(WEAK PULL-UP-MAX) = (VCCImax – VOHspec) / I_(WEAK PULL-UP-MIN)

2. R_(WEAK PULLDOWN-MAX) = (VOLspec) / I_(WEAK PULLDOWN-MIN)

Timing Characteristics

1.5 V DC Core Voltage

Table 2-115 • 1.5 V LVCMOS Low Slew – Applies to 1.5 V DC Core Voltage

Commercial-Case Conditions: $T_J = 70^{\circ}$ C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.4 V Applicable to Advanced I/O Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{ZHS}	Units
2 mA	Std.	0.97	6.62	0.18	1.17	0.66	6.75	6.06	2.79	2.31	10.35	9.66	ns
4 mA	Std.	0.97	5.75	0.18	1.17	0.66	5.86	5.34	3.06	2.78	9.46	8.93	ns
6 mA	Std.	0.97	5.43	0.18	1.17	0.66	5.54	5.19	3.12	2.90	9.13	8.78	ns
8 mA	Std.	0.97	5.35	0.18	1.17	0.66	5.46	5.20	2.63	3.36	9.06	8.79	ns
12 mA	Std.	0.97	5.35	0.18	1.17	0.66	5.46	5.20	2.63	3.36	9.06	8.79	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

Table 2-116 • 1.5 V LVCMOS High Slew – Applies to 1.5 V DC Core Voltage

Commercial-Case Conditions: $T_J = 70^{\circ}$ C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.4 V Applicable to Advanced I/O Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{ZHS}	Units
2 mA	Std.	0.97	2.97	0.18	1.17	0.66	3.04	2.90	2.78	2.40	6.63	6.50	ns
4 mA	Std.	0.97	2.60	0.18	1.17	0.66	2.65	2.45	3.05	2.88	6.25	6.05	ns
6 mA	Std.	0.97	2.53	0.18	1.17	0.66	2.58	2.37	3.11	3.00	6.18	5.96	ns
8 mA	Std.	0.97	2.50	0.18	1.17	0.66	2.56	2.27	3.21	3.48	6.15	5.86	ns
12 mA	Std.	0.97	2.50	0.18	1.17	0.66	2.56	2.27	3.21	3.48	6.15	5.86	ns

Notes:

1. Software default selection highlighted in gray.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

Table 2-117 • 1.5 V LVCMOS Low Slew – Applies to 1.5 V DC Core Voltage

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.4 V Applicable to Standard Plus Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{ZHS}	Units
2 mA	Std.	0.97	5.93	0.18	1.18	0.66	6.04	5.46	2.30	2.15	9.64	9.06	ns
4 mA	Std.	0.97	5.11	0.18	1.18	0.66	5.21	4.80	2.54	2.58	8.80	8.39	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

Table 2-118 • 1.5 V LVCMOS High Slew – Applies to 1.5 V DC Core Voltage

Commercial-Case Conditions: $T_J = 70^{\circ}$ C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.4 V Applicable to Standard Plus Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
2 mA	Std.	0.97	2.58	0.18	1.18	0.66	2.64	2.41	2.29	2.24	6.23	6.01	ns
4 mA	Std.	0.97	2.25	0.18	1.18	0.66	2.30	2.00	2.53	2.68	5.89	5.59	ns

Notes:

1. Software default selection highlighted in gray.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

1.2 V DC Core Voltage

Table 2-145 • 3.3 V PCI/PCI-X

```
Commercial-Case Conditions: T_J = 70^{\circ}C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 3.0 V
Applicable to Advanced I/O Banks
```

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
Std.	1.55	2.91	0.25	0.86	1.10	2.95	2.29	3.25	3.93	8.74	8.08	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.

Table 2-146 • 3.3 V PCI/PCI-X

Commercial-Case Conditions: $T_J = 70^{\circ}$ C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 3.0 V Applicable to Standard Plus I/O Banks

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
Std.	1.55	2.53	0.25	0.85	1.10	2.57	1.98	2.93	3.64	8.35	7.76	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.

Differential I/O Characteristics

Physical Implementation

Configuration of the I/O modules as a differential pair is handled by Microsemi Designer software when the user instantiates a differential I/O macro in the design.

