

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

E·XFI

Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	24576
Total RAM Bits	147456
Number of I/O	177
Number of Gates	1000000
Voltage - Supply	1.14V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 85°C (TA)
Package / Case	256-LBGA
Supplier Device Package	256-FPBGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/m1agl1000v2-fg256i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Wide Range I/O Support

IGLOO devices support JEDEC-defined wide range I/O operation. IGLOO devices support both the JESD8-B specification, covering 3 V and 3.3 V supplies, for an effective operating range of 2.7 V to 3.6 V, and JESD8-12 with its 1.2 V nominal, supporting an effective operating range of 1.14 V to 1.575 V.

Wider I/O range means designers can eliminate power supplies or power conditioning components from the board or move to less costly components with greater tolerances. Wide range eases I/O bank management and provides enhanced protection from system voltage spikes, while providing the flexibility to easily run custom voltage applications.

Specifying I/O States During Programming

You can modify the I/O states during programming in FlashPro. In FlashPro, this feature is supported for PDB files generated from Designer v8.5 or greater. See the *FlashPro User Guide* for more information.

- Note: PDB files generated from Designer v8.1 to Designer v8.4 (including all service packs) have limited display of Pin Numbers only.
 - 1. Load a PDB from the FlashPro GUI. You must have a PDB loaded to modify the I/O states during programming.
 - 2. From the FlashPro GUI, click PDB Configuration. A FlashPoint Programming File Generator window appears.
 - 3. Click the Specify I/O States During Programming button to display the Specify I/O States During Programming dialog box.
 - 4. Sort the pins as desired by clicking any of the column headers to sort the entries by that header. Select the I/Os you wish to modify (Figure 1-5 on page 1-9).
 - 5. Set the I/O Output State. You can set Basic I/O settings if you want to use the default I/O settings for your pins, or use Custom I/O settings to customize the settings for each pin. Basic I/O state settings:
 - 1 I/O is set to drive out logic High
 - 0 I/O is set to drive out logic Low

Last Known State – I/O is set to the last value that was driven out prior to entering the programming mode, and then held at that value during programming

Z -Tri-State: I/O is tristated

Power Consumption of Various Internal Resources

 Table 2-19 • Different Components Contributing to Dynamic Power Consumption in IGLOO Devices

 For IGLOO V2 or V5 Devices, 1.5 V DC Core Supply Voltage

				Devic	e Specific (μW/l		ower		
Parameter	Definition	AGL1000	AGL600	AGL400	AGL250	AGL125	AGL060	AGL030	AGL015
PAC1	Clock contribution of a Global Rib	7.778	6.221	6.082	4.460	4.446	2.736	0.000	0.000
PAC2	Clock contribution of a Global Spine	4.334	3.512	2.759	2.718	1.753	1.971	3.483	3.483
PAC3	Clock contribution of a VersaTile row	1.379	1.445	1.377	1.483	1.467	1.503	1.472	1.472
PAC4	Clock contribution of a VersaTile used as a sequential module	0.151	0.149	0.151	0.149	0.149	0.151	0.146	0.146
PAC5	First contribution of a VersaTile used as a sequential module	0.057							
PAC6	Second contribution of a VersaTile used as a sequential module	0.207							
PAC7	Contribution of a VersaTile used as a combinatorial module	0.276	0.262	0.279	0.277	0.280	0.300	0.281	0.273
PAC8	Average contribution of a routing net	1.161	1.147	1.193	1.273	1.076	1.088	1.134	1.153
PAC9	Contribution of an I/O input pin (standard-dependent)		See Table	2-13 on pa	age 2-10 th	rough Table	e 2-15 on p	age 2-11.	
PAC10	Contribution of an I/O output pin (standard-dependent)		See Table	2-16 on pa	age 2-11 th	rough Table	e 2-18 on p	age 2-12.	
PAC11	Average contribution of a RAM block during a read operation				25.	00			
PAC12	Average contribution of a RAM block during a write operation				30.	00			
PAC13	Dynamic PLL contribution				2.7	70			

Note: For a different output load, drive strength, or slew rate, Microsemi recommends using the Microsemi power spreadsheet calculator or SmartPower tool in Libero SoC.

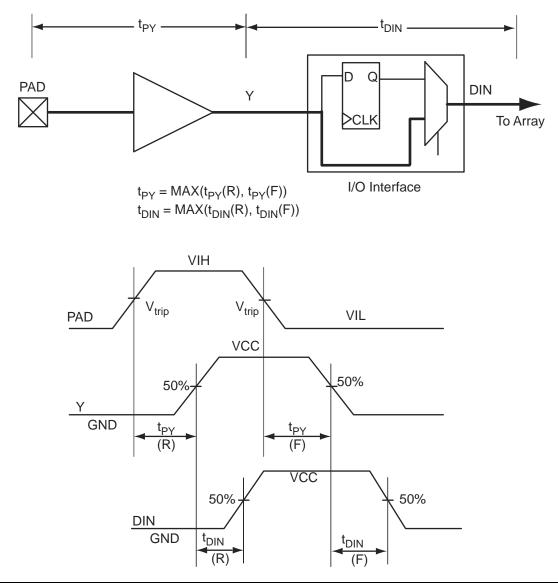


Figure 2-4 • Input Buffer Timing Model and Delays (example)

