

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

E·XFI

Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	24576
Total RAM Bits	147456
Number of I/O	177
Number of Gates	1000000
Voltage - Supply	1.14V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 70°C (TA)
Package / Case	256-LBGA
Supplier Device Package	256-FPBGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/m1agl1000v2-fgg256

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

 Table 2-32 •
 Summary of I/O Timing Characteristics—Software Default Settings, Std. Speed Grade, Commercial-Case

 Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI (per standard)

 Applicable to Standard Plus I/O Banks

//O Standard	Drive Strength	Equivalent Software Default Drive Strength Option ¹ (mA ⁾	Slew Rate	, Capacitive Load (pF)	External Resistor (Ω)	toour (ns)	t _{DP} (ns)	t _{DIN} (ns)	t _{PY} (ns)	teour (ns)	tzL (ns)	t _{zH} (ns)	t _{LZ} (ns)	t _{Hz} (ns)	tzLS (ns)	t _{zHS} (ns)	Units
3.3 V LVTTL / 3.3 V LVCMOS	12 mA	12	High	5	_	0.97	1.75	0.18	0.85	0.66	1.79	1.40	2.36	2.79	5.38	4.99	ns
3.3 V LVCMOS Wide Range ²	100 µA	12	High	5	_	0.97	2.45	0.18	1.20	0.66	2.47	1.92	3.33	3.90	6.06	5.51	ns
2.5 V LVCMOS	12 mA	12	High	5	—	0.97	1.75	0.18	1.08	0.66	1.79	1.52	2.38	2.70	5.39	5.11	ns
1.8 V LVCMOS	8 mA	8	High	5	_	0.97	1.97	0.18	1.01	0.66	2.02	1.76	2.46	2.66	5.61	5.36	ns
1.5 V LVCMOS	4 mA	4	High	5	-	0.97	2.25	0.18	1.18	0.66	2.30	2.00	2.53	2.68	5.89	5.59	ns
3.3 V PCI	Per PCI spec	_	High	10	25 ²	0.97	1.97	0.18	0.73	0.66	2.01	1.50	2.36	2.79	5.61	5.10	ns
3.3 V PCI-X	Per PCI- X spec	—	High	10	25 ²	0.97	1.97	0.19	0.70	0.66	2.01	1.50	2.36	2.79	5.61	5.10	ns

1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ±100 μA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.

2. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD-8B specification.

3. Resistance is used to measure I/O propagation delays as defined in PCI specifications. See Figure 2-12 on page 2-79 for connectivity. This resistor is not required during normal operation.

4. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

Table 2-35 • Summary of I/O Timing Characteristics—Software Default Settings, Std. Speed Grade, Commercial-CaseConditions: T_J = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI (per standard)Applicable to Standard Plus I/O Banks

I/O Standard	Drive Strength	Equivalent Software Default Drive Strength Option ¹ (mA)	Slew Rate	Capacitive Load (pF)	External Resistor (Ω)	t _{bour} (ns)	t _{DP} (ns)	t _{DIN} (ns)	t _{PY} (ns)	t _{EOUT} (ns)	t _{ZL} (ns)	tzt) (su)	t _{LZ} (ns)	t _{HZ} (ns)	t _{ZLS} (ns)	t _{ZHS} (ns)	Units
3.3 V LVTTL / 3.3 V LVCMOS	12 mA	12	High	5	_	1.55	2.31	0.26	0.97	1.10	2.34	1.86	2.93	3.64	8.12	7.65	ns
3.3 V LVCMOS Wide Range ²	100 µA	12	High	5	_	1.55	3.20	0.26	1.32	1.10	3.20	2.52	4.01	4.97	8.99	8.31	ns
2.5 V LVCMOS	12 mA	12	High	5	—	1.55	2.29	0.26	1.19	1.10	2.32	1.94	2.94	3.52	8.10	7.73	ns
1.8 V LVCMOS	8 mA	8	High	5	_	1.55	2.43	0.26	1.11	1.10	2.47	2.16	2.99	3.39	8.25	7.94	ns
1.5 V LVCMOS	4 mA	4	High	5	_	1.55	2.68	0.26	1.27	1.10	2.72	2.39	3.07	3.37	8.50	8.18	ns
1.2 V LVCMOS	2 mA	2	High	5	_	1.55	3.22	0.26	1.59	1.10	3.11	2.78	3.29	3.48	8.90	8.57	ns
1.2 V LVCMOS Wide Range ³	100 µA	2	High	5	-	1.55	3.22	0.26	1.59	1.10	3.11	2.78	3.29	3.48	8.90	8.57	ns
3.3 V PCI	Per PCI spec	-	High	10	25 ²	1.55	2.53	0.26	0.84	1.10	2.57	1.98	2.93	3.64	8.35	7.76	ns
3.3 V PCI-X	Per PCI-X spec	-	High	10	25 ²	1.55	2.53	0.25	0.85	1.10	2.57	1.98	2.93	3.64	8.35	7.76	ns

