

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Ξ·XF

Details	
Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	24576
Total RAM Bits	147456
Number of I/O	97
Number of Gates	1000000
Voltage - Supply	1.14V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 70°C (TA)
Package / Case	144-LBGA
Supplier Device Package	144-FPBGA (13x13)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/m1agl1000v2-fgg144

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

VersaTiles are connected with any of the four levels of routing hierarchy. Flash switches are distributed throughout the device to provide nonvolatile, reconfigurable interconnect programming. Maximum core utilization is possible for virtually any design.

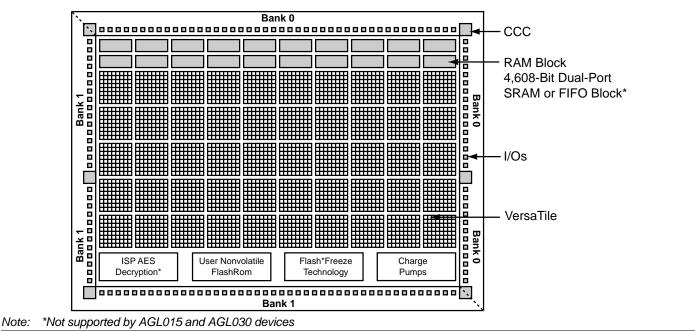


Figure 1-1 • IGLOO Device Architecture Overview with Two I/O Banks (AGL015, AGL030, AGL060, and AGL125)

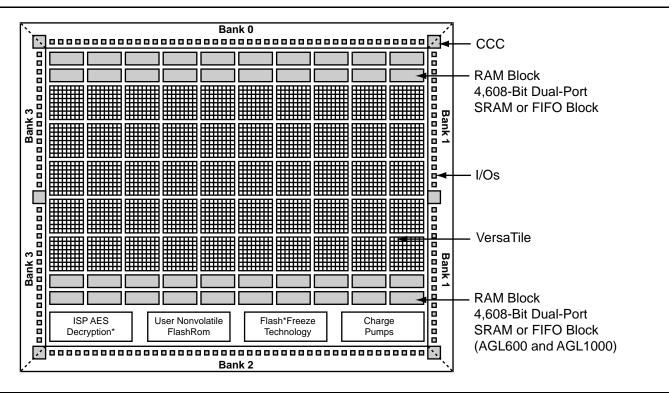


Figure 1-2 • IGLOO Device Architecture Overview with Four I/O Banks (AGL250, AGL600, AGL400, and AGL1000)

Power Consumption of Various Internal Resources

 Table 2-19 • Different Components Contributing to Dynamic Power Consumption in IGLOO Devices

 For IGLOO V2 or V5 Devices, 1.5 V DC Core Supply Voltage

				Devic	e Specific (μW/l		ower		
Parameter	Definition	AGL1000	AGL600	AGL400	AGL250	AGL125	AGL060	AGL030	AGL015
PAC1	Clock contribution of a Global Rib	7.778	6.221	6.082	4.460	4.446	2.736	0.000	0.000
PAC2	Clock contribution of a Global Spine	4.334	3.512	2.759	2.718	1.753	1.971	3.483	3.483
PAC3	Clock contribution of a VersaTile row	1.379	1.445	1.377	1.483	1.467	1.503	1.472	1.472
PAC4	Clock contribution of a VersaTile used as a sequential module	0.151	0.149	0.151	0.149	0.149	0.151	0.146	0.146
PAC5	First contribution of a VersaTile used as a sequential module	0.057							
PAC6	Second contribution of a VersaTile used as a sequential module	0.207							
PAC7	Contribution of a VersaTile used as a combinatorial module	0.276	0.262	0.279	0.277	0.280	0.300	0.281	0.273
PAC8	Average contribution of a routing net	1.161	1.147	1.193	1.273	1.076	1.088	1.134	1.153
PAC9	Contribution of an I/O input pin (standard-dependent)		See Table	2-13 on pa	age 2-10 th	rough Table	e 2-15 on p	age 2-11.	
PAC10	Contribution of an I/O output pin (standard-dependent)		See Table	2-16 on pa	age 2-11 th	rough Table	e 2-18 on p	age 2-12.	
PAC11	Average contribution of a RAM block during a read operation				25.	00			
PAC12	Average contribution of a RAM block during a write operation	30.00							
PAC13	Dynamic PLL contribution				2.7	70			

Note: For a different output load, drive strength, or slew rate, Microsemi recommends using the Microsemi power spreadsheet calculator or SmartPower tool in Libero SoC.

Power Calculation Methodology

This section describes a simplified method to estimate power consumption of an application. For more accurate and detailed power estimations, use the SmartPower tool in Microsemi Libero SoC software.

The power calculation methodology described below uses the following variables:

- The number of PLLs as well as the number and the frequency of each output clock generated
- The number of combinatorial and sequential cells used in the design
- The internal clock frequencies
- The number and the standard of I/O pins used in the design
- The number of RAM blocks used in the design
- Toggle rates of I/O pins as well as VersaTiles—guidelines are provided in Table 2-23 on page 2-19.
- Enable rates of output buffers—guidelines are provided for typical applications in Table 2-24 on page 2-19.
- Read rate and write rate to the memory—guidelines are provided for typical applications in Table 2-24 on page 2-19. The calculation should be repeated for each clock domain defined in the design.

