

Welcome to E-XFL.COM

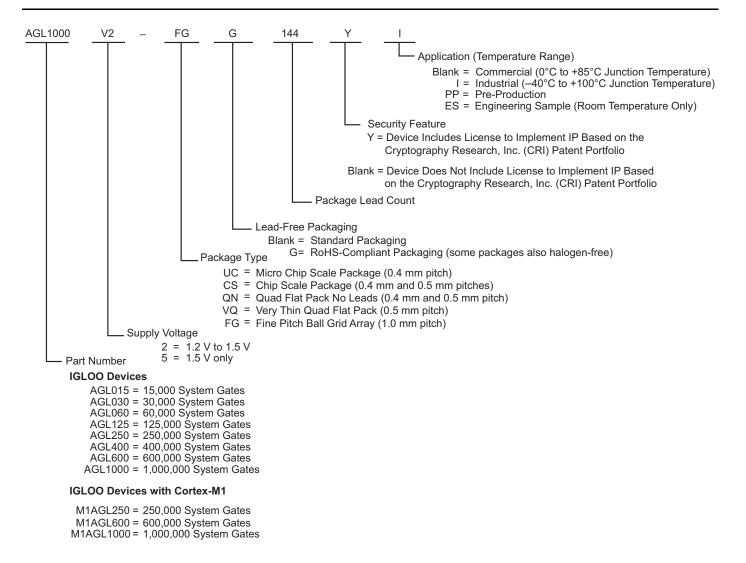
Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details


E·XFI

Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	24576
Total RAM Bits	147456
Number of I/O	177
Number of Gates	1000000
Voltage - Supply	1.14V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 70°C (TA)
Package / Case	256-LBGA
Supplier Device Package	256-FPBGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/m1agl1000v2-fg256

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

IGLOO Ordering Information

Note: Marking Information: IGLOO V2 devices do not have V2 marking, but IGLOO V5 devices are marked accordingly.

Figure 1-5 • I/O States During Programming Window

- 6. Click OK to return to the FlashPoint Programming File Generator window.
- Note: I/O States During programming are saved to the ADB and resulting programming files after completing programming file generation.

	Core Voltage	AGL015	AGL030	AGL060	AGL125	AGL250	AGL400	AGL600	AGL1000	Units
VCCI/VJTAG = 1.2 V (per bank) Typical (25°C)	1.2 V	1.7	1.7	1.7	1.7	1.7	1.7	1.7	1.7	μA
VCCI/VJTAG = 1.5 V (per bank) Typical (25°C)	1.2 V / 1.5 V	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	μA
VCCI/VJTAG = 1.8 V (per bank) Typical (25°C)	1.2 V / 1.5 V	1.9	1.9	1.9	1.9	1.9	1.9	1.9	1.9	μA
VCCI/VJTAG = 2.5 V (per bank) Typical (25°C)	1.2 V / 1.5 V	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	μA
VCCI/VJTAG = 3.3 V (per bank) Typical (25°C)	1.2 V / 1.5 V	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	μA

Table 2-10 • Quiescent Supply Current (IDD) Characteristics, IGLOO Sleep Mode*

Note: $IDD = N_{BANKS} \times ICCI$. Values do not include I/O static contribution, which is shown in Table 2-13 on page 2-10 through Table 2-15 on page 2-11 and Table 2-16 on page 2-11 through Table 2-18 on page 2-12 (PDC6 and PDC7).

	Core Voltage	AGL015	AGL030	Units
Typical (25°C)	1.2 V / 1.5 V	0	0	μΑ

Table 2-12 • Quiescent Supply Current (IDD), No IGLOO Flash*Freeze Mode¹

	Core Voltage	AGL015	AGL030	AGL060	AGL125	AGL250	AGL400	AGL600	AGL1000	Units
ICCA Current ²										
Typical (25°C)	1.2 V	5	6	10	13	18	25	28	42	μA
	1.5 V	14	16	20	28	44	66	82	137	μA
ICCI or IJTAG Current ³										
VCCI/VJTAG = 1.2 V (per bank) Typical (25°C)	1.2 V	1.7	1.7	1.7	1.7	1.7	1.7	1.7	1.7	μA
VCCI/VJTAG = 1.5 V (per bank) Typical (25°C)	1.2 V / 1.5 V	1.8	1.8	1.8	1.8	1.8	1.8	1.8	1.8	μA
VCCI/VJTAG = 1.8 V (per bank) Typical (25°C)	1.2 V / 1.5 V	1.9	1.9	1.9	1.9	1.9	1.9	1.9	1.9	μA
VCCI/VJTAG = 2.5 V (per bank) Typical (25°C)	1.2 V / 1.5 V	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	μA
VCCI/VJTAG = 3.3 V (per bank) Typical (25°C)	1.2 V / 1.5 V	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	μA

Notes:

1. $IDD = N_{BANKS} \times ICCI + ICCA$. JTAG counts as one bank when powered.