Differential I/Os can also be used in conjunction with the embedded Input Register (InReg), Output Register (OutReg), Enable Register (EnReg), and Double Data Rate (DDR). However, there is no support for bidirectional I/Os or tristates with the LVPECL standards.

LVDS

Low-Voltage Differential Signaling (ANSI/TIA/EIA-644) is a high-speed, differential I/O standard. It requires that one data bit be carried through two signal lines, so two pins are needed. It also requires external resistor termination.

The full implementation of the LVDS transmitter and receiver is shown in an example in Figure 2-13. The building blocks of the LVDS transmitter-receiver are one transmitter macro, one receiver macro, three board resistors at the transmitter end, and one resistor at the receiver end. The values for the three driver resistors are different from those used in the LVPECL implementation because the output standard specifications are different.

Along with LVDS I/O, IGLOO also supports Bus LVDS structure and Multipoint LVDS (M-LVDS) configuration (up to 40 nodes).

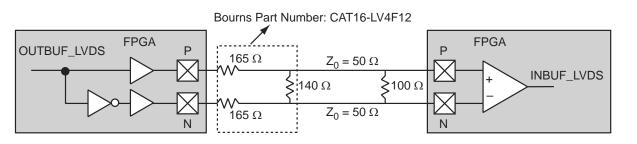


Figure 2-13 • LVDS Circuit Diagram and Board-Level Implementation

1.2 V DC Core Voltage

Table 2-162 • Output Enable Register Propagation Delays Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V

Parameter	Description	Std.	Units
t _{OECLKQ}	Clock-to-Q of the Output Enable Register	1.10	ns
tOESUD	Data Setup Time for the Output Enable Register	1.15	ns
t _{OEHD}	Data Hold Time for the Output Enable Register	0.00	ns
tOESUE	Enable Setup Time for the Output Enable Register	1.22	ns
t _{OEHE}	Enable Hold Time for the Output Enable Register	0.00	ns
t _{OECLR2Q}	Asynchronous Clear-to-Q of the Output Enable Register	1.65	ns
t _{OEPRE2Q}	Asynchronous Preset-to-Q of the Output Enable Register	1.65	ns
t _{OEREMCLR}	Asynchronous Clear Removal Time for the Output Enable Register	0.00	ns
t _{OERECCLR}	Asynchronous Clear Recovery Time for the Output Enable Register	0.24	ns
t _{OEREMPRE}	Asynchronous Preset Removal Time for the Output Enable Register	0.00	ns
t _{OERECPRE}	Asynchronous Preset Recovery Time for the Output Enable Register	0.24	ns
t _{OEWCLR}	Asynchronous Clear Minimum Pulse Width for the Output Enable Register	0.19	ns
t _{OEWPRE}	Asynchronous Preset Minimum Pulse Width for the Output Enable Register	0.19	ns
t _{OECKMPWH}	Clock Minimum Pulse Width High for the Output Enable Register	0.31	ns
t _{OECKMPWL}	Clock Minimum Pulse Width Low for the Output Enable Register	0.28	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.