Methodology

Total Power Consumption—P_{TOTAL}

 $P_{TOTAL} = P_{STAT} + P_{DYN}$

 $\mathsf{P}_{\mathsf{STAT}}$ is the total static power consumption.

P_{DYN} is the total dynamic power consumption.

Total Static Power Consumption—PSTAT

P_{STAT} = (P_{DC1} or P_{DC2} or P_{DC3}) + N_{BANKS} * P_{DC5} + N_{INPUTS} * P_{DC6} + N_{OUTPUTS} * P_{DC7}

N_{INPUTS} is the number of I/O input buffers used in the design.

N_{OUTPUTS} is the number of I/O output buffers used in the design.

N_{BANKS} is the number of I/O banks powered in the design.

Total Dynamic Power Consumption—PDYN

 $P_{DYN} = P_{CLOCK} + P_{S-CELL} + P_{C-CELL} + P_{NET} + P_{INPUTS} + P_{OUTPUTS} + P_{MEMORY} + P_{PLL}$

Global Clock Contribution—P_{CLOCK}

 $\mathsf{P}_{\mathsf{CLOCK}} = (\mathsf{P}_{\mathsf{AC1}} + \mathsf{N}_{\mathsf{SPINE}} * \mathsf{P}_{\mathsf{AC2}} + \mathsf{N}_{\mathsf{ROW}} * \mathsf{P}_{\mathsf{AC3}} + \mathsf{N}_{\mathsf{S}\text{-}\mathsf{CELL}} * \mathsf{P}_{\mathsf{AC4}}) * \mathsf{F}_{\mathsf{CLK}}$

N_{SPINE} is the number of global spines used in the user design—guidelines are provided in the "Spine Architecture" section of the *IGLOO FPGA Fabric User Guide.*

N_{ROW} is the number of VersaTile rows used in the design—guidelines are provided in the "Spine Architecture" section of the *IGLOO FPGA Fabric User Guide*.

 $\mathsf{F}_{\mathsf{CLK}}$ is the global clock signal frequency.

N_{S-CELL} is the number of VersaTiles used as sequential modules in the design.

P_{AC1}, P_{AC2}, P_{AC3}, and P_{AC4} are device-dependent.

Sequential Cells Contribution—P_{S-CELL}

 $\mathsf{P}_{\text{S-CELL}} = \mathsf{N}_{\text{S-CELL}} * (\mathsf{P}_{\text{AC5}} + \alpha_1 / 2 * \mathsf{P}_{\text{AC6}}) * \mathsf{F}_{\text{CLK}}$

 N_{S-CELL} is the number of VersaTiles used as sequential modules in the design. When a multi-tile sequential cell is used, it should be accounted for as 1.

 α_1 is the toggle rate of VersaTile outputs—guidelines are provided in Table 2-23 on page 2-19.

 F_{CLK} is the global clock signal frequency.

 Table 2-31 •
 Summary of I/O Timing Characteristics—Software Default Settings, Std. Speed Grade, Commercial-Case

 Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI (per standard)

 Applicable to Advanced I/O Banks

//O Standard	Drive Strength	Equivalent Software Default Drive Strength Option ¹ (mA)	Slew Rate	, Capacitive Load (pF)	External Resistor (Ω)	toour (ns)	t _{DP} (ns)	t _{DIN} (ns)	t _{PY} (ns)	teour (ns)	t _{zL} (ns)	t _{zH} (ns)	t _{LZ} (ns)	t _{Hz} (ns)	tzLS (ns)	t _{zHS} (ns)	Units
3.3 V LVTTL / 3.3 V LVCMOS	12 mA	12	High	5	Ι	0.97	2.09	0.18	0.85	0.66	2.14	1.68	2.67	3.05	5.73	5.27	ns
3.3 V LVCMOS Wide Range ²	100 µA	12	High	5	_	0.97	2.93	0.18	1.19	0.66	2.95	2.27	3.81	4.30	6.54	5.87	ns
2.5 V LVCMOS	12 mA	12	High	5	-	0.97	2.09	0.18	1.08	0.66	2.14	1.83	2.73	2.93	5.73	5.43	ns
1.8 V LVCMOS	12 mA	12	High	5	-	0.97	2.24	0.18	1.01	0.66	2.29	2.00	3.02	3.40	5.88	5.60	ns
1.5 V LVCMOS	12 mA	12	High	5	-	0.97	2.50	0.18	1.17	0.66	2.56	2.27	3.21	3.48	6.15	5.86	ns
3.3 V PCI	Per PCI spec	Ι	High	10	25 ²	0.97	2.32	0.18	0.74	0.66	2.37	1.78	2.67	3.05	5.96	5.38	ns
3.3 V PCI-X	Per PCI- X spec	Ι	High	10	25 ²	0.97	2.32	0.19	0.70	0.66	2.37	1.78	2.67	3.05	5.96	5.38	ns
LVDS	24 mA	-	High	Ι	-	0.97	1.74	0.19	1.35	-	-	-	-	-	-	-	ns
LVPECL	24 mA	-	High	_	-	0.97	1.68	0.19	1.16	_	_	-	-	_	-	-	ns

Notes:

1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ±100 μA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.

2. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD-8B specification.

3. Resistance is used to measure I/O propagation delays as defined in PCI specifications. See Figure 2-12 on page 2-79 for connectivity. This resistor is not required during normal operation.

4. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

Table 2-39 • I/O Output Buffer Maximum Resistances¹ Applicable to Standard Plus I/O Banks

Standard	Drive Strength	R _{PULL-DOWN} (Ω) ²	R _{PULL-UP} (Ω) ³
3.3 V LVTTL / 3.3 V LVCMOS	2 mA	100	300
	4 mA	100	300
	6 mA	50	150
	8 mA	50	150
	12 mA	25	75
	16 mA	25	75
3.3 V LVCMOS Wide Range	100 μA	Same as regular 3.3 V LVCMOS	Same as regular 3.3 V LVCMOS
2.5 V LVCMOS	2 mA	100	200
	4 mA	100	200
	6 mA	50	100
	8 mA	50	100
	12 mA	25	50
1.8 V LVCMOS	2 mA	200	225
	4 mA	100	112
	6 mA	50	56
	8 mA	50	56
1.5 V LVCMOS	2 mA	200	224
	4 mA	100	112
1.2 V LVCMOS ⁴	2 mA	158	164
1.2 V LVCMOS Wide Range ⁴	100 μA	Same as regular 1.2 V LVCMOS	Same as regular 1.2 V LVCMOS
3.3 V PCI/PCI-X	Per PCI/PCI-X specification	25	75

Notes:

2. R_(PULL-DOWN-MAX) = (VOLspec) / I_{OLspec}

3. R_(PULL-UP-MAX) = (VCCImax – VOHspec) / I_{OHspec}

4. Applicable to IGLOO V2 Devices operating at VCCI \geq VCC

^{1.} These maximum values are provided for informational reasons only. Minimum output buffer resistance values depend on VCCI, drive strength selection, temperature, and process. For board design considerations and detailed output buffer resistances, use the corresponding IBIS models located at http://www.microsemi.com/soc/download/ibis/default.aspx.

1.5 V LVCMOS (JESD8-11)

Low-Voltage CMOS for 1.5 V is an extension of the LVCMOS standard (JESD8-5) used for general-purpose 1.5 V applications. It uses a 1.5 V input buffer and a push-pull output buffer.

Table 2-111 • Minimum and Maximum DC Input and Output Levels Applicable to Advanced I/O Banks

1.5 V LVCMOS		VIL	VIH		VOL	VOH	IOL	ЮН	IOSH	IOSL	IIL¹	IIH ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
2 mA	-0.3	0.35 * VCCI	0.65 * VCCI	1.575	0.25 * VCCI	0.75 * VCCI	2	2	13	16	10	10
4 mA	-0.3	0.35 * VCCI	0.65 * VCCI	1.575	0.25 * VCCI	0.75 * VCCI	4	4	25	33	10	10
6 mA	-0.3	0.35 * VCCI	0.65 * VCCI	1.575	0.25 * VCCI	0.75 * VCCI	6	6	32	39	10	10
8 mA	-0.3	0.35 * VCCI	0.65 * VCCI	1.575	0.25 * VCCI	0.75 * VCCI	8	8	66	55	10	10
12 mA	-0.3	0.35 * VCCI	0.65 * VCCI	1.575	0.25 * VCCI	0.75 * VCCI	12	12	66	55	10	10

Notes:

1. IIL is the input leakage current per I/O pin over recommended operation conditions where -0.3 V < VIN < VIL.

2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges

3. Currents are measured at 100°C junction temperature and maximum voltage.

4. Currents are measured at 85°C junction temperature.

5. Software default selection highlighted in gray.

Table 2-112 • Minimum and Maximum DC Input and Output Levels Applicable to Standard Plus I/O Banks

1.5 V LVCMOS		VIL	VIH	VIH		VOH		юн	IOSH	IOSL	IIL ¹	IIH ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
2 mA	-0.3	0.35 * VCCI	0.65 * VCCI	1.575	0.25 * VCCI	0.75 * VCCI	2	2	13	16	10	10
4 mA	-0.3	0.35 * VCCI	0.65 * VCCI	1.575	0.25 * VCCI	0.75 * VCCI	4	4	25	33	10	10

Notes:

1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.

2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges

3. Currents are measured at 100°C junction temperature and maximum voltage.

4. Currents are measured at 85°C junction temperature.

5. Software default selection highlighted in gray.

Table 2-135 • 1.2 V LVCMOS High Slew

```
Commercial-Case Conditions: T_J = 70^{\circ}C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.14 V
Applicable to Standard Banks
```

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	Units
1 mA	Std.	1.55	8.57	0.26	1.53	1.10	8.23	7.38	2.51	2.39	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.

Table 2-136 • 1.2 V LVCMOS High Slew – Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.14 V

Applicable to Standard Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	Units
1 mA	Std.	1.55	3.59	0.26	1.53	1.10	3.47	3.06	2.51	2.49	ns

Notes:

1. Software default selection highlighted in gray.

2. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.

1.2 V LVCMOS Wide Range

Table 2-137 • Minimum and Maximum DC Input and Output Levels for LVCMOS 1.2 V Wide Range Applicable to Advanced I/O Banks

1.2 V LVCN Wide Rang			VIL	VIH		VOL	VOH	IOL	юн	IOSL	IOSH	IIL ²	IIH ³
Drive Strength	Equivalent Software Default Drive Strength Option ¹	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ⁴	Max. mA ⁴	μΑ ⁵	μ Α ⁵
100 µA	2 mA	-0.3	0.35 * VCCI	0.65 * VCCI	1.26	0.25 * VCCI	0.75 * VCCI	100	100	20	26	10	10

Notes:

1. The minimum drive strength for the default LVCMOS 1.2 V software configuration when run in wide range is ± 100 μA. The drive strength displayed in software is supported in normal range only. For a detailed I/V curve, refer to the IBIS models.