Applies to 1.2 V DC Core Voltage

Table 2-73 • 3.3 V LVCMOS Wide Range Low Slew – Applies to 1.2 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 2.7 V
Applicable to Advanced Banks

Drive Strength	Equivalent Software Default Drive Strength Option ¹	Speed Grade	t _{dout}	t _{DP}	t _{DIN}	t _{PY}	t _{eout}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{ZHS}	Units
100 µA	2 mA	Std.	1.55	7.52	0.26	1.32	1.10	7.52	6.38	3.84	4.02	13.31	12.16	ns
100 µA	4 mA	Std.	1.55	7.52	0.26	1.32	1.10	7.52	6.38	3.84	4.02	13.31	12.16	ns
100 µA	6 mA	Std.	1.55	6.37	0.26	1.32	1.10	6.37	5.57	4.23	4.73	12.16	11.35	ns
100 µA	8 mA	Std.	1.55	6.37	0.26	1.32	1.10	6.37	5.57	4.23	4.73	12.16	11.35	ns
100 µA	12 mA	Std.	1.55	5.55	0.26	1.32	1.10	5.55	4.96	4.50	5.18	11.34	10.75	ns
100 µA	16 mA	Std.	1.55	5.32	0.26	1.32	1.10	5.32	4.82	4.56	5.29	11.10	10.61	ns
100 µA	24 mA	Std.	1.55	5.19	0.26	1.32	1.10	5.19	4.85	4.63	5.74	10.98	10.63	ns

Notes:

1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ± 100 μA. Drive strengths displayed in software are supported for normal range only. For a detailed I/V curve, refer to the IBIS models.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

Table 2-74 • 3.3 V LVCMOS Wide Range High Slew – Applies to 1.2 V DC Core VoltageCommercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 2.7Applicable to Advanced Banks

Drive Strength	Equivalent Software Default Drive Strength Option ¹	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{eout}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{ZHS}	Units
100 µA	2 mA	Std.	1.55	4.75	0.26	1.32	1.10	4.75	3.77	3.84	4.27	10.54	9.56	ns
100 µA	4 mA	Std.	1.55	4.75	0.26	1.32	1.10	4.75	3.77	3.84	4.27	10.54	9.56	ns
100 µA	6 mA	Std.	1.55	4.10	0.26	1.32	1.10	4.10	3.19	4.24	4.98	9.88	8.98	ns
100 µA	8 mA	Std.	1.55	4.10	0.26	1.32	1.10	4.10	3.19	4.24	4.98	9.88	8.98	ns
100 µA	12 mA	Std.	1.55	3.73	0.26	1.32	1.10	3.73	2.91	4.51	5.43	9.52	8.69	ns
100 µA	16 mA	Std.	1.55	3.67	0.26	1.32	1.10	3.67	2.85	4.57	5.55	9.46	8.64	ns
100 µA	24 mA	Std.	1.55	3.70	0.26	1.32	1.10	3.70	2.79	4.65	6.01	9.49	8.58	ns

Notes:

1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ± 100 μA. Drive strengths displayed in software are supported for normal range only. For a detailed I/V curve, refer to the IBIS models.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

3. Software default selection highlighted in gray.

Applies to 1.2 V Core Voltage

Table 2-89 • 2.5 V LVCMOS Low Slew – Applies to 1.2 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 2.3 V
Applicable to Advanced I/O Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
2 mA	Std.	1.55	5.59	0.26	1.20	1.10	5.68	5.14	2.82	2.80	11.47	10.93	ns
4 mA	Std.	1.55	5.59	0.26	1.20	1.10	5.68	5.14	2.82	2.80	11.47	10.93	ns
6 mA	Std.	1.55	4.76	0.26	1.20	1.10	4.84	4.47	3.10	3.33	10.62	10.26	ns
8 mA	Std.	1.55	4.76	0.26	1.20	1.10	4.84	4.47	3.10	3.33	10.62	10.26	ns
12 mA	Std.	1.55	4.17	0.26	1.20	1.10	4.23	3.99	3.30	3.67	10.02	9.77	ns
16 mA	Std.	1.55	3.98	0.26	1.20	1.10	4.04	3.88	3.34	3.76	9.83	9.66	ns
24 mA	Std.	1.55	3.90	0.26	1.20	1.10	3.96	3.90	3.40	4.09	9.75	9.68	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.