 The minimum drive strength for any LVCMOS 1.2 V or LVCMOS 3.3 V software configuration when run in wide range is ±100 μA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.

2. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD-8B specification.

3. All LVCMOS 1.2 V software macros support LVCMOS 1.2 V wide range as specified in the JESD8-12 specification

4. Resistance is used to measure I/O propagation delays as defined in PCI specifications. See Figure 2-12 on page 2-79 for connectivity. This resistor is not required during normal operation.

5. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

Table 2-40 • I/O Output Buffer Maximum Resistances¹ Applicable to Standard I/O Banks

Standard	Drive Strength	R _{PULL-DOWN} (Ω) ²	R _{PULL-UP} (Ω) ³
3.3 V LVTTL / 3.3 V LVCMOS	2 mA	100	300
	4 mA	100	300
	6 mA	50	150
	8 mA	50	150
3.3 V LVCMOS Wide Range	100 μA	Same as regular 3.3 V LVCMOS	Same as regular 3.3 V LVCMOS
2.5 V LVCMOS	2 mA	100	200
	4 mA	100	200
	6 mA	50	100
	8 mA	50	100
1.8 V LVCMOS	2 mA	200	225
	4 mA	100	112
1.5 V LVCMOS	2 mA	200	224
1.2 V LVCMOS	1 mA	158	164
1.2 V LVCMOS Wide Range ⁴	100 μA	Same as regular 1.2 V LVCMOS	Same as regular 1.2 V LVCMOS

Notes:

1. These maximum values are provided for informational reasons only. Minimum output buffer resistance values depend on VCCI, drive strength selection, temperature, and process. For board design considerations and detailed output buffer resistances, use the corresponding IBIS models located at http://www.microsemi.com/soc/download/ibis/default.aspx.

2. R_(PULL-DOWN-MAX) = (VOLspec) / I_{OLspec}

3. R_(PULL-UP-MAX) = (VCCImax - VOHspec) / I_{OHspec}

Table 2-41 • I/O Weak Pull-Up/Pull-Down Resistances Minimum and Maximum Weak Pull-Up/Pull-Down Resistance Values

	R _{(WEAK I}	PULL-UP) ¹ 2)	R _{(WEAK PL})	JLL-DOWN) ² ଦ)
VCCI	Min.	Max.	Min.	Max.
3.3 V	10 K	45 K	10 K	45 K
3.3 V Wide Range I/Os	10 K	45 K	10 K	45 K
2.5 V	11 K	55 K	12 K	74 K
1.8 V	18 K	70 K	17 K	110 K
1.5 V	19 K	90 K	19 K	140 K
1.2 V	25 K	110 K	25 K	150 K
1.2 V Wide Range I/Os	19 K	110 K	19 K	150 K

Notes:

1. R_(WEAK PULL-UP-MAX) = (VCCImax – VOHspec) / I_(WEAK PULL-UP-MIN)

2. R_(WEAK PULLDOWN-MAX) = (VOLspec) / I_(WEAK PULLDOWN-MIN)

Table 2-69 • 3.3 V LVCMOS Wide Range Low Slew – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.7 V
Applicable to Standard Plus Banks