2. IIL is the input leakage current per I/O pin over recommended operation conditions where -0.3 V < VIN < VIL.

- 3. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.
- 4. Currents are measured at 100°C junction temperature and maximum voltage.
- 5. Currents are measured at 85°C junction temperature.
- 6. Software default selection highlighted in gray.

	CS281
Pin Number	AGL1000 Function
A1	GND
A2	GAB0/IO02RSB0
A3	GAC1/IO05RSB0
A4	IO13RSB0
A5	IO11RSB0
A6	IO16RSB0
A7	IO20RSB0
A8	IO24RSB0
A9	IO29RSB0
A10	VCCIB0
A11	IO39RSB0
A12	IO45RSB0
A13	IO48RSB0
A14	IO58RSB0
A15	IO61RSB0
A16	IO62RSB0
A17	GBC1/IO73RSB0
A18	GBA0/IO76RSB0
A19	GND
B1	GAA2/IO225PPB3
B2	VCCIB0
B3	GAB1/IO03RSB0
B4	GAC0/IO04RSB0
B5	IO12RSB0
B6	GND
B7	IO21RSB0
B8	IO26RSB0
B9	IO34RSB0
B10	IO35RSB0
B11	IO36RSB0
B12	IO46RSB0
B13	IO52RSB0
B14	GND
B15	IO59RSB0
B16	GBC0/IO72RSB0
B17	GBA1/IO77RSB0

CS281							
Pin Number	AGL1000 Function						
B18	VCCIB1						
B19	IO79NDB1						
C1	GAB2/IO224PPB3						
C2	IO225NPB3						
C6	IO18RSB0						
C14	IO63RSB0						
C18	IO78NPB1						
C19	GBB2/IO79PDB1						
D1	IO219PPB3						
D2	IO223NPB3						
D4	GAA0/IO00RSB0						
D5	GAA1/IO01RSB0						
D6	IO15RSB0						
D7	IO19RSB0						
D8	IO27RSB0						
D9	IO32RSB0						
D10	GND						
D11	IO38RSB0						
D12	IO44RSB0						
D13	IO47RSB0						
D14	IO60RSB0						
D15	GBB0/IO74RSB0						
D16	GBA2/IO78PPB1						
D18	GBC2/IO80PPB1						
D19	IO88NPB1						
E1	IO217NPB3						
E2	IO221PPB3						
E4	IO221NPB3						
E5	IO10RSB0						
E6	IO14RSB0						
E7	IO25RSB0						
E8	IO28RSB0						
E9	IO31RSB0						
E10	IO33RSB0						
E11	IO42RSB0						
E12	IO49RSB0						

	CS281
Pin Number	AGL1000 Function
E13	IO53RSB0
E14	GBB1/IO75RSB0
E15	IO80NPB1
E16	IO85PPB1
E18	IO83PPB1
E19	IO84NPB1
F1	IO214NPB3
F2	GND
F3	IO217PPB3
F4	IO219NPB3
F5	IO224NPB3
F15	IO85NPB1
F16	IO84PPB1
F17	IO83NPB1
F18	GND
F19	IO90PPB1
G1	IO212NPB3
G2	IO211NDB3
G4	IO214PPB3
G5	IO212PPB3
G7	GAC2/IO223PPB3
G8	VCCIB0
G9	IO30RSB0
G10	IO37RSB0
G11	IO43RSB0
G12	VCCIB0
G13	IO88PPB1
G15	IO89NDB1
G16	IO89PDB1
G18	GCC0/IO91NPB1
G19	GCB1/IO92PPB1
H1	GFB0/IO208NPB3
H2	IO211PDB3
H4	GFC1/IO209PPB3
H5	GFB1/IO208PPB3
H7	VCCIB3

	VQ100		VQ100	VQ100	
Pin Number	AGL030 Function	Pin Number	AGL030 Function	Pin Number	AGL030 Function
1	GND	37	VCC	73	IO27RSB0
2	IO82RSB1	38	GND	74	IO26RSB0
3	IO81RSB1	39	VCCIB1	75	IO25RSB0
4	IO80RSB1	40	IO49RSB1	76	IO24RSB0
5	IO79RSB1	41	IO47RSB1	77	IO23RSB0
6	IO78RSB1	42	IO46RSB1	78	IO22RSB0
7	IO77RSB1	43	IO45RSB1	79	IO21RSB0
8	IO76RSB1	44	IO44RSB1	80	IO20RSB0
9	GND	45	IO43RSB1	81	IO19RSB0
10	IO75RSB1	46	IO42RSB1	82	IO18RSB0
11	IO74RSB1	47	ТСК	83	IO17RSB0
12	GEC0/IO73RSB1	48	TDI	84	IO16RSB0
13	GEA0/IO72RSB1	49	TMS	85	IO15RSB0
14	GEB0/IO71RSB1	50	NC	86	IO14RSB0
15	IO70RSB1	51	GND	87	VCCIB0
16	IO69RSB1	52	VPUMP	88	GND
17	VCC	53	NC	89	VCC
18	VCCIB1	54	TDO	90	IO12RSB0
19	IO68RSB1	55	TRST	91	IO10RSB0
20	IO67RSB1	56	VJTAG	92	IO08RSB0
21	IO66RSB1	57	IO41RSB0	93	IO07RSB0
22	IO65RSB1	58	IO40RSB0	94	IO06RSB0
23	IO64RSB1	59	IO39RSB0	95	IO05RSB0
24	IO63RSB1	60	IO38RSB0	96	IO04RSB0
25	IO62RSB1	61	IO37RSB0	97	IO03RSB0
26	IO61RSB1	62	IO36RSB0	98	IO02RSB0
27	FF/IO60RSB1	63	GDB0/IO34RSB0	99	IO01RSB0
28	IO59RSB1	64	GDA0/IO33RSB0	100	IO00RSB0
29	IO58RSB1	65	GDC0/IO32RSB0	L	
30	IO57RSB1	66	VCCIB0		
31	IO56RSB1	67	GND		
32	IO55RSB1	68	VCC		
33	IO54RSB1	69	IO31RSB0		
34	IO53RSB1	70	IO30RSB0		
35	IO52RSB1	71	IO29RSB0		
36	IO51RSB1	72	IO28RSB0		