Table 2-90 • 2.5 V LVCMOS High Slew – Applies to 1.2 V DC Core Voltage

Commercial-Case Conditions: $T_J = 70^{\circ}$ C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 2.3 V Applicable to Advanced I/O Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{ZHS}	Units
2 mA	Std.	1.55	3.33	0.26	1.20	1.10	3.38	3.09	2.82	2.91	9.17	8.88	ns
4 mA	Std.	1.55	3.33	0.26	1.20	1.10	3.38	3.09	2.82	2.91	9.17	8.88	ns
6 mA	Std.	1.55	2.89	0.26	1.20	1.10	2.93	2.56	3.10	3.45	8.72	8.34	ns
8 mA	Std.	1.55	2.89	0.26	1.20	1.10	2.93	2.56	3.10	3.45	8.72	8.34	ns
12 mA	Std.	1.55	2.64	0.26	1.20	1.10	2.67	2.29	3.30	3.79	8.46	8.08	ns
16 mA	Std.	1.55	2.59	0.26	1.20	1.10	2.63	2.24	3.34	3.88	8.41	8.03	ns
24 mA	Std.	1.55	2.60	0.26	1.20	1.10	2.64	2.18	3.40	4.22	8.42	7.97	ns

Notes:

1. Software default selection highlighted in gray.

2. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.

Table 2-91 • 2.5 V LVCMOS Low Slew – Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 2.3 V Applicable to Standard Plus Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{ZHS}	Units
2 mA	Std.	1.55	5.02	0.26	1.19	1.10	5.11	4.60	2.50	2.62	10.89	10.38	ns
4 mA	Std.	1.55	5.02	0.26	1.19	1.10	5.11	4.60	2.50	2.62	10.89	10.38	ns
6 mA	Std.	1.55	4.21	0.26	1.19	1.10	4.27	4.00	2.76	3.10	10.06	9.79	ns
8 mA	Std.	1.55	4.21	0.26	1.19	1.10	4.27	4.00	2.76	3.10	10.06	9.79	ns
12 mA	Std.	1.55	3.66	0.26	1.19	1.10	3.71	3.55	2.94	3.41	9.50	9.34	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.

Table 2-138 • Minimum and Maximum DC Input and Output Levels for LVCMOS 1.2 V Wide Range	
Applicable to Standard Plus I/O Banks	

1.2 V LVCI Wide Rang			VIL	VIH		VOL	VOH	IOL	юн	IOSL	IOSH	IIL ²	IIH ³
Drive Strength	Equivalent Software Default Drive Strength Option ¹	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ⁴	Max. mA ⁴	μA ⁵	μA ⁵
100 µA	2mA	-0.3	0.35 * VCCI	0.65 * VCCI	1.26	0.25 * VCCI	0.75 * VCCI	100	100	20	26	10	10

Notes:

1. The minimum drive strength for the default LVCMOS 1.2 V software configuration when run in wide range is ± 100 μA. The drive strength displayed in software is supported in normal range only. For a detailed I/V curve, refer to the IBIS models.

2. IIL is the input leakage current per I/O pin over recommended operation conditions where -0.3 V < VIN < VIL.

3. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges

4. Currents are measured at 100°C junction temperature and maximum voltage.

5. Currents are measured at 85°C junction temperature.

6. Software default selection highlighted in gray.

Table 2-139 • Minimum and Maximum DC Input and Output Levels for LVCMOS 1.2 V Wide Range Applicable to Standard I/O Banks

1.2 V LVCI Wide Rang			VIL	VIH		VOL	VOH	IOL	юн	IOSL	IOSH	IIL ²	IIH ³
Drive Strength	Equivalent Software Default Drive Strength Option ¹	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ⁴	Max. mA ⁴	μA ⁵	μA ⁵
100 µA	1 mA	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.25 * VCCI	0.75 * VCCI	100	100	20	26	10	10

Notes:

 The minimum drive strength for the default LVCMOS 1.2 V software configuration when run in wide range is ± 100 μA. The drive strength displayed in software is supported in normal range only. For a detailed I/V curve, refer to the IBIS models.

2. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.

3. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges

4. Currents are measured at 100°C junction temperature and maximum voltage.

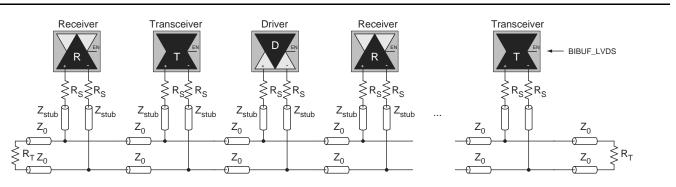
5. Currents are measured at 85°C junction temperature.

6. Software default selection highlighted in gray.

Table 2-140 • 1.2 V LVCMOS Wide Range AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	C _{LOAD} (pF)
0	1.2	0.6	5

Note: *Measuring point = Vtrip. See Table 2-29 on page 2-28 for a complete table of trip points.


Timing Characteristics

Refer to LVCMOS 1.2 V (normal range) "Timing Characteristics" on page 2-75 for worst-case timing.