2. Includes VCC, VPUMP, and VCCPLL currents.

3. Values do not include I/O static contribution (PDC6 and PDC7).

Table 2-21 • Different Components Contributing to Dynamic Power Consumption in IGLOO Devices For IGLOO V2 Devices, 1.2 V DC Core Supply Voltage

				Device	e Specific I (µW/N		ower		
Parameter	Definition	AGL1000	AGL600	AGL400	AGL250	AGL125	AGL060	AGL030	AGL015
PAC1	Clock contribution of a Global Rib	4.978	3.982	3.892	2.854	2.845	1.751	0.000	0.000
PAC2	Clock contribution of a Global Spine	2.773	2.248	1.765	1.740	1.122	1.261	2.229	2.229
PAC3	Clock contribution of a VersaTile row	0.883	0.924	0.881	0.949	0.939	0.962	0.942	0.942
PAC4	Clock contribution of a VersaTile used as a sequential module	0.096	0.095	0.096	0.095	0.095	0.096	0.094	0.094
PAC5	First contribution of a VersaTile used as a sequential module				0.04	45			
PAC6	Second contribution of a VersaTile used as a sequential module				0.18	86			
PAC7	Contribution of a VersaTile used as a combinatorial module	0.158	0.149	0.158	0.157	0.160	0.170	0.160	0.155
PAC8	Average contribution of a routing net	0.756	0.729	0.753	0.817	0.678	0.692	0.738	0.721
PAC9	Contribution of an I/O input pin (standard-dependent)		See Table	2-13 on pa	ge 2-10 thr	rough Table	e 2-15 on p	age 2-11.	
PAC10	Contribution of an I/O output pin (standard-dependent)		See Table	2-16 on pa	ge 2-11 thr	ough Table	e 2-18 on p	age 2-12.	
PAC11	Average contribution of a RAM block during a read operation				25.0	00			
PAC12	Average contribution of a RAM block during a write operation				30.0	00			
PAC13	Dynamic PLL contribution				2.1	0			

Note: For a different output load, drive strength, or slew rate, Microsemi recommends using the Microsemi power spreadsheet calculator or SmartPower tool in Libero SoC.

Single-Ended I/O Characteristics

3.3 V LVTTL / 3.3 V LVCMOS

Low-Voltage Transistor–Transistor Logic (LVTTL) is a general-purpose standard (EIA/JESD) for 3.3 V applications. It uses an LVTTL input buffer and push-pull output buffer. Furthermore, all LVCMOS 3.3 V software macros comply with LVCMOS 3.3 V wide range as specified in the JESD8a specification.

Table 2-47 • Minimum and Maximum DC Input and Output Levels Applicable to Advanced I/O Banks

3.3 V LVTTL / 3.3 V LVCMOS	v	VIL		н	VOL	VOH	IOL	ЮН	IOSL	IOSH	IIL¹	IIH ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
2 mA	-0.3	0.8	2	3.6	0.4	2.4	2	2	25	27	10	10
4 mA	-0.3	0.8	2	3.6	0.4	2.4	4	4	25	27	10	10
6 mA	-0.3	0.8	2	3.6	0.4	2.4	6	6	51	54	10	10
8 mA	-0.3	0.8	2	3.6	0.4	2.4	8	8	51	54	10	10
12 mA	-0.3	0.8	2	3.6	0.4	2.4	12	12	103	109	10	10
16 mA	-0.3	0.8	2	3.6	0.4	2.4	16	16	132	127	10	10
24 mA	-0.3	0.8	2	3.6	0.4	2.4	24	24	268	181	10	10

Notes:

1. IIL is the input leakage current per I/O pin over recommended operation conditions where -0.3 V < VIN < VIL.

- 2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.
- 3. Currents are measured at 100°C junction temperature and maximum voltage.
- 4. Currents are measured at 85°C junction temperature.
- 5. Software default selection highlighted in gray.

 Table 2-48 •
 Minimum and Maximum DC Input and Output Levels

 Applicable to Standard Plus I/O Banks

3.3 V LVTTL / 3.3 V LVCMOS	v	VIL		н	V _{OL}	VOH	IOL	ЮН	IOSL	IOSH	IIL ¹	IIH ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
2 mA	-0.3	0.8	2	3.6	0.4	2.4	2	2	25	27	10	10
4 mA	-0.3	0.8	2	3.6	0.4	2.4	4	4	25	27	10	10
6 mA	-0.3	0.8	2	3.6	0.4	2.4	6	6	51	54	10	10
8 mA	-0.3	0.8	2	3.6	0.4	2.4	8	8	51	54	10	10
12 mA	-0.3	0.8	2	3.6	0.4	2.4	12	12	103	109	10	10
16 mA	-0.3	0.8	2	3.6	0.4	2.4	16	16	103	109	10	10

Notes:

1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.