Drive Strength	Equivalent Software Default Drive Strength Option ¹	Speed Grade	t _{dout}	t _{DP}	t _{DIN}	t _{PY}	t _{eout}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{ZHS}	Units
100 µA	2 mA	Std.	0.97	5.84	0.18	1.20	0.66	5.86	5.04	2.74	2.71	9.46	8.64	ns
100 µA	4 mA	Std.	0.97	5.84	0.18	1.20	0.66	5.86	5.04	2.74	2.71	9.46	8.64	ns
100 µA	6 mA	Std.	0.97	4.76	0.18	1.20	0.66	4.78	4.33	3.09	3.33	8.37	7.93	ns
100 µA	8 mA	Std.	0.97	4.76	0.18	1.20	0.66	4.78	4.33	3.09	3.33	8.37	7.93	ns
100 µA	12 mA	Std.	0.97	4.02	0.18	1.20	0.66	4.04	3.78	3.33	3.73	7.64	7.37	ns
100 µA	16 mA	Std.	0.97	4.02	0.18	1.20	0.66	4.04	3.78	3.33	3.73	7.64	7.37	ns

1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ± 100 μA. Drive strengths displayed in software are supported for normal range only. For a detailed I/V curve, refer to the IBIS models.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

Table 2-70 • 3.3 V LVCMOS Wide Range High Slew – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.7 V
Applicable to Standard Plus Banks

Drive Strength	Equivalent Software Default Drive Strength Option ¹	Speed Grade	t _{dout}	t _{DP}	t _{DIN}	t _{PY}	t _{eout}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{ZHS}	Units
100 µA	2 mA	Std.	0.97	3.33	0.18	1.20	0.66	3.35	2.68	2.73	2.88	6.94	6.27	ns
100 µA	4 mA	Std.	0.97	3.33	0.18	1.20	0.66	3.35	2.68	2.73	2.88	6.94	6.27	ns
100 µA	6 mA	Std.	0.97	2.75	0.18	1.20	0.66	2.77	2.17	3.08	3.50	6.36	5.77	ns
100 µA	8 mA	Std.	0.97	2.75	0.18	1.20	0.66	2.77	2.17	3.08	3.50	6.36	5.77	ns
100 µA	12 mA	Std.	0.97	2.45	0.18	1.20	0.66	2.47	1.92	3.33	3.90	6.06	5.51	ns
100 µA	16 mA	Std.	0.97	2.45	0.18	1.20	0.66	2.47	1.92	3.33	3.90	6.06	5.51	ns

Notes:

1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ± 100 μA. Drive strengths displayed in software are supported for normal range only. For a detailed I/V curve, refer to the IBIS models.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

3. Software default selection highlighted in gray.

Applies to 1.2 V DC Core Voltage

Table 2-73 • 3.3 V LVCMOS Wide Range Low Slew – Applies to 1.2 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 2.7 V
Applicable to Advanced Banks

Drive Strength	Equivalent Software Default Drive Strength Option ¹	Speed Grade	t _{dout}	t _{DP}	t _{DIN}	t _{PY}	t _{eout}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{ZHS}	Units
100 µA	2 mA	Std.	1.55	7.52	0.26	1.32	1.10	7.52	6.38	3.84	4.02	13.31	12.16	ns
100 µA	4 mA	Std.	1.55	7.52	0.26	1.32	1.10	7.52	6.38	3.84	4.02	13.31	12.16	ns
100 µA	6 mA	Std.	1.55	6.37	0.26	1.32	1.10	6.37	5.57	4.23	4.73	12.16	11.35	ns
100 µA	8 mA	Std.	1.55	6.37	0.26	1.32	1.10	6.37	5.57	4.23	4.73	12.16	11.35	ns
100 µA	12 mA	Std.	1.55	5.55	0.26	1.32	1.10	5.55	4.96	4.50	5.18	11.34	10.75	ns
100 µA	16 mA	Std.	1.55	5.32	0.26	1.32	1.10	5.32	4.82	4.56	5.29	11.10	10.61	ns
100 µA	24 mA	Std.	1.55	5.19	0.26	1.32	1.10	5.19	4.85	4.63	5.74	10.98	10.63	ns

Notes:

1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ± 100 μA. Drive strengths displayed in software are supported for normal range only. For a detailed I/V curve, refer to the IBIS models.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

Table 2-74 • 3.3 V LVCMOS Wide Range High Slew – Applies to 1.2 V DC Core VoltageCommercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 2.7Applicable to Advanced Banks