B-LVDS/M-LVDS

Bus LVDS (B-LVDS) and Multipoint LVDS (M-LVDS) specifications extend the existing LVDS standard to highperformance multipoint bus applications. Multidrop and multipoint bus configurations may contain any combination of drivers, receivers, and transceivers. Microsemi LVDS drivers provide the higher drive current required by B-LVDS and M-LVDS to accommodate the loading. The drivers require series terminations for better signal quality and to control voltage swing. Termination is also required at both ends of the bus since the driver can be located anywhere on the bus. These configurations can be implemented using the TRIBUF_LVDS and BIBUF_LVDS macros along with appropriate terminations. Multipoint designs using Microsemi LVDS macros can achieve up to 200 MHz with a maximum of 20 loads. A sample application is given in Figure 2-14. The input and output buffer delays are available in the LVDS section in Table 2-149 on page 2-81 and Table 2-150 on page 2-81.

Example: For a bus consisting of 20 equidistant loads, the following terminations provide the required differential voltage, in worst-case Industrial operating conditions, at the farthest receiver: $R_S = 60 \Omega$ and $R_T = 70 \Omega$, given $Z_0 = 50 \Omega$ (2") and $Z_{stub} = 50 \Omega$ (~1.5").

LVPECL

Low-Voltage Positive Emitter-Coupled Logic (LVPECL) is another differential I/O standard. It requires that one data bit be carried through two signal lines. Like LVDS, two pins are needed. It also requires external resistor termination.

The full implementation of the LVDS transmitter and receiver is shown in an example in Figure 2-15. The building blocks of the LVPECL transmitter-receiver are one transmitter macro, one receiver macro, three board resistors at the transmitter end, and one resistor at the receiver end. The values for the three driver resistors are different from those used in the LVDS implementation because the output standard specifications are different.

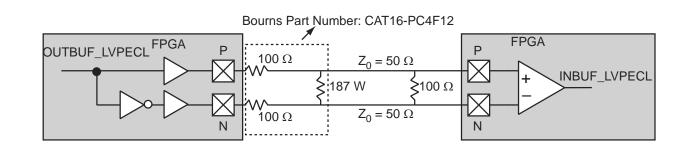


Figure 2-15 • LVPECL Circuit Diagram and Board-Level Implementation

VersaTile Characteristics

VersaTile Specifications as a Combinatorial Module

The IGLOO library offers all combinations of LUT-3 combinatorial functions. In this section, timing characteristics are presented for a sample of the library. For more details, refer to the *IGLOO, Fusion, and ProASIC3 Macro Library Guide*.

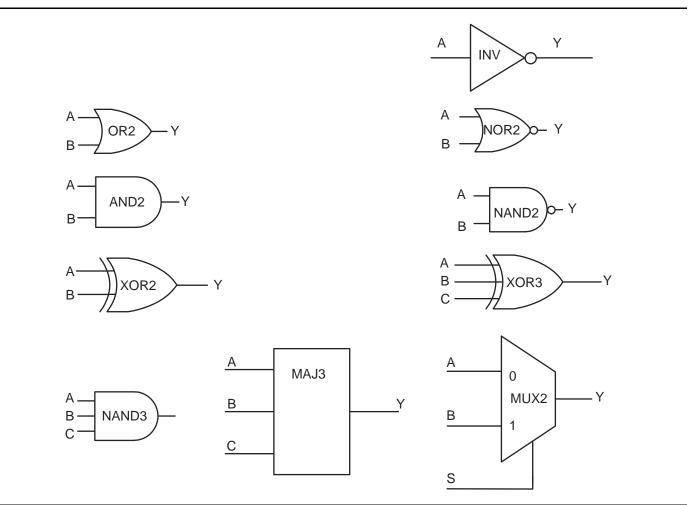


Figure 2-25 • Sample of Combinatorial Cells

Clock Conditioning Circuits

CCC Electrical Specifications

Timing Characteristics

Table 2-189 • IGLOO CCC/PLL Specification

For IGLOO V2 or V5 Devices, 1.5 V DC Core Supply Voltage

Parameter	Min.	Тур.	Max.	Units
Clock Conditioning Circuitry Input Frequency fIN_CCC	1.5		250	MHz
Clock Conditioning Circuitry Output Frequency f _{OUT_CCC}	0.75		250	MHz
Delay Increments in Programmable Delay Blocks ^{1, 2}		360 ³		ps
Number of Programmable Values in Each Programmable Delay Block			32	
Serial Clock (SCLK) for Dynamic PLL ^{4, 5}			100	ns
Input Cycle-to-Cycle Jitter (peak magnitude)			1	ns
Acquisition Time				
LockControl = 0			300	μs
LockControl = 1			6.0	ms
Tracking Jitter ⁶				
LockControl = 0			2.5	ns
LockControl = 1			1.5	ns
Output Duty Cycle	48.5		51.5	%
Delay Range in Block: Programmable Delay 1 ^{1, 2}	1.25		15.65	ns
Delay Range in Block: Programmable Delay 2 ^{1, 2}	0.469		15.65	ns
Delay Range in Block: Fixed Delay ^{1, 2}		3.5		ns
CCC Output Peak-to-Peak Period Jitter F _{CCC_OUT}	Maxim	um Peak-to-	Peak Jitter Da	ta ⁷
	$SSO \geq 4^8$	$SSO \geq 8^8$	$SSO \geq 16^8$	
0.75 MHz to 50 MHz	0.60%	0.80%	1.20%	
50 MHz to 160 MHz	4.00%	6.00%	12.00%	

Notes:

1. This delay is a function of voltage and temperature. See Table 2-6 on page 2-7 and Table 2-7 on page 2-7 for deratings.