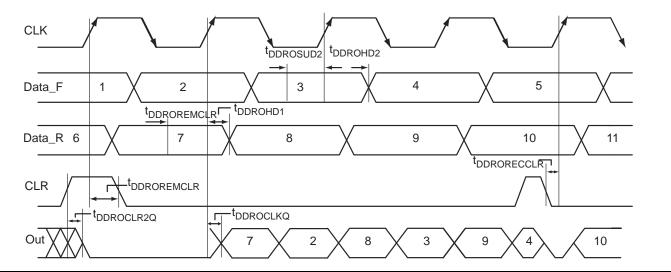


Figure 2-24 • Output DDR Timing Diagram

Timing Characteristics

1.5 V DC Core Voltage

Table 2-167 • Output DDR Propagation Delays

Commercial-Case Conditions: $T_J = 70^{\circ}$ C, Worst-Case VCC = 1.425 V

Parameter	Description	Std.	Units
t _{DDROCLKQ}	Clock-to-Out of DDR for Output DDR	1.07	ns
t _{DDROSUD1}	Data_F Data Setup for Output DDR	0.67	ns
t _{DDROSUD2}	Data_R Data Setup for Output DDR	0.67	ns
t _{DDROHD1}	Data_F Data Hold for Output DDR	0.00	ns
t _{DDROHD2}	Data_R Data Hold for Output DDR	0.00	ns
t _{DDROCLR2Q}	Asynchronous Clear-to-Out for Output DDR	1.38	ns
t _{DDROREMCLR}	Asynchronous Clear Removal Time for Output DDR	0.00	ns
t _{DDRORECCLR}	Asynchronous Clear Recovery Time for Output DDR	0.23	ns
t _{DDROWCLR1}	Asynchronous Clear Minimum Pulse Width for Output DDR	0.19	ns
t _{DDROCKMPWH}	Clock Minimum Pulse Width High for the Output DDR	0.31	ns
t _{DDROCKMPWL}	Clock Minimum Pulse Width Low for the Output DDR	0.28	ns
F _{DDOMAX}	Maximum Frequency for the Output DDR	250.00	MHz

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

1.2 V DC Core Voltage

Table 2-172 • Register Delays

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V

Parameter	Description	Std.	Units
t _{CLKQ}	Clock-to-Q of the Core Register	1.61	ns
t _{SUD}	Data Setup Time for the Core Register	1.17	ns
t _{HD}	Data Hold Time for the Core Register	0.00	ns
t _{SUE}	Enable Setup Time for the Core Register	1.29	ns
t _{HE}	Enable Hold Time for the Core Register	0.00	ns
t _{CLR2Q}	Asynchronous Clear-to-Q of the Core Register	0.87	ns
t _{PRE2Q}	Asynchronous Preset-to-Q of the Core Register	0.89	ns
t _{REMCLR}	Asynchronous Clear Removal Time for the Core Register	0.00	ns
t _{RECCLR}	Asynchronous Clear Recovery Time for the Core Register	0.24	ns
t _{REMPRE}	Asynchronous Preset Removal Time for the Core Register	0.00	ns
t _{RECPRE}	Asynchronous Preset Recovery Time for the Core Register	0.24	ns
t _{WCLR}	Asynchronous Clear Minimum Pulse Width for the Core Register	0.46	ns
t _{WPRE}	Asynchronous Preset Minimum Pulse Width for the Core Register	0.46	ns
t _{CKMPWH}	Clock Minimum Pulse Width High for the Core Register	0.95	ns
t _{CKMPWL}	Clock Minimum Pulse Width Low for the Core Register	0.95	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.

Table 2-187 • AGL600 Global Resource

Commercial-Case Conditions: T_J = 70°C, VCC = 1.14 V

		S	Std.	
Parameter	Description	Min. ¹	Max. ²	Units
t _{RCKL}	Input Low Delay for Global Clock	2.22	2.67	ns
t _{RCKH}	Input High Delay for Global Clock	2.32	2.93	ns
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock	1.40		ns
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock	1.65		ns
t _{RCKSW}	Maximum Skew for Global Clock		0.61	ns

Notes:

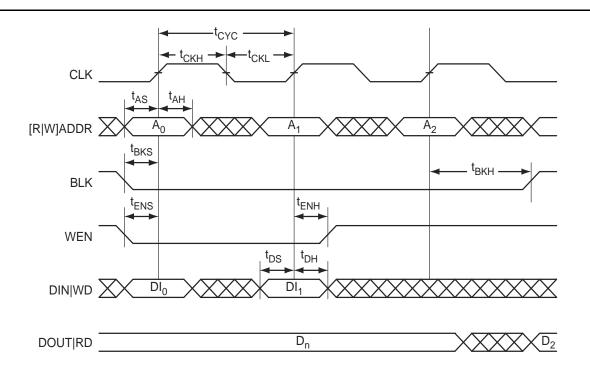
1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

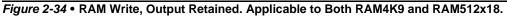
2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

Table 2-188 • AGL1000 Global Resource

Commercial-Case Conditions: T_J = 70°C, VCC = 1.14 V


			Std.		
Parameter	Description	Mir	n. ¹	Max. ²	Units
t _{RCKL}	Input Low Delay for Global Clock	2.3	81	2.76	ns
t _{RCKH}	Input High Delay for Global Clock	2.4	2	3.03	ns
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock	1.4	0		ns
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock	1.6	5		ns
t _{RCKSW}	Maximum Skew for Global Clock			0.61	ns


Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

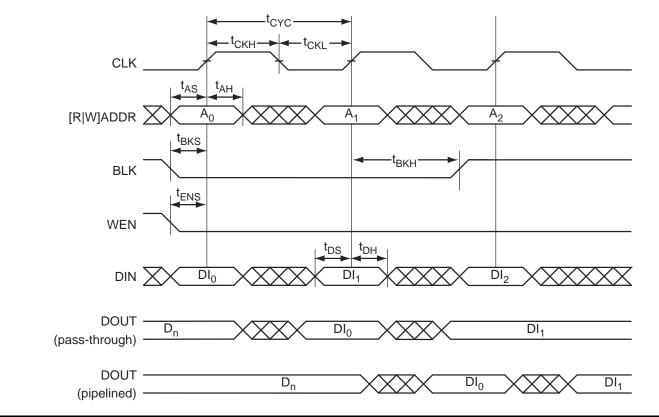
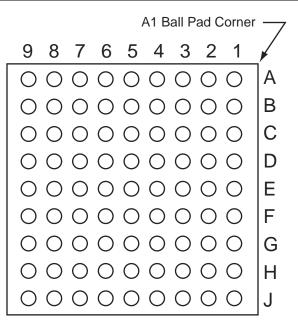



Figure 2-35 • RAM Write, Output as Write Data (WMODE = 1). Applicable to RAM4K9 only.

4 – Package Pin Assignments

UC81

Note: This is the bottom view of the package.

Note

For more information on package drawings, see PD3068: Package Mechanical Drawings.

	CS281		CS281	CS281	
Pin Number	AGL600 Function	Pin Number	AGL600 Function	Pin Number	AGL600 Function
H8	VCC	K15	IO73NPB1	N4	IO150PPB3
H9	VCCIB0	K16	GND	N5	IO148NPB3
H10	VCC	K18	IO74NPB1	N7	GEA2/IO143RSB2
H11	VCCIB0	K19	VCCIB1	N8	VCCIB2
H12	VCC	L1	GFB2/IO160PDB3	N9	IO117RSB2
H13	VCCIB1	L2	IO160NDB3	N10	IO115RSB2
H15	IO68NPB1	L4	GFC2/IO159PPB3	N11	IO114RSB2
H16	GCB0/IO70NPB1	L5	IO153PPB3	N12	VCCIB2
H18	GCA1/IO71PPB1	L7	IO153NPB3	N13	VPUMP
H19	GCA2/IO72PPB1	L8	VCCIB3	N15	IO82PPB1
J1	VCOMPLF	L9	GND	N16	IO85PPB1
J2	GFA0/IO162NDB3	L10	GND	N18	IO82NPB1
J4	VCCPLF	L11	GND	N19	IO81PPB1
J5	GFC0/IO164NPB3	L12	VCCIB1	P1	IO151PDB3
J7	GFA2/IO161PDB3	L13	IO76PPB1	P2	GND
J8	VCCIB3	L15	IO76NPB1	P3	IO151NDB3
J9	GND	L16	IO77PPB1	P4	IO149PPB3
J10	GND	L18	IO78NPB1	P5	GEA0/IO144NPB3
J11	GND	L19	IO77NPB1	P15	IO83NDB1
J12	VCCIB1	M1	IO158PDB3	P16	IO83PDB1
J13	GCC1/IO69PPB1	M2	IO158NDB3	P17	GDC1/IO86PPB1
J15	GCA0/IO71NPB1	M4	IO154NPB3	P18	GND
J16	GCB2/IO73PPB1	M5	IO152PPB3	P19	IO85NPB1
J18	IO72NPB1	M7	VCCIB3	R1	IO150NPB3
J19	IO75PSB1	M8	VCC	R2	IO149NPB3
K1	VCCIB3	M9	VCCIB2	R4	GEC1/IO146PPB3
K2	GFA1/IO162PDB3	M10	VCC	R5	GEB1/IO145PPB3
K4	GND	M11	VCCIB2	R6	IO138RSB2
K5	IO159NPB3	M12	VCC	R7	IO127RSB2
K7	IO161NDB3	M13	VCCIB1	R8	IO123RSB2
K8	VCC	M15	IO79NPB1	R9	IO118RSB2
K9	GND	M16	IO81NPB1	R10	IO111RSB2
K10	GND	M18	IO79PPB1	R11	IO106RSB2
K11	GND	M19	IO78PPB1	R12	IO103RSB2
K12	VCC	N1	IO154PPB3	R13	IO97RSB2
K13	GCC2/IO74PPB1	N2	IO152NPB3	R14	IO95RSB2