IGLOO Low Power Flash FPGAs

	FG144	FG144		FG144	
Pin Number	AGL250 Function	Pin Number	AGL250 Function	Pin Number	AGL250 Function
A1	GNDQ	D1	IO112NDB3	G1	GFA1/IO108PPB3
A2	VMV0	D2	IO112PDB3	G2	GND
A3	GAB0/IO02RSB0	D3	IO116VDB3	G3	VCCPLF
A4	GAB1/IO03RSB0	D4	GAA2/IO118UPB3	G4	GFA0/IO108NPB3
A5	IO16RSB0	D5	GAC0/IO04RSB0	G5	GND
A6	GND	D6	GAC1/IO05RSB0	G6	GND
A7	IO29RSB0	D7	GBC0/IO35RSB0	G7	GND
A8	VCC	D8	GBC1/IO36RSB0	G8	GDC1/IO58UPB1
A9	IO33RSB0	D9	GBB2/IO42PDB1	G9	IO53NDB1
A10	GBA0/IO39RSB0	D10	IO42NDB1	G10	GCC2/IO53PDB1
A11	GBA1/IO40RSB0	D11	IO43NPB1	G11	IO52NDB1
A12	GNDQ	D12	GCB1/IO49PPB1	G12	GCB2/IO52PDB1
B1	GAB2/IO117UDB3	E1	VCC	H1	VCC
B2	GND	E2	GFC0/IO110NDB3	H2	GFB2/IO106PDB3
B3	GAA0/IO00RSB0	E3	GFC1/IO110PDB3	H3	GFC2/IO105PSB3
B4	GAA1/IO01RSB0	E4	VCCIB3	H4	GEC1/IO100PDB3
B5	IO14RSB0	E5	IO118VPB3	H5	VCC
B6	IO19RSB0	E6	VCCIB0	H6	IO79RSB2
B7	IO22RSB0	E7	VCCIB0	H7	IO65RSB2
B8	IO30RSB0	E8	GCC1/IO48PDB1	H8	GDB2/IO62RSB2
B9	GBB0/IO37RSB0	E9	VCCIB1	H9	GDC0/IO58VPB1
B10	GBB1/IO38RSB0	E10	VCC	H10	VCCIB1
B11	GND	E11	GCA0/IO50NDB1	H11	IO54PSB1
B12	VMV1	E12	IO51NDB1	H12	VCC
C1	IO117VDB3	F1	GFB0/IO109NPB3	J1	GEB1/IO99PDB3
C2	GFA2/IO107PPB3	F2	VCOMPLF	J2	IO106NDB3
C3	GAC2/IO116UDB3	F3	GFB1/IO109PPB3	J3	VCCIB3
C4	VCC	F4	IO107NPB3	J4	GEC0/IO100NDB3
C5	IO12RSB0	F5	GND	J5	IO88RSB2
C6	IO17RSB0	F6	GND	J6	IO81RSB2
C7	IO24RSB0	F7	GND	J7	VCC
C8	IO31RSB0	F8	GCC0/IO48NDB1	J8	ТСК
C9	IO34RSB0	F9	GCB0/IO49NPB1	J9	GDA2/IO61RSB2
C10	GBA2/IO41PDB1	F10	GND	J10	TDO
C11	IO41NDB1	F11	GCA1/IO50PDB1	J11	GDA1/IO60UDB1
C12	GBC2/IO43PPB1	F12	GCA2/IO51PDB1	J12	GDB1/IO59UDB1

	FG144
Pin Number	AGL400 Function
K1	GEB0/IO136NDB3
K2	GEA1/IO135PDB3
K3	GEA0/IO135NDB3
K4	GEA2/IO134RSB2
K5	IO127RSB2
K6	IO121RSB2
K7	GND
K8	IO104RSB2
K9	GDC2/IO82RSB2
K10	GND
K11	GDA0/IO79VDB1
K12	GDB0/IO78VDB1
L1	GND
L2	VMV3
L3	FF/GEB2/IO133RSB2
L4	IO128RSB2
L5	VCCIB2
L6	IO119RSB2
L7	IO114RSB2
L8	IO110RSB2
L9	TMS
L10	VJTAG
L11	VMV2
L12	TRST
M1	GNDQ
M2	GEC2/IO132RSB2
M3	IO129RSB2
M4	IO126RSB2
M5	IO124RSB2
M6	IO122RSB2
M7	IO117RSB2
M8	IO115RSB2
M9	TDI
M10	VCCIB2
M11	VPUMP
M12	GNDQ