2. $T_J = 25^{\circ}C, V_{CC} = 1.5 V$

3. When the CCC/PLL core is generated by Microsemi core generator software, not all delay values of the specified delay increments are available. Refer to the Libero SoC Online Help associated with the core for more information.

4. The AGL030 device does not support a PLL.

5. Maximum value obtained for a Std. speed grade device in Worst-Case Commercial Conditions. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

6. Tracking jitter is defined as the variation in clock edge position of PLL outputs with reference to the PLL input clock edge. Tracking jitter does not measure the variation in PLL output period, which is covered by the period jitter parameter.

7. Measurements done with LVTTL 3.3 V, 8 mA I/O drive strength, and high slew Rate. VCC/VCCPLL = 1.14 V, VQ/PQ/TQ type of packages, 20 pF load.

8. Simultaneously Switching Outputs (SSOs) are outputs that are synchronous to a single clock domain and have clock-to-out times that are within ±200 ps of each other. Switching I/Os are placed outside of the PLL bank. Refer to the "Simultaneously Switching Outputs (SSOs) and Printed Circuit Board Layout" section in the IGLOO FPGA Fabric User Guide.

FIFO

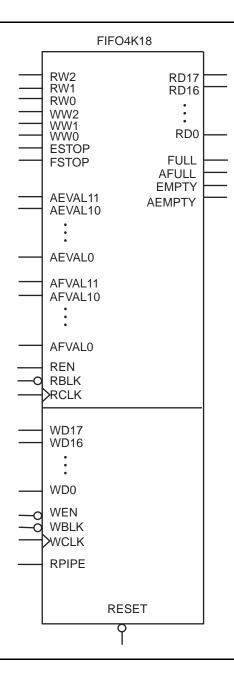
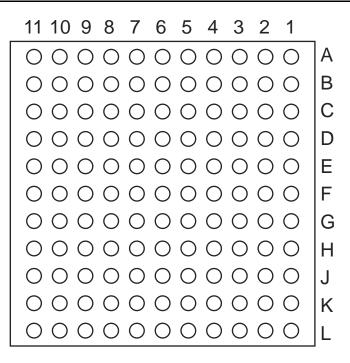


Figure 2-37 • FIFO Model

The Flash*Freeze pin can be used with any single-ended I/O standard supported by the I/O bank in which the pin is located, and input signal levels compatible with the I/O standard selected. The FF pin should be treated as a sensitive asynchronous signal. When defining pin placement and board layout, simultaneously switching outputs (SSOs) and their effects on sensitive asynchronous pins must be considered.

Unused FF or I/O pins are tristated with weak pull-up. This default configuration applies to both Flash*Freeze mode and normal operation mode. No user intervention is required.

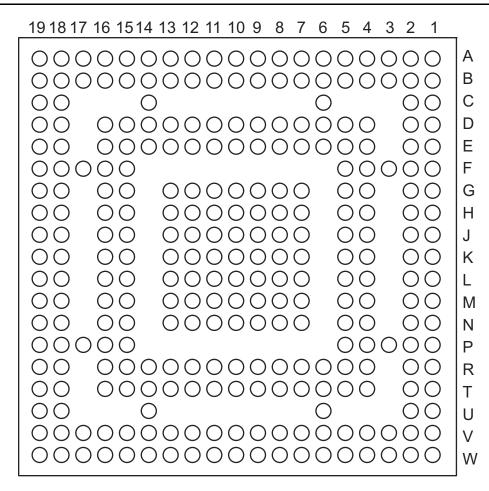
Table 3-1 shows the Flash*Freeze pin location on the available packages for IGLOO a devices. The Flash*Freeze pin location is independent of device, allowing migration to larger or smaller IGLOO devices while maintaining the same pin location on the board. Refer to the "Flash*Freeze Technology and Low Power Modes" chapter of the *IGLOO FPGA Fabric User Guide* for more information on I/O states during Flash*Freeze mode.


Table 3-1 • Flash*Freeze Pin Location in IGLOO Family Packages (device-independent)

IGLOO Packages	Flash*Freeze Pin
CS81/UC81	H2
CS121	J5
CS196	P3
CS281	W2
QN48	14
QN68	18
QN132	B12
VQ100	27
FG144	L3
FG256	Т3
FG484	W6

Package Pin Assignments

CS121


Note: This is the bottom view of the package.

Note

For more information on package drawings, see PD3068: Package Mechanical Drawings.

Package Pin Assignments

CS281

Note: This is the bottom view of the package.

Note

For more information on package drawings, see PD3068: Package Mechanical Drawings.