Drive Strength	Equivalent Software Default Drive Strength Option ¹	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{eout}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{ZHS}	Units
100 µA	2 mA	Std.	1.55	4.75	0.26	1.32	1.10	4.75	3.77	3.84	4.27	10.54	9.56	ns
100 µA	4 mA	Std.	1.55	4.75	0.26	1.32	1.10	4.75	3.77	3.84	4.27	10.54	9.56	ns
100 µA	6 mA	Std.	1.55	4.10	0.26	1.32	1.10	4.10	3.19	4.24	4.98	9.88	8.98	ns
100 µA	8 mA	Std.	1.55	4.10	0.26	1.32	1.10	4.10	3.19	4.24	4.98	9.88	8.98	ns
100 µA	12 mA	Std.	1.55	3.73	0.26	1.32	1.10	3.73	2.91	4.51	5.43	9.52	8.69	ns
100 µA	16 mA	Std.	1.55	3.67	0.26	1.32	1.10	3.67	2.85	4.57	5.55	9.46	8.64	ns
100 µA	24 mA	Std.	1.55	3.70	0.26	1.32	1.10	3.70	2.79	4.65	6.01	9.49	8.58	ns

Notes:

1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ± 100 μA. Drive strengths displayed in software are supported for normal range only. For a detailed I/V curve, refer to the IBIS models.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

3. Software default selection highlighted in gray.

1.2 V DC Core Voltage

Table 2-145 • 3.3 V PCI/PCI-X

```
Commercial-Case Conditions: T_J = 70^{\circ}C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 3.0 V
Applicable to Advanced I/O Banks
```

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
Std.	1.55	2.91	0.25	0.86	1.10	2.95	2.29	3.25	3.93	8.74	8.08	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.

Table 2-146 • 3.3 V PCI/PCI-X

Commercial-Case Conditions: $T_J = 70^{\circ}$ C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 3.0 V Applicable to Standard Plus I/O Banks

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
Std.	1.55	2.53	0.25	0.85	1.10	2.57	1.98	2.93	3.64	8.35	7.76	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.

Differential I/O Characteristics

Physical Implementation

Configuration of the I/O modules as a differential pair is handled by Microsemi Designer software when the user instantiates a differential I/O macro in the design.

Differential I/Os can also be used in conjunction with the embedded Input Register (InReg), Output Register (OutReg), Enable Register (EnReg), and Double Data Rate (DDR). However, there is no support for bidirectional I/Os or tristates with the LVPECL standards.

LVDS

Low-Voltage Differential Signaling (ANSI/TIA/EIA-644) is a high-speed, differential I/O standard. It requires that one data bit be carried through two signal lines, so two pins are needed. It also requires external resistor termination.

The full implementation of the LVDS transmitter and receiver is shown in an example in Figure 2-13. The building blocks of the LVDS transmitter-receiver are one transmitter macro, one receiver macro, three board resistors at the transmitter end, and one resistor at the receiver end. The values for the three driver resistors are different from those used in the LVPECL implementation because the output standard specifications are different.

Along with LVDS I/O, IGLOO also supports Bus LVDS structure and Multipoint LVDS (M-LVDS) configuration (up to 40 nodes).