- 2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges
- 3. Currents are measured at 100°C junction temperature and maximum voltage.
- 4. Currents are measured at 85°C junction temperature.
- 5. Software default selection highlighted in gray.

Timing Characteristics

Applies to 1.5 V DC Core Voltage

Table 2-67 • 3.3 V LVCMOS Wide Range Low Slew – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.7 V
Applicable to Advanced Banks

Drive Strength	Equivalent Software Default Drive Strength Option ¹	Speed Grade	t _{dout}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{ZHS}	Units
100 µA	2 mA	Std.	0.97	6.61	0.18	1.19	0.66	6.63	5.63	3.15	2.98	10.22	9.23	ns
100 µA	4 mA	Std.	0.97	6.61	0.18	1.19	0.66	6.63	5.63	3.15	2.98	10.22	9.23	ns
100 µA	6 mA	Std.	0.97	5.49	0.18	1.19	0.66	5.51	4.84	3.54	3.66	9.10	8.44	ns
100 µA	8 mA	Std.	0.97	5.49	0.18	1.19	0.66	5.51	4.84	3.54	3.66	9.10	8.44	ns
100 µA	12 mA	Std.	0.97	4.69	0.18	1.19	0.66	4.71	4.25	3.80	4.10	8.31	7.85	ns
100 µA	16 mA	Std.	0.97	4.46	0.18	1.19	0.66	4.48	4.11	3.86	4.21	8.07	7.71	ns
100 µA	24 mA	Std.	0.97	4.34	0.18	1.19	0.66	4.36	4.14	3.93	4.64	7.95	7.74	ns

Notes:

1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ± 100 μA. Drive strengths displayed in software are supported for normal range only. For a detailed I/V curve, refer to the IBIS models.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

 Table 2-68 •
 3.3 V LVCMOS Wide Range High Slew – Applies to 1.5 V DC Core Voltage

 Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.7 V

 Applicable to Advanced Banks

Drive Strength	Equivalent Software Default Drive Strength Option ¹	Speed Grade	t _{dout}	t _{DP}	t _{DIN}	t _{PY}	t _{eout}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{ZHS}	Units
100 µA	2 mA	Std.	0.97	3.92	0.18	1.19	0.66	3.94	3.10	3.16	3.17	7.54	6.70	ns
100 µA	4 mA	Std.	0.97	3.92	0.18	1.19	0.66	3.94	3.10	3.16	3.17	7.54	6.70	ns
100 µA	6 mA	Std.	0.97	3.28	0.18	1.19	0.66	3.30	2.54	3.54	3.86	6.90	6.14	ns
100 µA	8 mA	Std.	0.97	3.28	0.18	1.19	0.66	3.30	2.54	3.54	3.86	6.90	6.14	ns
100 µA	12 mA	Std.	0.97	2.93	0.18	1.19	0.66	2.95	2.27	3.81	4.30	6.54	5.87	ns
100 µA	16 mA	Std.	0.97	2.87	0.18	1.19	0.66	2.89	2.22	3.86	4.41	6.49	5.82	ns
100 µA	24 mA	Std.	0.97	2.90	0.18	1.19	0.66	2.92	2.16	3.94	4.86	6.51	5.75	ns

Notes:

1. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

2. Software default selection highlighted in gray.

3. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ± 100 μA. Drive strengths displayed in software are supported for normal range only. For a detailed I/V curve, refer to the IBIS models.

1.2 V DC Core Voltage

Table 2-145 • 3.3 V PCI/PCI-X

```
Commercial-Case Conditions: T_J = 70^{\circ}C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 3.0 V
Applicable to Advanced I/O Banks
```

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
Std.	1.55	2.91	0.25	0.86	1.10	2.95	2.29	3.25	3.93	8.74	8.08	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.

Table 2-146 • 3.3 V PCI/PCI-X

Commercial-Case Conditions: $T_J = 70^{\circ}$ C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 3.0 V Applicable to Standard Plus I/O Banks

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
Std.	1.55	2.53	0.25	0.85	1.10	2.57	1.98	2.93	3.64	8.35	7.76	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.

Differential I/O Characteristics

Physical Implementation

Configuration of the I/O modules as a differential pair is handled by Microsemi Designer software when the user instantiates a differential I/O macro in the design.

Differential I/Os can also be used in conjunction with the embedded Input Register (InReg), Output Register (OutReg), Enable Register (EnReg), and Double Data Rate (DDR). However, there is no support for bidirectional I/Os or tristates with the LVPECL standards.