	QN132	QN132		QN132	
Pin Number	AGL060 Function	Pin Number	AGL060 Function	Pin Number	AGL060 Function
A1	GAB2/IO00RSB1	A37	GBB1/IO25RSB0	B24	GDC0/IO49RSB0
A2	IO93RSB1	A38	GBC0/IO22RSB0	B25	GND
A3	VCCIB1	A39	VCCIB0	B26	NC
A4	GFC1/IO89RSB1	A40	IO21RSB0	B27	GCB2/IO45RSB0
A5	GFB0/IO86RSB1	A41	IO18RSB0	B28	GND
A6	VCCPLF	A42	IO15RSB0	B29	GCB0/IO41RSB0
A7	GFA1/IO84RSB1	A43	IO14RSB0	B30	GCC1/IO38RSB0
A8	GFC2/IO81RSB1	A44	IO11RSB0	B31	GND
A9	IO78RSB1	A45	GAB1/IO08RSB0	B32	GBB2/IO30RSB0
A10	VCC	A46	NC	B33	VMV0
A11	GEB1/IO75RSB1	A47	GAB0/IO07RSB0	B34	GBA0/IO26RSB0
A12	GEA0/IO72RSB1	A48	IO04RSB0	B35	GBC1/IO23RSB0
A13	GEC2/IO69RSB1	B1	IO01RSB1	B36	GND
A14	IO65RSB1	B2	GAC2/IO94RSB1	B37	IO20RSB0
A15	VCC	B3	GND	B38	IO17RSB0
A16	IO64RSB1	B4	GFC0/IO88RSB1	B39	GND
A17	IO63RSB1	B5	VCOMPLF	B40	IO12RSB0
A18	IO62RSB1	B6	GND	B41	GAC0/IO09RSB0
A19	IO61RSB1	B7	GFB2/IO82RSB1	B42	GND
A20	IO58RSB1	B8	IO79RSB1	B43	GAA1/IO06RSB0
A21	GDB2/IO55RSB1	B9	GND	B44	GNDQ
A22	NC	B10	GEB0/IO74RSB1	C1	GAA2/IO02RSB1
A23	GDA2/IO54RSB1	B11	VMV1	C2	IO95RSB1
A24	TDI	B12	FF/GEB2/IO70RSB	C3	VCC
A25	TRST		1	C4	GFB1/IO87RSB1
A26	GDC1/IO48RSB0	B13	IO67RSB1	C5	GFA0/IO85RSB1
A27	VCC	B14	GND	C6	GFA2/IO83RSB1
A28	IO47RSB0	B15	NC	C7	IO80RSB1
A29	GCC2/IO46RSB0	B16	NC	C8	VCCIB1
A30	GCA2/IO44RSB0	B17	GND	C9	GEA1/IO73RSB1
A31	GCA0/IO43RSB0	B18	IO59RSB1	C10	GNDQ
A32	GCB1/IO40RSB0	B19	GDC2/IO56RSB1	C11	GEA2/IO71RSB1
A33	IO36RSB0	B20	GND	C12	IO68RSB1
A34	VCC	B21	GNDQ	C13	VCCIB1
A35	IO31RSB0	B22	TMS	C14	NC
A36	GBA2/IO28RSB0	B23	TDO	C15	NC

	FG144	FG144		FG144	
Pin Number	AGL250 Function	Pin Number	AGL250 Function	Pin Number	AGL250 Function
A1	GNDQ	D1	IO112NDB3	G1	GFA1/IO108PPB3
A2	VMV0	D2	IO112PDB3	G2	GND
A3	GAB0/IO02RSB0	D3	IO116VDB3	G3	VCCPLF
A4	GAB1/IO03RSB0	D4	GAA2/IO118UPB3	G4	GFA0/IO108NPB3
A5	IO16RSB0	D5	GAC0/IO04RSB0	G5	GND
A6	GND	D6	GAC1/IO05RSB0	G6	GND
A7	IO29RSB0	D7	GBC0/IO35RSB0	G7	GND
A8	VCC	D8	GBC1/IO36RSB0	G8	GDC1/IO58UPB1
A9	IO33RSB0	D9	GBB2/IO42PDB1	G9	IO53NDB1
A10	GBA0/IO39RSB0	D10	IO42NDB1	G10	GCC2/IO53PDB1
A11	GBA1/IO40RSB0	D11	IO43NPB1	G11	IO52NDB1
A12	GNDQ	D12	GCB1/IO49PPB1	G12	GCB2/IO52PDB1
B1	GAB2/IO117UDB3	E1	VCC	H1	VCC
B2	GND	E2	GFC0/IO110NDB3	H2	GFB2/IO106PDB3
B3	GAA0/IO00RSB0	E3	GFC1/IO110PDB3	H3	GFC2/IO105PSB3
B4	GAA1/IO01RSB0	E4	VCCIB3	H4	GEC1/IO100PDB3
B5	IO14RSB0	E5	IO118VPB3	H5	VCC
B6	IO19RSB0	E6	VCCIB0	H6	IO79RSB2
B7	IO22RSB0	E7	VCCIB0	H7	IO65RSB2
B8	IO30RSB0	E8	GCC1/IO48PDB1	H8	GDB2/IO62RSB2
B9	GBB0/IO37RSB0	E9	VCCIB1	H9	GDC0/IO58VPB1
B10	GBB1/IO38RSB0	E10	VCC	H10	VCCIB1
B11	GND	E11	GCA0/IO50NDB1	H11	IO54PSB1
B12	VMV1	E12	IO51NDB1	H12	VCC
C1	IO117VDB3	F1	GFB0/IO109NPB3	J1	GEB1/IO99PDB3
C2	GFA2/IO107PPB3	F2	VCOMPLF	J2	IO106NDB3
C3	GAC2/IO116UDB3	F3	GFB1/IO109PPB3	J3	VCCIB3
C4	VCC	F4	IO107NPB3	J4	GEC0/IO100NDB3
C5	IO12RSB0	F5	GND	J5	IO88RSB2
C6	IO17RSB0	F6	GND	J6	IO81RSB2
C7	IO24RSB0	F7	GND	J7	VCC
C8	IO31RSB0	F8	GCC0/IO48NDB1	J8	ТСК
C9	IO34RSB0	F9	GCB0/IO49NPB1	J9	GDA2/IO61RSB2
C10	GBA2/IO41PDB1	F10	GND	J10	TDO
C11	IO41NDB1	F11	GCA1/IO50PDB1	J11	GDA1/IO60UDB1
C12	GBC2/IO43PPB1	F12	GCA2/IO51PDB1	J12	GDB1/IO59UDB1