	QN68	QN68		
Pin Number	AGL015 Function	Pin Number	AGL015 Function	
1	IO82RSB1	37	TRST	
2	IO80RSB1	38	VJTAG	
3	IO78RSB1	39	IO40RSB0	
4	IO76RSB1	40	IO37RSB0	
5	GEC0/IO73RSB1	41	GDB0/IO34RSB0	
6	GEA0/IO72RSB1	42	GDA0/IO33RSB0	
7	GEB0/IO71RSB1	43	GDC0/IO32RSB0	
8	VCC	44	VCCIB0	
9	GND	45	GND	
10	VCCIB1	46	VCC	
11	IO68RSB1	47	IO31RSB0	
12	IO67RSB1	48	IO29RSB0	
13	IO66RSB1	49	IO28RSB0	
14	IO65RSB1	50	IO27RSB0	
15	IO64RSB1	51	IO25RSB0	
16	IO63RSB1	52	IO24RSB0	
17	IO62RSB1	53	IO22RSB0	
18	FF/IO60RSB1	54	IO21RSB0	
19	IO58RSB1	55	IO19RSB0	
20	IO56RSB1	56	IO17RSB0	
21	IO54RSB1	57	IO15RSB0	
22	IO52RSB1	58	IO14RSB0	
23	IO51RSB1	59	VCCIB0	
24	VCC	60	GND	
25	GND	61	VCC	
26	VCCIB1	62	IO12RSB0	
27	IO50RSB1	63	IO10RSB0	
28	IO48RSB1	64	IO08RSB0	
29	IO46RSB1	65	IO06RSB0	
30	IO44RSB1	66	IO04RSB0	
31	IO42RSB1	67	IO02RSB0	
32	ТСК	68	IO00RSB0	
33	TDI			
34	TMS			
35	VPUMP			
36	TDO			

IGLOO Low Power Flash FPGAs

QN132		QN132 QN132			QN132
Pin Number	AGL250 Function	Pin Number	AGL250 Function	Pin Number	AGL250 Function
A1	GAB2/IO117UPB3	A37	GBB1/IO38RSB0	B25	GND
A2	IO117VPB3	A38	GBC0/IO35RSB0	B26	IO54PDB1
A3	VCCIB3	A39	VCCIB0	B27	GCB2/IO52PDB1
A4	GFC1/IO110PDB3	A40	IO28RSB0	B28	GND
A5	GFB0/IO109NPB3	A41	IO22RSB0	B29	GCB0/IO49NDB1
A6	VCCPLF	A42	IO18RSB0	B30	GCC1/IO48PDB1
A7	GFA1/IO108PPB3	A43	IO14RSB0	B31	GND
A8	GFC2/IO105PPB3	A44	IO11RSB0	B32	GBB2/IO42PDB1
A9	IO103NDB3	A45	IO07RSB0	B33	VMV1
A10	VCC	A46	VCC	B34	GBA0/IO39RSB0
A11	GEA1/IO98PPB3	A47	GAC1/IO05RSB0	B35	GBC1/IO36RSB0
A12	GEA0/IO98NPB3	A48	GAB0/IO02RSB0	B36	GND
A13	GEC2/IO95RSB2	B1	IO118VDB3	B37	IO26RSB0
A14	IO91RSB2	B2	GAC2/IO116UDB3	B38	IO21RSB0
A15	VCC	B3	GND	B39	GND
A16	IO90RSB2	B4	GFC0/IO110NDB3	B40	IO13RSB0
A17	IO87RSB2	B5	VCOMPLF	B41	IO08RSB0
A18	IO85RSB2	B6	GND	B42	GND
A19	IO82RSB2	B7	GFB2/IO106PSB3	B43	GAC0/IO04RSB0
A20	IO76RSB2	B8	IO103PDB3	B44	GNDQ
A21	IO70RSB2	B9	GND	C1	GAA2/IO118UDB3
A22	VCC	B10	GEB0/IO99NDB3	C2	IO116VDB3
A23	GDB2/IO62RSB2	B11	VMV3	C3	VCC
A24	TDI	B12	FF/GEB2/IO96RSB2	C4	GFB1/IO109PPB3
A25	TRST	B13	IO92RSB2	C5	GFA0/IO108NPB3
A26	GDC1/IO58UDB1	B14	GND	C6	GFA2/IO107PSB3
A27	VCC	B15	IO89RSB2	C7	IO105NPB3
A28	IO54NDB1	B16	IO86RSB2	C8	VCCIB3
A29	IO52NDB1	B17	GND	C9	GEB1/IO99PDB3
A30	GCA2/IO51PPB1	B18	IO78RSB2	C10	GNDQ
A31	GCA0/IO50NPB1	B19	IO72RSB2	C11	GEA2/IO97RSB2
A32	GCB1/IO49PDB1	B20	GND	C12	IO94RSB2
A33	IO47NSB1	B21	GNDQ	C13	VCCIB2
A34	VCC	B22	TMS	C14	IO88RSB2
A35	IO41NPB1	B23	TDO	C15	IO84RSB2
A36	GBA2/IO41PPB1	B24	GDC0/IO58VDB1	C16	IO80RSB2