LVDS

Low-Voltage Differential Signaling (ANSI/TIA/EIA-644) is a high-speed, differential I/O standard. It requires that one data bit be carried through two signal lines, so two pins are needed. It also requires external resistor termination.

The full implementation of the LVDS transmitter and receiver is shown in an example in Figure 2-13. The building blocks of the LVDS transmitter-receiver are one transmitter macro, one receiver macro, three board resistors at the transmitter end, and one resistor at the receiver end. The values for the three driver resistors are different from those used in the LVPECL implementation because the output standard specifications are different.

Along with LVDS I/O, IGLOO also supports Bus LVDS structure and Multipoint LVDS (M-LVDS) configuration (up to 40 nodes).

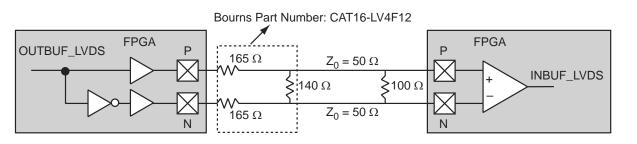
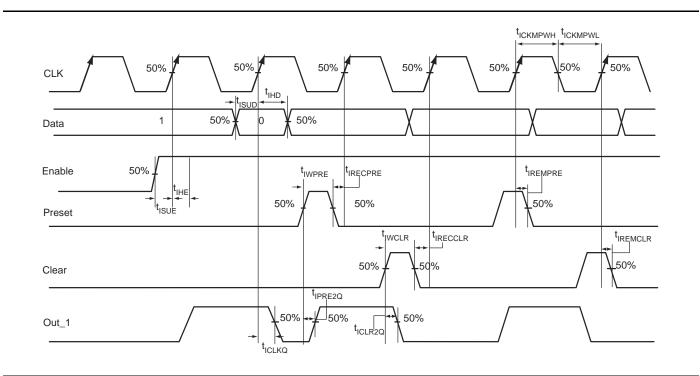



Figure 2-13 • LVDS Circuit Diagram and Board-Level Implementation

Input Register

Figure 2-18 • Input Register Timing Diagram

Timing Characteristics

1.5 V DC Core Voltage

Table 2-157 • Input Data Register Propagation DelaysCommercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V

Parameter	Description	Std.	Units
t _{ICLKQ}	Clock-to-Q of the Input Data Register		ns
t _{ISUD}	Data Setup Time for the Input Data Register	0.47	ns
t _{IHD}	Data Hold Time for the Input Data Register	0.00	ns
t _{ISUE}	Enable Setup Time for the Input Data Register	0.67	ns
t _{IHE}	Enable Hold Time for the Input Data Register	0.00	ns
t _{ICLR2Q}	Asynchronous Clear-to-Q of the Input Data Register	0.79	ns
t _{IPRE2Q}	Asynchronous Preset-to-Q of the Input Data Register	0.79	ns
t _{IREMCLR}	Asynchronous Clear Removal Time for the Input Data Register		ns
t _{IRECCLR}	Asynchronous Clear Recovery Time for the Input Data Register		ns
t _{IREMPRE}	Asynchronous Preset Removal Time for the Input Data Register		ns
t _{IRECPRE}	Asynchronous Preset Recovery Time for the Input Data Register	0.24	ns
t _{IWCLR}	Asynchronous Clear Minimum Pulse Width for the Input Data Register		ns
t _{IWPRE}	Asynchronous Preset Minimum Pulse Width for the Input Data Register		ns
t _{ICKMPWH}	Clock Minimum Pulse Width High for the Input Data Register		ns
t _{ICKMPWL}	Clock Minimum Pulse Width Low for the Input Data Register	0.28	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

Timing Characteristics

1.5 V DC Core Voltage

Table 2-159 • Output Data Register Propagation DelaysCommercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V

Parameter	Description	Std.	Units
t _{OCLKQ}	Clock-to-Q of the Output Data Register	1.00	ns
tosud	Data Setup Time for the Output Data Register	0.51	ns
t _{OHD}	Data Hold Time for the Output Data Register	0.00	ns
t _{OSUE}	Enable Setup Time for the Output Data Register	0.70	ns
t _{OHE}	Enable Hold Time for the Output Data Register	0.00	ns
t _{OCLR2Q}	Asynchronous Clear-to-Q of the Output Data Register	1.34	ns
t _{OPRE2Q}	Asynchronous Preset-to-Q of the Output Data Register	1.34	ns
t _{OREMCLR}	Asynchronous Clear Removal Time for the Output Data Register	0.00	ns
t _{ORECCLR}	Asynchronous Clear Recovery Time for the Output Data Register		ns
t _{OREMPRE}	Asynchronous Preset Removal Time for the Output Data Register		ns
t _{ORECPRE}	Asynchronous Preset Recovery Time for the Output Data Register	0.24	ns
tOWCLR	Asynchronous Clear Minimum Pulse Width for the Output Data Register	0.19	ns
t _{OWPRE}	Asynchronous Preset Minimum Pulse Width for the Output Data Register	0.19	ns
t _{OCKMPWH}	Clock Minimum Pulse Width High for the Output Data Register		ns
t _{OCKMPWL}	Clock Minimum Pulse Width Low for the Output Data Register	0.28	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