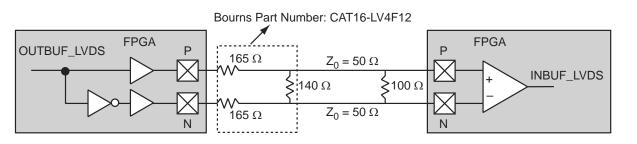


Figure 2-13 • LVDS Circuit Diagram and Board-Level Implementation

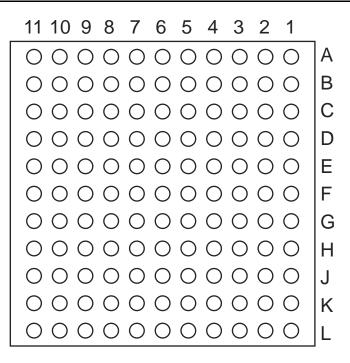
1.2 V DC Core Voltage

Table 2-193 • RAM4K9

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V

Parameter	Description	Std.	Units
t _{AS}	Address setup time	1.53	ns
t _{AH}	Address hold time	0.29	ns
t _{ENS}	REN WEN setup time	1.50	ns
t _{ENH}	REN, WEN hold time	0.29	ns
t _{BKS}	BLK setup time	3.05	ns
t _{BKH}	BLK hold time	0.29	ns
t _{DS}	Input data (DIN) setup time	1.33	ns
t _{DH}	Input data (DIN) hold time	0.66	ns
t _{CKQ1}	Clock High to new data valid on DOUT (output retained, WMODE = 0)	6.61	ns
	Clock High to new data valid on DOUT (flow-through, WMODE = 1)	5.72	ns
t _{CKQ2}	Clock High to new data valid on DOUT (pipelined)	3.38	ns
t _{C2CWWL} 1	Address collision clk-to-clk delay for reliable write after write on same address – Applicable to Closing Edge	0.30	ns
t _{C2CRWH} 1	Address collision clk-to-clk delay for reliable read access after write on same address – Applicable to Opening Edge	0.89	ns
t _{C2CWRH} 1	Address collision clk-to-clk delay for reliable write access after read on same address – Applicable to Opening Edge	1.01	ns
t _{RSTBQ}	RESET Low to data out Low on DOUT (flow-through)	3.86	ns
	RESET Low to data out Low on DOUT (pipelined)	3.86	ns
t _{REMRSTB}	RESET removal	1.12	ns
t _{RECRSTB}	RESET recovery	5.93	ns
t _{MPWRSTB}	RESET minimum pulse width	1.18	ns
t _{CYC}	Clock cycle time	10.90	ns
F _{MAX}	Maximum frequency	92	MHz

Notes:


1. For more information, refer to the application note Simultaneous Read-Write Operations in Dual-Port SRAM for Flash-Based cSoCs and FPGAs.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

Package Pin Assignments

CS121

Note: This is the bottom view of the package.

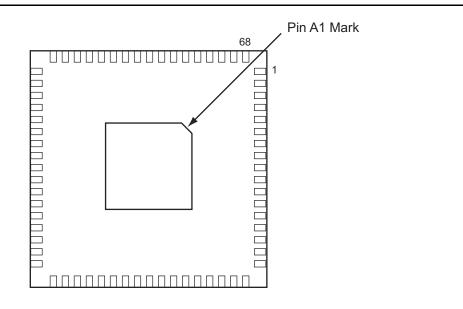
Note

For more information on package drawings, see PD3068: Package Mechanical Drawings.

Microsemi

IGLOO Low Power Flash FPGAs

	CS121		CS121		CS121
Pin Number	AGL060 Function	Pin Number	AGL060 Function	Pin Number	AGL060 Function
A1	GNDQ	D4	IO10RSB0	G7	VCC
A2	IO01RSB0	D5	IO11RSB0	G8	GDC0/IO46RSB0
A3	GAA1/IO03RSB0	D6	IO18RSB0	G9	GDA1/IO49RSB0
A4	GAC1/IO07RSB0	D7	IO32RSB0	G10	GDB0/IO48RSB0
A5	IO15RSB0	D8	IO31RSB0	G11	GCA0/IO40RSB0
A6	IO13RSB0	D9	GCA2/IO41RSB0	H1	IO75RSB1
A7	IO17RSB0	D10	IO30RSB0	H2	IO76RSB1
A8	GBB1/IO22RSB0	D11	IO33RSB0	H3	GFC2/IO78RSB1
A9	GBA1/IO24RSB0	E1	IO87RSB1	H4	GFA2/IO80RSB1
A10	GNDQ	E2	GFC0/IO85RSB1	H5	IO77RSB1
A11	VMV0	E3	IO92RSB1	H6	GEC2/IO66RSB1
B1	GAA2/IO95RSB1	E4	IO94RSB1	H7	IO54RSB1
B2	IO00RSB0	E5	VCC	H8	GDC2/IO53RSB1
B3	GAA0/IO02RSB0	E6	VCCIB0	H9	VJTAG
B4	GAC0/IO06RSB0	E7	GND	H10	TRST
B5	IO08RSB0	E8	GCC0/IO36RSB0	H11	IO44RSB0
B6	IO12RSB0	E9	IO34RSB0	J1	GEC1/IO74RSB1
B7	IO16RSB0	E10	GCB1/IO37RSB0	J2	GEC0/IO73RSB1
B8	GBC1/IO20RSB0	E11	GCC1/IO35RSB0	J3	GEB1/IO72RSB1
B9	GBB0/IO21RSB0	F1*	VCOMPLF	J4	GEA0/IO69RSB1
B10	GBB2/IO27RSB0	F2	GFB0/IO83RSB1	J5	FF/GEB2/IO67RSB
B11	GBA2/IO25RSB0	F3	GFA0/IO82RSB1	J6	IO62RSB1
C1	IO89RSB1	F4	GFC1/IO86RSB1	J7	GDA2/IO51RSB1
C2	GAC2/IO91RSB1	F5	VCCIB1	J8	GDB2/IO52RSB1
C3	GAB1/IO05RSB0	F6	VCC	J9	TDI
C4	GAB0/IO04RSB0	F7	VCCIB0	J10	TDO
C5	IO09RSB0	F8	GCB2/IO42RSB0	J11	GDC1/IO45RSB0
C6	IO14RSB0	F9	GCC2/IO43RSB0	K1	GEB0/IO71RSB1
C7	GBA0/IO23RSB0	F10	GCB0/IO38RSB0	K2	GEA1/IO70RSB1
C8	GBC0/IO19RSB0	F11	GCA1/IO39RSB0	K3	GEA2/IO68RSB1
C9	IO26RSB0	G1*	VCCPLF	K4	IO64RSB1
C10	IO28RSB0	G2	GFB2/IO79RSB1	K5	IO60RSB1
C11	GBC2/IO29RSB0	G3	GFA1/IO81RSB1	K6	IO59RSB1
D1	IO88RSB1	G4	GFB1/IO84RSB1	K7	IO56RSB1
D2	IO90RSB1	G5	GND	K8	ТСК
D3	GAB2/IO93RSB1	G6	VCCIB1	К9	TMS