QN132			
Pin Number	AGL250 Function		
C17	IO74RSB2		
C18	VCCIB2		
C19	ТСК		
C20	VMV2		
C21	VPUMP		
C22	VJTAG		
C23	VCCIB1		
C24	IO53NSB1		
C25	IO51NPB1		
C26	GCA1/IO50PPB1		
C27	GCC0/IO48NDB1		
C28	VCCIB1		
C29	IO42NDB1		
C30	GNDQ		
C31	GBA1/IO40RSB0		
C32	GBB0/IO37RSB0		
C33	VCC		
C34	IO24RSB0		
C35	IO19RSB0		
C36	IO16RSB0		
C37	IO10RSB0		
C38	VCCIB0		
C39	GAB1/IO03RSB0		
C40	VMV0		
D1	GND		
D2	GND		
D3	GND		
D4	GND		

IGLOO Low Power Flash FPGAs

	VQ100	VQ100		VQ100	
Pin Number	AGL250 Function	Pin Number	AGL250 Function	Pin Number	AGL250 Function
1	GND	37	VCC	73	GBA2/IO41PDB1
2	GAA2/IO118UDB3	38	GND	74	VMV1
3	IO118VDB3	39	VCCIB2	75	GNDQ
4	GAB2/IO117UDB3	40	IO77RSB2	76	GBA1/IO40RSB0
5	IO117VDB3	41	IO74RSB2	77	GBA0/IO39RSB0
6	GAC2/IO116UDB3	42	IO71RSB2	78	GBB1/IO38RSB0
7	IO116VDB3	43	GDC2/IO63RSB2	79	GBB0/IO37RSB0
8	IO112PSB3	44	GDB2/IO62RSB2	80	GBC1/IO36RSB0
9	GND	45	GDA2/IO61RSB2	81	GBC0/IO35RSB0
10	GFB1/IO109PDB3	46	GNDQ	82	IO29RSB0
11	GFB0/IO109NDB3	47	TCK	83	IO27RSB0
12	VCOMPLF	48	TDI	84	IO25RSB0
13	GFA0/IO108NPB3	49	TMS	85	IO23RSB0
14	VCCPLF	50	VMV2	86	IO21RSB0
15	GFA1/IO108PPB3	51	GND	87	VCCIB0
16	GFA2/IO107PSB3	52	VPUMP	88	GND
17	VCC	53	NC	89	VCC
18	VCCIB3	54	TDO	90	IO15RSB0
19	GFC2/IO105PSB3	55	TRST	91	IO13RSB0
20	GEC1/IO100PDB3	56	VJTAG	92	IO11RSB0
21	GEC0/IO100NDB3	57	GDA1/IO60USB1	93	GAC1/IO05RSB0
22	GEA1/IO98PDB3	58	GDC0/IO58VDB1	94	GAC0/IO04RSB0
23	GEA0/IO98NDB3	59	GDC1/IO58UDB1	95	GAB1/IO03RSB0
24	VMV3	60	IO52NDB1	96	GAB0/IO02RSB0
25	GNDQ	61	GCB2/IO52PDB1	97	GAA1/IO01RSB0
26	GEA2/IO97RSB2	62	GCA1/IO50PDB1	98	GAA0/IO00RSB0
27	FF/GEB2/IO96RSB2	63	GCA0/IO50NDB1	99	GNDQ
28	GEC2/IO95RSB2	64	GCC0/IO48NDB1	100	VMV0
29	IO93RSB2	65	GCC1/IO48PDB1		
30	IO92RSB2	66	VCCIB1		
31	IO91RSB2	67	GND		
32	IO90RSB2	68	VCC		
33	IO88RSB2	69	IO43NDB1		
34	IO86RSB2	70	GBC2/IO43PDB1		
35	IO85RSB2	71	GBB2/IO42PSB1		
36	IO84RSB2	72	IO41NDB1		