1.2 V DC Core Voltage

Table 2-160 • Output Data Register Propagation Delays Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V

Parameter	Description	Std.	Units
t _{OCLKQ}	Clock-to-Q of the Output Data Register		ns
t _{OSUD}	Data Setup Time for the Output Data Register	1.15	ns
t _{OHD}	Data Hold Time for the Output Data Register	0.00	ns
t _{OSUE}	Enable Setup Time for the Output Data Register	1.11	ns
t _{OHE}	Enable Hold Time for the Output Data Register	0.00	ns
t _{OCLR2Q}	Asynchronous Clear-to-Q of the Output Data Register	1.96	ns
t _{OPRE2Q}	Asynchronous Preset-to-Q of the Output Data Register		ns
t _{OREMCLR}	Asynchronous Clear Removal Time for the Output Data Register		ns
t _{ORECCLR}	Asynchronous Clear Recovery Time for the Output Data Register		ns
t _{OREMPRE}	Asynchronous Preset Removal Time for the Output Data Register		ns
t _{ORECPRE}	Asynchronous Preset Recovery Time for the Output Data Register	0.24	ns
t _{OWCLR}	Asynchronous Clear Minimum Pulse Width for the Output Data Register	0.19	ns
t _{OWPRE}	Asynchronous Preset Minimum Pulse Width for the Output Data Register		ns
t _{OCKMPWH}	Clock Minimum Pulse Width High for the Output Data Register		ns
t _{OCKMPWL}	Clock Minimum Pulse Width Low for the Output Data Register	0.28	ns
00 WE			

Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.

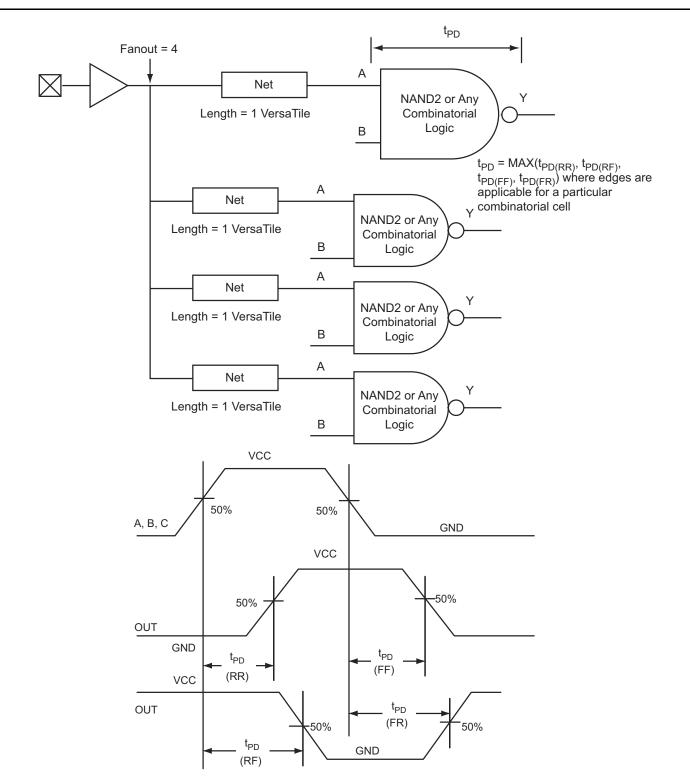


Figure 2-26 • Timing Model and Waveforms

Table 2-179 • AGL600 Global Resource

Commercial-Case Conditions: T_J = 70°C, VCC = 1.425 V

		S	Std.	
Parameter	Description	Min. ¹	Max. ²	Units
t _{RCKL}	Input Low Delay for Global Clock	1.48	1.82	ns
t _{RCKH}	Input High Delay for Global Clock	1.52	1.94	ns
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock			ns
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock 1.15			ns
t _{RCKSW}	Maximum Skew for Global Clock 0.42		ns	