	FG256
Pin Number	AGL600 Function
R5	IO132RSB2
R6	IO127RSB2
R7	IO121RSB2
R8	IO114RSB2
R9	IO109RSB2
R10	IO105RSB2
R11	IO98RSB2
R12	IO96RSB2
R13	GDB2/IO90RSB2
R14	TDI
R15	GNDQ
R16	TDO
T1	GND
T2	IO137RSB2
Т3	FF/GEB2/IO142RSB2
T4	IO134RSB2
T5	IO125RSB2
T6	IO123RSB2
T7	IO118RSB2
T8	IO115RSB2
Т9	IO111RSB2
T10	IO106RSB2
T11	IO102RSB2
T12	GDC2/IO91RSB2
T13	IO93RSB2
T14	GDA2/IO89RSB2
T15	TMS
T16	GND

FG256		
Pin Number	AGL1000 Function	
R5	IO168RSB2	
R6	IO163RSB2	
R7	IO157RSB2	
R8	IO149RSB2	
R9	IO143RSB2	
R10	IO138RSB2	
R11	IO131RSB2	
R12	IO125RSB2	
R13	GDB2/IO115RSB2	
R14	TDI	
R15	GNDQ	
R16	TDO	
T1	GND	
T2	IO183RSB2	
Т3	FF/GEB2/IO186RSB2	
T4	IO172RSB2	
T5	IO170RSB2	
Т6	IO164RSB2	
T7	IO158RSB2	
Т8	IO153RSB2	
Т9	IO142RSB2	
T10	IO135RSB2	
T11	IO130RSB2	
T12	GDC2/IO116RSB2	
T13	IO120RSB2	
T14	GDA2/IO114RSB2	
T15	TMS	
T16	GND	

FG484		
Pin Number	AGL400 Function	
G5	IO151UDB3	
G6	GAC2/IO153UDB3	
G7	IO06RSB0	
G8	GNDQ	
G9	IO10RSB0	
G10	IO19RSB0	
G11	IO26RSB0	
G12	IO30RSB0	
G13	IO40RSB0	
G14	IO46RSB0	
G15	GNDQ	
G16	IO47RSB0	
G17	GBB2/IO61PPB1	
G18	IO53RSB0	
G19	IO63NDB1	
G20	NC	
G21	NC	
G22	NC	
H1	NC	
H2	NC	
H3	VCC	
H4	IO150PDB3	
H5	IO08RSB0	
H6	IO153VDB3	
H7	IO152VDB3	
H8	VMV0	
H9	VCCIB0	
H10	VCCIB0	
H11	IO25RSB0	
H12	IO31RSB0	
H13	VCCIB0	
H14	VCCIB0	
H15	VMV1	
H16	GBC2/IO62PDB1	
H17	IO65RSB1	
H18	IO52RSB0	

FG484		
Pin Number	AGL600 Function	
N17	IO80NPB1	
N18	IO74NPB1	
N19	IO72NDB1	
N20	NC	
N21	IO79NPB1	
N22	NC	
P1	NC	
P2	IO153PDB3	
P3	IO153NDB3	
P4	IO159NDB3	
P5	IO156NPB3	
P6	IO151PPB3	
P7	IO158PPB3	
P8	VCCIB3	
P9	GND	
P10	VCC	
P11	VCC	
P12	VCC	
P13	VCC	
P14	GND	
P15	VCCIB1	
P16	GDB0/IO87NPB1	
P17	IO85NDB1	
P18	IO85PDB1	
P19	IO84PDB1	
P20	NC	
P21	IO81PDB1	
P22	NC	
R1	NC	
R2	NC	
R3	VCC	
R4	IO150PDB3	
R5	IO151NPB3	
R6	IO147NPB3	
R7	GEC0/IO146NPB3	

	FG484
Pin Number	AGL600 Function
V15	IO96RSB2
V16	GDB2/IO90RSB2
V17	TDI
V18	GNDQ
V19	TDO
V20	GND
V21	NC
V22	NC
W1	NC
W2	IO148PDB3
W3	NC
W4	GND
W5	IO137RSB2
W6	FF/GEB2/IO142RSB2
W7	IO134RSB2
W8	IO125RSB2
W9	IO123RSB2
W10	IO118RSB2
W11	IO115RSB2
W12	IO111RSB2
W13	IO106RSB2
W14	IO102RSB2
W15	GDC2/IO91RSB2
W16	IO93RSB2
W17	GDA2/IO89RSB2
W18	TMS
W19	GND
W20	NC
W21	NC
W22	NC
Y1	VCCIB3
Y2	IO148NDB3
Y3	NC
Y4	NC
Y5	GND
Y6	NC