FG484		
Pin Number AGL400 Function		
Y7	NC	
Y8	VCC	
Y9	VCC	
Y10	NC	
Y11	NC	
Y12	NC	
Y13	NC	
Y14	VCC	
Y15	VCC	
Y16	NC	
Y17	NC	
Y18	GND	
Y19	NC	
Y20	NC	
Y21	NC	
Y22	VCCIB1	

	FG484	
Pin Number	AGL600 Function	Pin Number
A1	GND	AA15
A2	GND	AA16
A3	VCCIB0	AA17
A4	NC	AA18
A5	NC	AA19
A6	IO09RSB0	AA20
A7	IO15RSB0	AA21
A8	NC	AA22
A9	NC	AB1
A10	IO22RSB0	AB2
A11	IO23RSB0	AB3
A12	IO29RSB0	AB4
A13	IO35RSB0	AB5
A14	NC	AB6
A15	NC	AB7
A16	IO46RSB0	AB8
A17	IO48RSB0	AB9
A18	NC	AB10
A19	NC	AB11
A20	VCCIB0	AB12
A21	GND	AB13
A22	GND	AB14
AA1	GND	AB15
AA2	VCCIB3	AB16
AA3	NC	AB17
AA4	NC	AB18
AA5	NC	AB19
AA6	IO135RSB2	AB20
AA7	IO133RSB2	AB21
AA8	NC	AB22
AA9	NC	B1
AA10	NC	B2
AA11	NC	B3
AA12	NC	B4
AA13	NC	B5
AA14	NC	B6

	FG484	
n Number	AGL600 Function	Pin
AA15	NC	
AA16	IO101RSB2	
AA17	NC	
AA18	NC	
AA19	NC	
AA20	NC	
AA21	VCCIB1	
AA22	GND	
AB1	GND	
AB2	GND	
AB3	VCCIB2	
AB4	NC	
AB5	NC	
AB6	IO130RSB2	
AB7	IO128RSB2	
AB8	IO122RSB2	
AB9	IO116RSB2	
AB10	NC	
AB11	NC	
AB12	IO113RSB2	
AB13	IO112RSB2	
AB14	NC	
AB15	NC	
AB16	IO100RSB2	
AB17	IO95RSB2	
AB18	NC	
AB19	NC	
AB20	VCCIB2	
AB21	GND	
AB22	GND	
B1	GND	
B2	VCCIB3	
B3	NC	
B4	NC	
B5	NC	
B6	IO08RSB0	

FG484		
Pin Number	AGL600 Function	
B7	IO12RSB0	
B8	NC	
B9	NC	
B10	IO17RSB0	
B11	NC	
B12	NC	
B13	IO36RSB0	
B14	NC	
B15	NC	
B16	IO47RSB0	
B17	IO49RSB0	
B18	NC	
B19	NC	
B20	NC	
B21	VCCIB1	
B22	GND	
C1	VCCIB3	
C2	NC	
C3	NC	
C4	NC	
C5	GND	
C6	NC	
C7	NC	
C8	VCC	
C9	VCC	
C10	NC	
C11	NC	
C12	NC	
C13	NC	
C14	VCC	
C15	VCC	
C16	NC	
C17	NC	
C18	GND	
C19	NC	
C20	NC	