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

Table 2-180 • AGL1000 Global Resource

Commercial-Case Conditions: T_J = 70°C, VCC = 1.425 V

		Std.		
Parameter	Description	Min. ¹ Max. ²		Units
t _{RCKL}	Input Low Delay for Global Clock	1.55	1.89	ns
t _{RCKH}	Input High Delay for Global Clock		2.02	ns
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock			ns
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock			ns
t _{RCKSW}	Maximum Skew for Global Clock		0.42	ns

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

Table 2-187 • AGL600 Global Resource

Commercial-Case Conditions: T_J = 70°C, VCC = 1.14 V

		S	Std.	
Parameter	Description	Min. ¹	Max. ²	Units
t _{RCKL}	Input Low Delay for Global Clock	2.22	2.67	ns
t _{RCKH}	Input High Delay for Global Clock	2.32	2.93	ns
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock			ns
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock 1.65			ns
t _{RCKSW}	Maximum Skew for Global Clock 0.61		0.61	ns

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

Table 2-188 • AGL1000 Global Resource

Commercial-Case Conditions: T_J = 70°C, VCC = 1.14 V

		Std.		
Parameter	Description	Min. ¹ Max. ²		Units
t _{RCKL}	Input Low Delay for Global Clock	2.31	2.76	ns
t _{RCKH}	Input High Delay for Global Clock		3.03	ns
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock			ns
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock			ns
t _{RCKSW}	Maximum Skew for Global Clock		0.61	ns

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

Embedded SRAM and FIFO Characteristics

SRAM

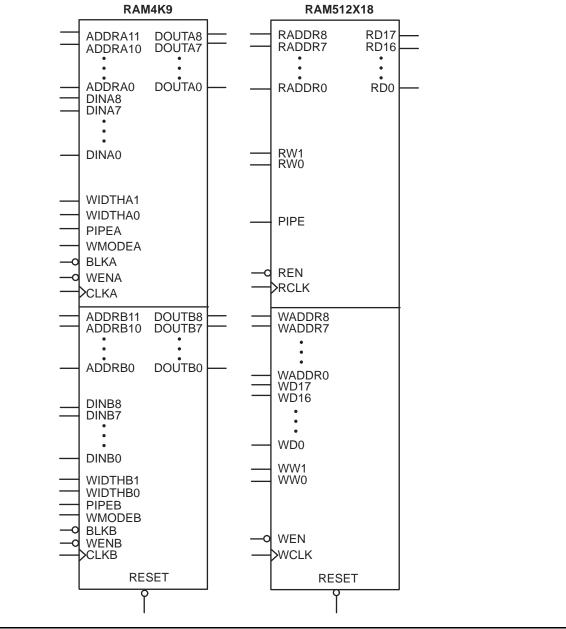
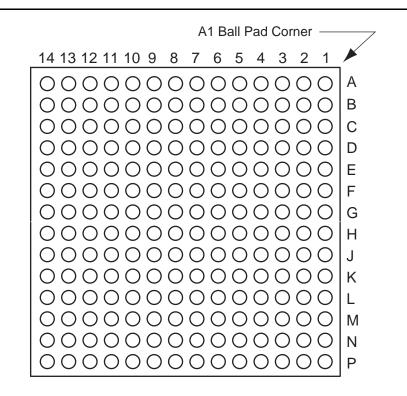



Figure 2-31 • RAM Models

Note: This is the bottom view of the package.

Note

For more information on package drawings, see PD3068: Package Mechanical Drawings.

	CS281) [CS281
Pin Number AGL600 Function		Pin Number	AGL600 Function
R15	IO94RSB2	V10	IO112RSB2
R15	GDA1/IO88PPB1	V10 V11	IO112R3B2
R10	GDB0/IO87NPB1	V11 V12	
_			IO108RSB2
R19	GDC0/IO86NPB1	V13	IO102RSB2
T1	IO148PPB3	V14	GND
T2	GEC0/IO146NPB3	V15	IO93RSB2
T4	GEB0/IO145NPB3	V16	GDA2/IO89RSB2
T5	IO132RSB2	V17	TDI
T6	IO136RSB2	V18	VCCIB2
T7	IO130RSB2	V19	TDO
T8	IO126RSB2	W1	GND
Т9	IO120RSB2	W2	FF/GEB2/IO142RSE
T10	GND	W3	IO139RSB2
T11	IO113RSB2	W4	IO137RSB2
T12	IO104RSB2	W5	IO134RSB2
T13	IO101RSB2	W6	IO133RSB2
T14	IO98RSB2	W7	IO128RSB2
T15	GDC2/IO91RSB2	W8	IO124RSB2
T16	TMS	W9	IO119RSB2
T18	VJTAG	W10	VCCIB2
T19	GDB1/IO87PPB1	W11	IO109RSB2
U1	IO147PDB3	W12	IO107RSB2
U2	GEA1/IO144PPB3	W13	IO105RSB2
U6	IO131RSB2	W14	IO100RSB2
U14	IO99RSB2	W15	IO96RSB2
U18	TRST	W16	IO92RSB2
U19	GDA0/IO88NPB1	W17	GDB2/IO90RSB2
V1	IO147NDB3	W18	ТСК
V2	VCCIB3	W19	GND
V3	GEC2/IO141RSB2		L
V4	IO140RSB2	1	
V5	IO135RSB2	1	
V6	GND	1	
V7	IO125RSB2	1	
V8	IO122RSB2		