FG484		
Pin Number	AGL1000 Function	
C21	NC	
C22	VCCIB1	
D1	IO219PDB3	
D2	IO220NDB3	
D3	NC	
D4	GND	
D5	GAA0/IO00RSB0	
D6	GAA1/IO01RSB0	
D7	GAB0/IO02RSB0	
D8	IO16RSB0	
D9	IO22RSB0	
D10	IO28RSB0	
D11	IO35RSB0	
D12	IO45RSB0	
D13	IO50RSB0	
D14	IO55RSB0	
D15	IO61RSB0	
D16	GBB1/IO75RSB0	
D17	GBA0/IO76RSB0	
D18	GBA1/IO77RSB0	
D19	GND	
D20	NC	
D21	NC	
D22	NC	
E1	IO219NDB3	
E2	NC	
E3	GND	
E4	GAB2/IO224PDB3	
E5	GAA2/IO225PDB3	
E6	GNDQ	
E7	GAB1/IO03RSB0	
E8	IO17RSB0	
E9	IO21RSB0	
E10	IO27RSB0	
E11	IO34RSB0	
E12	IO44RSB0	

IGLOO Low Power Flash FPGAs

Revision	Changes	Page
Revision 19 (continued)	The following sentence was removed from the "Advanced Architecture" section: "In addition, extensive on-chip programming circuitry allows for rapid, single-voltage (3.3 V) programming of IGLOO devices via an IEEE 1532 JTAG interface" (SAR 28756).	1-3
	The "Specifying I/O States During Programming" section is new (SAR 21281).	1-8
	Values for VCCPLL at 1.2 V –1.5 V DC core supply voltage were revised in Table 2-2 • Recommended Operating Conditions 1 (SAR 22356).	2-2
	The value for VPUMP operation was changed from "0 to 3.45 V" to "0 to 3.6 V" (SAR 25220).	
	The value for VCCPLL 1.5 V DC core supply voltage was changed from "1.4 to 1.6 V" to "1.425 to 1.575 V" (SAR 26551).	
	The notes in the table were renumbered in order of their appearance in the table (SAR 21869).	
	The temperature used in EQ 2 was revised from 110°C to 100°C for consistency with the limits given in Table 2-2 • Recommended Operating Conditions 1. The resulting maximum power allowed is thus 1.28 W. Formerly it was 1.71 W (SAR 26259).	2-6
	Values for CS196, CS281, and QN132 packages were added to Table 2-5 • Package Thermal Resistivities (SARs 26228, 32301).	2-6
	Table 2-6 • Temperature and Voltage Derating Factors for Timing Delays (normalized to $TJ = 70^{\circ}C$, VCC = 1.425 V) and Table 2-7 • Temperature and Voltage Derating Factors for Timing Delays (normalized to $TJ = 70^{\circ}C$, VCC = 1.14 V) were updated to remove the column for –20°C and shift the data over to correct columns (SAR 23041).	2-7
	The tables in the "Quiescent Supply Current" section were updated with revised notes on IDD (SAR 24112). Table 2-8 • Power Supply State per Mode is new.	2-7
	The formulas in the table notes for Table 2-41 • I/O Weak Pull-Up/Pull-Down Resistances were corrected (SAR 21348).	2-37
	The row for 110°C was removed from Table 2-45 • Duration of Short Circuit Event before Failure. The example in the associated paragraph was changed from 110°C to 100°C. Table 2-46 • I/O Input Rise Time, Fall Time, and Related I/O Reliability1 was revised to change 110° to 100°C. (SAR 26259).	2-40
	The notes regarding drive strength in the "Summary of I/O Timing Characteristics –	2-28,
	Default I/O Software Settings" section, "3.3 V LVCMOS Wide Range" section and "1.2 V LVCMOS Wide Range" section tables were revised for clarification. They now state that the minimum drive strength for the default software configuration when run in wide range is $\pm 100 \ \mu$ A. The drive strength displayed in software is supported in normal range only. For a detailed I/V curve, refer to the IBIS models (SAR 25700).	2-47, 2-77
	The following sentence was deleted from the "2.5 V LVCMOS" section (SAR 24916): "It uses a 5 V-tolerant input buffer and push-pull output buffer."	2-56
	The values for $F_{DDRIMAX}$ and F_{DDOMAX} were updated in the tables in the "Input DDR Module" section and "Output DDR Module" section (SAR 23919).	2-94, 2-97
	The following notes were removed from Table 2-147 • Minimum and Maximum DC Input and Output Levels (SAR 29428): ±5%	2-81
	Differential input voltage = ±350 mV	
	Table 2-189 • IGLOO CCC/PLL Specification and Table 2-190 • IGLOO CCC/PLL Specification were updated. A note was added to both tables indicating that when the CCC/PLL core is generated by Mircosemi core generator software, not all delay values of the specified delay increments are available (SAR 25705).	2-115