	FG144			
Pin Number	AGL125 Function			
K1	GEB0/IO109RSB1			
K2	GEA1/IO108RSB1			
K3	GEA0/IO107RSB1			
K4	GEA2/IO106RSB1			
K5	IO100RSB1			
K6	IO98RSB1			
K7	GND			
K8	IO73RSB1			
K9	GDC2/IO72RSB1			
K10	GND			
K11	GDA0/IO66RSB0			
K12	GDB0/IO64RSB0			
L1	GND			
L2	VMV1			
L3	FF/GEB2/IO105RSB1			
L4	IO102RSB1			
L5	VCCIB1			
L6	IO95RSB1			
L7	IO85RSB1			
L8	IO74RSB1			
L9	TMS			
L10	VJTAG			
L11	VMV1			
L12	TRST			
M1	GNDQ			
M2	GEC2/IO104RSB1			
M3	IO103RSB1			
M4	IO101RSB1			
M5	IO97RSB1			
M6	IO94RSB1			
M7	IO86RSB1			
M8	IO75RSB1			
M9	TDI			
M10	VCCIB1			
M11	VPUMP			
M12	GNDQ			

FG484				
Pin Number	AGL1000 Function			
Y7	IO174RSB2			
Y8	VCC			
Y9	VCC			
Y10	IO154RSB2			
Y11	IO148RSB2			
Y12	IO140RSB2			
Y13	NC			
Y14	VCC			
Y15	VCC			
Y16	NC			
Y17	NC			
Y18	GND			
Y19	NC			
Y20	NC			
Y21	NC			
Y22	VCCIB1			