V9

IO116RSB2

Microsemi

Package Pin Assignments

QN132				
Pin Number	AGL060 Function			
C16	IO60RSB1			
C17	IO57RSB1			
C18	NC			
C19	ТСК			
C20	VMV1			
C21	VPUMP			
C22	VJTAG			
C23	VCCIB0			
C24	NC			
C25	NC			
C26	GCA1/IO42RSB0			
C27	GCC0/IO39RSB0			
C28	VCCIB0			
C29	IO29RSB0			
C30	GNDQ			
C31	GBA1/IO27RSB0			
C32	GBB0/IO24RSB0			
C33	VCC			
C34	IO19RSB0			
C35	IO16RSB0			
C36	IO13RSB0			
C37	GAC1/IO10RSB0			
C38	NC			
C39	GAA0/IO05RSB0			
C40	VMV0			
D1	GND			
D2	GND			
D3	GND			
D4	GND			

Microsemi

Package Pin Assignments

VQ100			VQ100		VQ100
Pin Number	AGL125 Function	Pin Number	AGL125 Function	Pin Number	AGL125 Function
1	GND	36	IO93RSB1	72	IO42RSB0
2	GAA2/IO67RSB1	37	VCC	73	GBA2/IO41RSB0
3	IO68RSB1	38	GND	74	VMV0
4	GAB2/IO69RSB1	39	VCCIB1	75	GNDQ
5	IO132RSB1	40	IO87RSB1	76	GBA1/IO40RSB0
6	GAC2/IO131RSB1	41	IO84RSB1	77	GBA0/IO39RSB0
7	IO130RSB1	42	IO81RSB1	78	GBB1/IO38RSB0
8	IO129RSB1	43	IO75RSB1	79	GBB0/IO37RSB0
9	GND	44	GDC2/IO72RSB1	80	GBC1/IO36RSB0
10	GFB1/IO124RSB1	45	GDB2/IO71RSB1	81	GBC0/IO35RSB0
11	GFB0/IO123RSB1	46	GDA2/IO70RSB1	82	IO32RSB0
12	VCOMPLF	47	TCK	83	IO28RSB0
13	GFA0/IO122RSB1	48	TDI	84	IO25RSB0
14	VCCPLF	49	TMS	85	IO22RSB0
15	GFA1/IO121RSB1	50	VMV1	86	IO19RSB0
16	GFA2/IO120RSB1	51	GND	87	VCCIB0
17	VCC	52	VPUMP	88	GND
18	VCCIB1	53	NC	89	VCC
19	GEC0/IO111RSB1	54	TDO	90	IO15RSB0
20	GEB1/IO110RSB1	55	TRST	91	IO13RSB0
21	GEB0/IO109RSB1	56	VJTAG	92	IO11RSB0
22	GEA1/IO108RSB1	57	GDA1/IO65RSB0	93	IO09RSB0
23	GEA0/IO107RSB1	58	GDC0/IO62RSB0	94	IO07RSB0
24	VMV1	59	GDC1/IO61RSB0	95	GAC1/IO05RSB0
25	GNDQ	60	GCC2/IO59RSB0	96	GAC0/IO04RSB0
26	GEA2/IO106RSB1	61	GCB2/IO58RSB0	97	GAB1/IO03RSB0
27	FF/GEB2/IO105RSB	62	GCA0/IO56RSB0	98	GAB0/IO02RSB0
	1	63	GCA1/IO55RSB0	99	GAA1/IO01RSB0
28	GEC2/IO104RSB1	64	GCC0/IO52RSB0	100	GAA0/IO00RSB0
29	IO102RSB1	65	GCC1/IO51RSB0		
30	IO100RSB1	66	VCCIB0		
31	IO99RSB1	67	GND		
32	IO97RSB1	68	VCC		
33	IO96RSB1	69	IO47RSB0		
34	IO95RSB1	70	GBC2/IO45RSB0		
35	IO94RSB1	71	GBB2/IO43RSB0		