Datasheet Information

Revision / Version	Changes	Page
Revision 14 (Feb 2009) Product Brief v1.4	The "Advanced I/O" section was revised to include two bullets regarding wide range power supply voltage support.	Ι
	3.0 V wide range was added to the list of supported voltages in the "I/Os with Advanced I/O Standards" section. The "Wide Range I/O Support" section is new.	1-8
Revision 13 (Jan 2009) Packaging v1.8	The "CS121" pin table was revised to add a note regarding pins F1 and G1.	4-7
Revision 12 (Dec 2008)	QN48 and QN68 were added to the AGL030 for the following tables:	N/A
Product Brief v1.3	"IGLOO Devices" Product Family Table "IGLOO Ordering Information" "Temperature Grade Offerings"	
	QN132 is fully supported by AGL125 so footnote 3 was removed.	
Packaging v1.7	The "QN48" pin diagram and pin table are new.	4-24
	The "QN68" pin table for AGL030 is new.	4-26
Revision 12 (Dec 2008)	The AGL600 Function for pin K15 in the "FG484" table was changed to VCCIB1.	4-78
Revision 11 (Oct 2008) Product Brief v1.2	This document was updated to include AGL400 device information. The following sections were updated:	N/A
	"IGLOO Devices" Product Family Table "IGLOO Ordering Information" "Temperature Grade Offerings"	
	Figure 1-2 • IGLOO Device Architecture Overview with Four I/O Banks (AGL250, AGL600, AGL400, and AGL1000)	
DC and Switching Characteristics Advance v0.5	The tables in the "Quiescent Supply Current" section were updated with values for AGL400. In addition, the title was updated to include: $(VCC = VJTAG = VPP = 0 V)$.	2-7
	The tables in the "Power Consumption of Various Internal Resources" section were updated with values for AGL400.	2-13
	Table 2-178 • AGL400 Global Resource is new.	2-109
Packaging v1.6	The "CS196" table for the AGL400 device is new.	4-14
	The "FG144" table for the AGL400 device is new.	4-47
	The "FG256" table for the AGL400 device is new.	4-54
	The "FG484" table for the AGL400 device is new.	4-64
Revision 10 (Aug 2008)	3.0 V LVCMOS wide range support data was added to Table 2-2 • Recommended Operating Conditions 1.	2-2
DC and Switching Characteristics Advance v0.4	3.3 V LVCMOS wide range support data was added to Table 2-25 • Summary of Maximum and Minimum DC Input and Output Levels Applicable to Commercial and Industrial Conditions—Software Default Settings to Table 2-27 • Summary of Maximum and Minimum DC Input and Output Levels Applicable to Commercial and Industrial Conditions—Software Default Settings.	2-24 to 2-26
	3.3 V LVCMOS wide range support data was added to Table 2-28 • Summary of Maximum and Minimum DC Input Levels.	2-27
	3.3 V LVCMOS wide range support text was added to Table 2-49 · Minimum and Maximum DC Input and Output Levels for LVCMOS 3.3 V Wide Range.	2-39

IGLOO Low Power Flash FPGAs

Revision / Version	Changes	Page
DC & Switching, cont'd.	Table 2-49 · Minimum and Maximum DC Input and Output Levels for LVCMOS 3.3 V Wide Range is new.	2-39
Revision 9 (Jul 2008) Product Brief v1.1 DC and Switching Characteristics Advance v0.3	As a result of the Libero IDE v8.4 release, Actel now offers a wide range of core voltage support. The document was updated to change $1.2 \text{ V} / 1.5 \text{ V}$ to 1.2 V to 1.5 V .	N/A
Revision 8 (Jun 2008)	As a result of the Libero IDE v8.4 release, Actel now offers a wide range of core voltage support. The document was updated to change $1.2 \text{ V} / 1.5 \text{ V}$ to 1.2 V to 1.5 V .	N/A
DC and Switching Characteristics Advance v0.2	Tables have been updated to reflect default values in the software. The default I/O capacitance is 5 pF. Tables have been updated to include the LVCMOS 1.2 V I/O set. DDR Tables have two additional data points added to reflect both edges for Input DDR setup and hold time. The power data table has been updated to match SmartPower data rather then simulation values. AGL015 global clock delays have been added.	N/A
	Table 2-1 • Absolute Maximum Ratings was updated to combine the VCCI and VMV parameters in one row. The word "output" from the parameter description for VCCI and VMV, and table note 3 was added.	2-1
	Table 2-2 • Recommended Operating Conditions 1 was updated to add references to tables notes 4, 6, 7, and 8. VMV was added to the VCCI parameter row, and table note 9 was added.	2-2
	In Table 2-3 • Flash Programming Limits – Retention, Storage, and Operating Temperature1, the maximum operating junction temperature was changed from 110° to 100°.	2-3
	VMV was removed from Table 2-4 • Overshoot and Undershoot Limits 1. The table title was modified to remove "as measured on quiet I/Os." Table note 2 was revised to remove "estimated SSO density over cycles." Table note 3 was revised to remove "refers only to overshoot/undershoot limits for simultaneous switching I/Os."	2-3
	The "PLL Behavior at Brownout Condition" section is new.	2-4
	Figure 2-2 • V2 Devices – I/O State as a Function of VCCI and VCC Voltage Levels is new.	2-5
	EQ 2 was updated. The temperature was changed to 100°C, and therefore the end result changed.	2-6
	The table notes for Table 2-9 • Quiescent Supply Current (IDD) Characteristics, IGLOO Flash*Freeze Mode*, Table 2-10 • Quiescent Supply Current (IDD) Characteristics, IGLOO Sleep Mode*, and Table 2-11 • Quiescent Supply Current (IDD) Characteristics, IGLOO Shutdown Mode were updated to remove VMV and include PDC6 and PDC7. VCCI and VJTAG were removed from the statement about IDD in the table note for Table 2-11 • Quiescent Supply Current (IDD) Characteristics, IGLOO Shutdown Mode.	2-7
	Note 2 of Table 2-12 • Quiescent Supply Current (IDD), No IGLOO Flash*Freeze Mode1 was updated to include VCCPLL. Note 4 was updated to include PDC6 and PDC7.	2-9