IGLOO Low Power Flash FPGAs

Revision	Changes	Page
Revision 19 (continued)	The following sentence was removed from the "Advanced Architecture" section: "In addition, extensive on-chip programming circuitry allows for rapid, single-voltage (3.3 V) programming of IGLOO devices via an IEEE 1532 JTAG interface" (SAR 28756).	1-3
	The "Specifying I/O States During Programming" section is new (SAR 21281).	1-8
	Values for VCCPLL at 1.2 V –1.5 V DC core supply voltage were revised in Table 2-2 • Recommended Operating Conditions 1 (SAR 22356).	2-2
	The value for VPUMP operation was changed from "0 to 3.45 V" to "0 to 3.6 V" (SAR 25220).	
	The value for VCCPLL 1.5 V DC core supply voltage was changed from "1.4 to 1.6 V" to "1.425 to 1.575 V" (SAR 26551).	
	The notes in the table were renumbered in order of their appearance in the table (SAR 21869).	
	The temperature used in EQ 2 was revised from 110°C to 100°C for consistency with the limits given in Table 2-2 • Recommended Operating Conditions 1. The resulting maximum power allowed is thus 1.28 W. Formerly it was 1.71 W (SAR 26259).	2-6
	Values for CS196, CS281, and QN132 packages were added to Table 2-5 • Package Thermal Resistivities (SARs 26228, 32301).	2-6
	Table 2-6 • Temperature and Voltage Derating Factors for Timing Delays (normalized to $TJ = 70^{\circ}C$, VCC = 1.425 V) and Table 2-7 • Temperature and Voltage Derating Factors for Timing Delays (normalized to $TJ = 70^{\circ}C$, VCC = 1.14 V) were updated to remove the column for –20°C and shift the data over to correct columns (SAR 23041).	2-7
	The tables in the "Quiescent Supply Current" section were updated with revised notes on IDD (SAR 24112). Table 2-8 • Power Supply State per Mode is new.	2-7
	The formulas in the table notes for Table 2-41 • I/O Weak Pull-Up/Pull-Down Resistances were corrected (SAR 21348).	2-37
	The row for 110°C was removed from Table 2-45 • Duration of Short Circuit Event before Failure. The example in the associated paragraph was changed from 110°C to 100°C. Table 2-46 • I/O Input Rise Time, Fall Time, and Related I/O Reliability1 was revised to change 110° to 100°C. (SAR 26259).	2-40
	The notes regarding drive strength in the "Summary of I/O Timing Characteristics –	2-28,
	Default I/O Software Settings" section, "3.3 V LVCMOS Wide Range" section and "1.2 V LVCMOS Wide Range" section tables were revised for clarification. They now state that the minimum drive strength for the default software configuration when run in wide range is $\pm 100 \ \mu$ A. The drive strength displayed in software is supported in normal range only. For a detailed I/V curve, refer to the IBIS models (SAR 25700).	2-47, 2-77
	The following sentence was deleted from the "2.5 V LVCMOS" section (SAR 24916): "It uses a 5 V-tolerant input buffer and push-pull output buffer."	2-56
	The values for $F_{DDRIMAX}$ and F_{DDOMAX} were updated in the tables in the "Input DDR Module" section and "Output DDR Module" section (SAR 23919).	2-94, 2-97
	The following notes were removed from Table 2-147 • Minimum and Maximum DC Input and Output Levels (SAR 29428): ±5%	2-81
	Differential input voltage = ±350 mV	
	Table 2-189 • IGLOO CCC/PLL Specification and Table 2-190 • IGLOO CCC/PLL Specification were updated. A note was added to both tables indicating that when the CCC/PLL core is generated by Mircosemi core generator software, not all delay values of the specified delay increments are available (SAR 25705).	2-115

Revision / Version	Changes	Page
Advance v0.4 (September 2007)	Cortex-M1 device information was added to Table 1 • IGLOO Product Family, the "I/Os Per Package1" table, "IGLOO Ordering Information", and Temperature Grade Offerings.	i, ii, iii, iv
	The number of single-ended I/Os for the CS81 package for AGL030 was updated to 66 in the "I/Os Per Package1" table.	ii
	The "Power Conservation Techniques" section was updated to recommend that unused I/O signals be left floating.	2-51
Advance v0.3 (August 2007)	In Table 1 • IGLOO Product Family, the CS81 package was added for AGL030. The CS196 was replaced by the CS121 for AGL060. Table note 3 was moved to the specific packages to which it applies for AGL060: QN132 and FG144.	i
	The CS81 and CS121 packages were added to the "I/Os Per Package1" table. The number of single-ended I/Os was removed for the CS196 package in AGL060. Table note 6 was moved to the specific packages to which it applies for AGL060: QN132 and FG144.	ii
	The CS81 and CS121 packages were added to the Temperature Grade Offerings table. The temperature grade offerings were removed for the CS196 package in AGL060. Table note 3 was moved to the specific packages to which it applies for AGL060: QN132 and FG144.	iv
	The CS81 and CS121 packages were added to Table 2-31 • Flash*Freeze Pin Location in IGLOO Family Packages (device-independent).	2-61
Advance v0.2	The words "ambient temperature" were added to the temperature range in the "IGLOO Ordering Information", Temperature Grade Offerings, and "Speed Grade and Temperature Grade Matrix" sections.	iii, iv
	The T_J parameter in Table 3-2 • Recommended Operating Conditions was changed to T_A , ambient temperature, and table notes 4–6 were added.	3-2