Package Pin Assignments

FG256				
Pin Number	AGL1000 Function			
R5	IO168RSB2			
R6	IO163RSB2			
R7	IO157RSB2			
R8	IO149RSB2			
R9	IO143RSB2			
R10	IO138RSB2			
R11	IO131RSB2			
R12	IO125RSB2			
R13	GDB2/IO115RSB2			
R14	TDI			
R15	GNDQ			
R16	TDO			
T1	GND			
T2	IO183RSB2			
Т3	FF/GEB2/IO186RSB2			
T4	IO172RSB2			
T5	IO170RSB2			
Т6	IO164RSB2			
T7	IO158RSB2			
Т8	IO153RSB2			
Т9	IO142RSB2			
T10	IO135RSB2			
T11	IO130RSB2			
T12	GDC2/IO116RSB2			
T13	IO120RSB2			
T14	GDA2/IO114RSB2			
T15	TMS			
T16	GND			

FG484			
Pin Number	AGL1000 Function		
U1	IO195PDB3		
U2	IO195NDB3		
U3	IO194NPB3		
U4	GEB1/IO189PDB3		
U5	GEB0/IO189NDB3		
U6	VMV2		
U7	IO179RSB2		
U8	IO171RSB2		
U9	IO165RSB2		
U10	IO159RSB2		
U11	IO151RSB2		
U12	IO137RSB2		
U13	IO134RSB2		
U14	IO128RSB2		
U15	VMV1		
U16	TCK		
U17	VPUMP		
U18	TRST		
U19	GDA0/IO113NDB1		
U20	NC		
U21	IO108NDB1		
U22	IO109PDB1		
V1	NC		
V2	NC		
V3	GND		
V4	GEA1/IO188PDB3		
V5	GEA0/IO188NDB3		
V6	IO184RSB2		
V7	GEC2/IO185RSB2		
V8	IO168RSB2		
V9	IO163RSB2		
V10	IO157RSB2		
V11	IO149RSB2		
V12	IO143RSB2		
V13	IO138RSB2		
V14	IO131RSB2		

Microsemi

IGLOO Low Power Flash FPGAs

Revision / Version	Changes	Page
Revision 3 (Feb 2008) Product Brief rev. 2	This document was updated to include AGL015 device information. QN68 is a new package offered in the AGL015. The following sections were updated: "Features and Benefits" "IGLOO Ordering Information" "Temperature Grade Offerings" "IGLOO Devices" Product Family Table Table 1 • IGLOO FPGAs Package Sizes Dimensions "AGL015 and AGL030" note The "Temperature Grade Offerings" table was updated to include M1AGL600. In the "IGLOO Ordering Information" table, the QN package measurements were updated to include both 0.4 mm and 0.5 mm.	N/A IV III
	In the "General Description" section, the number of I/Os was updated from 288 to 300.	1-1
Packaging v1.2	The "QN68" section is new.	4-25
Revision 2 (Jan 2008) Packaging v1.1	The "CS196" package and pin table was added for AGL125.	4-10
Revision 1 (Jan 2008) Product Brief rev. 1	The "Low Power" section was updated to change the description of low power active FPGA operation to "from 12 μ W" from "from 25 μ W." The same update was made in the "General Description" section and the "Flash*Freeze Technology" section.	l, 1-1
Revision 0 (Jan 2008)	This document was previously in datasheet Advance v0.7. As a result of moving to the handbook format, Actel has restarted the numbering.	N/A
Advance v0.7 (December 2007)	Table 1 • IGLOO Product Family, the "I/Os Per Package1" table, and the Temperature Grade Offerings table were updated to reflect the following: CS196 is now supported for AGL250; device/package support for QN132 is to be determined for AGL250; the CS281 package was added for AGL600 and AGL1000.	i, ii, iv
	Table 2 • IGLOO FPGAs Package Sizes Dimensions is new, and package sizes were removed from the "I/Os Per Package1" table.	ii
	The "I/Os Per Package1"table was updated to reflect 77 instead of 79 single- ended I/Os for the VG100 package for AGL030.	ii
	The "Timing Model" was updated to be consistent with the revised timing numbers.	2-20
	In Table 2-27 • Summary of Maximum and Minimum DC Input and Output Levels Applicable to Commercial and Industrial Conditions—Software Default Settings, T_J was changed to T_A in notes 1 and 2.	2-26
	All AC Loading figures for single-ended I/O standards were changed from Datapaths at 35 pF to 5 pF.	N/A
	The "1.2 V LVCMOS (JESD8-12A)" section is new.	2-74
	This document was previously in datasheet Advance v0.7. As a result of moving to the handbook format, Actel has restarted the version numbers. The new version number is Advance v0.1.	N/A
	Table 2-4 • IGLOO CCC/PLL Specification and Table 2-5 • IGLOO CCC/PLL Specification were updated.	2-19, 2-20