FG484		
Pin Number AGL1000 Function		
G5	IO222PDB3	
G6	GAC2/IO223PDB3	
G7	IO223NDB3	
G8	GNDQ	
G9	IO23RSB0	
G10	IO29RSB0	
G11	IO33RSB0	
G12	IO46RSB0	
G13	IO52RSB0	
G14	IO60RSB0	
G15	GNDQ	
G16	IO80NDB1	
G17	GBB2/IO79PDB1	
G18	IO79NDB1	
G19	IO82NPB1	
G20	IO85PDB1	
G21	IO85NDB1	
G22	NC	
H1	NC	
H2	NC	
H3	VCC	
H4	IO217PDB3	
H5	IO218PDB3	
H6	IO221NDB3	
H7	IO221PDB3	
H8	VMV0	
H9	VCCIB0	
H10	VCCIB0	
H11	IO38RSB0	
H12	IO47RSB0	
H13	VCCIB0	
H14	VCCIB0	
H15	VMV1	
H16	GBC2/IO80PDB1	
H17	IO83PPB1	
H18	IO86PPB1	

Datasheet Information

Revision	Changes	Page
Revision 19	The following figures were deleted (SAR 29991). Reference was made to a new application note, <i>Simultaneous Read-Write Operations in Dual-Port SRAM for Flash-Based cSoCs and FPGAs</i> , which covers these cases in detail (SAR 21770).	N/A
	Figure 2-36 • Write Access after Write onto Same Address	
	Figure 2-37 • Read Access after Write onto Same Address	
	Figure 2-38 • Write Access after Read onto Same Address	2-119 to
	The port names in the SRAM "Timing Waveforms", SRAM "Timing Characteristics" tables, Figure 2-40 • FIFO Reset, and the FIFO "Timing Characteristics" tables were revised to ensure consistency with the software names (SARs 29991, 30510).	2-130
	The "Pin Descriptions" chapter has been added (SAR 21642).	3-1
	Package names used in the "Package Pin Assignments" section were revised to match standards given in <i>Package Mechanical Drawings</i> (SAR 27395).	4-1
	The "CS81" pin table for AGL250 is new (SAR 22737).	4-5
	The CS121 pin table for AGL125 is new (SAR 22737).	
	The P3 function was revised in the "CS196" pin table for AGL250 (SAR 24800).	4-12
	The "QN132" pin table for AGL250 was added.	4-35,
	The "FG144" pin table for AGL060 was added (SAR 33689)	4-42
July 2010	The versioning system for datasheets has been changed. Datasheets are assigned a revision number that increments each time the datasheet is revised. The "IGLOO Device Status" table indicates the status for each device in the device family.	N/A

Revision / Version	Changes	Page
Revision 3 (Feb 2008) Product Brief rev. 2	This document was updated to include AGL015 device information. QN68 is a new package offered in the AGL015. The following sections were updated: "Features and Benefits" "IGLOO Ordering Information" "Temperature Grade Offerings" "IGLOO Devices" Product Family Table Table 1 • IGLOO FPGAs Package Sizes Dimensions "AGL015 and AGL030" note The "Temperature Grade Offerings" table was updated to include M1AGL600. In the "IGLOO Ordering Information" table, the QN package measurements were updated to include both 0.4 mm and 0.5 mm.	N/A IV III
	In the "General Description" section, the number of I/Os was updated from 288 to 300.	1-1
Packaging v1.2	The "QN68" section is new.	4-25
Revision 2 (Jan 2008) Packaging v1.1	The "CS196" package and pin table was added for AGL125.	4-10
Revision 1 (Jan 2008) Product Brief rev. 1	The "Low Power" section was updated to change the description of low power active FPGA operation to "from 12 μ W" from "from 25 μ W." The same update was made in the "General Description" section and the "Flash*Freeze Technology" section.	l, 1-1
Revision 0 (Jan 2008)	This document was previously in datasheet Advance v0.7. As a result of moving to the handbook format, Actel has restarted the numbering.	N/A
Advance v0.7 (December 2007)	Table 1 • IGLOO Product Family, the "I/Os Per Package1" table, and the Temperature Grade Offerings table were updated to reflect the following: CS196 is now supported for AGL250; device/package support for QN132 is to be determined for AGL250; the CS281 package was added for AGL600 and AGL1000.	i, ii, iv
	Table 2 • IGLOO FPGAs Package Sizes Dimensions is new, and package sizes were removed from the "I/Os Per Package1" table.	ii
	The "I/Os Per Package1"table was updated to reflect 77 instead of 79 single- ended I/Os for the VG100 package for AGL030.	ii
	The "Timing Model" was updated to be consistent with the revised timing numbers.	2-20
	In Table 2-27 • Summary of Maximum and Minimum DC Input and Output Levels Applicable to Commercial and Industrial Conditions—Software Default Settings, T_J was changed to T_A in notes 1 and 2.	2-26
	All AC Loading figures for single-ended I/O standards were changed from Datapaths at 35 pF to 5 pF.	N/A
	The "1.2 V LVCMOS (JESD8-12A)" section is new.	2-74
	This document was previously in datasheet Advance v0.7. As a result of moving to the handbook format, Actel has restarted the version numbers. The new version number is Advance v0.1.	N/A
	Table 2-4 • IGLOO CCC/PLL Specification and Table 2-5 • IGLOO CCC/PLL Specification were updated.	2-19, 2-20