Note: *Pin numbers F1 and G1 must be connected to ground because a PLL is not supported for AGL060-CS/G121.

Microsemi

Package Pin Assignments

QN48		
Pin Number AGL030 Function		
1	IO82RSB1	
2	GEC0/IO73RSB1	
3	GEA0/IO72RSB1	
4	GEB0/IO71RSB1	
5	GND	
6	VCCIB1	
7	IO68RSB1	
8	IO67RSB1	
9	IO66RSB1	
10	IO65RSB1	
11	IO64RSB1	
12	IO62RSB1	
13	IO61RSB1	
14	FF/IO60RSB1	
15	IO57RSB1	
16	IO55RSB1	
17	IO53RSB1	
18	VCC	
19	VCCIB1	
20	IO46RSB1	
21	IO42RSB1	
22	ТСК	
23	TDI	
24	TMS	
25	VPUMP	
26	TDO	
27	TRST	
28	VJTAG	
29	IO38RSB0	
30	GDB0/IO34RSB0	
31	GDA0/IO33RSB0	
32	GDC0/IO32RSB0	
33	VCCIB0	
34	GND	
35	VCC	
36	IO25RSB0	

QN48		
Pin Number	AGL030 Function	
37	IO24RSB0	
38	IO22RSB0	
39	IO20RSB0	
40	IO18RSB0	
41	IO16RSB0	
42	IO14RSB0	
43	IO10RSB0	
44	IO08RSB0	
45	IO06RSB0	
46	IO04RSB0	
47	IO02RSB0	
48	IO00RSB0	

- 1. This is the bottom view of the package.
- 2. The die attach paddle center of the package is tied to ground (GND).

Note

For more information on package drawings, see PD3068: Package Mechanical Drawings.

Package Pin Assignments

FG256		
Pin Number	AGL1000 Function	
R5	IO168RSB2	
R6	IO163RSB2	
R7	IO157RSB2	
R8	IO149RSB2	
R9	IO143RSB2	
R10	IO138RSB2	
R11	IO131RSB2	
R12	IO125RSB2	
R13	GDB2/IO115RSB2	
R14	TDI	
R15	GNDQ	
R16	TDO	
T1	GND	
T2	IO183RSB2	
Т3	FF/GEB2/IO186RSB2	
T4	IO172RSB2	
T5	IO170RSB2	
Т6	IO164RSB2	
T7	IO158RSB2	
Т8	IO153RSB2	
Т9	IO142RSB2	
T10	IO135RSB2	
T11	IO130RSB2	
T12	GDC2/IO116RSB2	
T13	IO120RSB2	
T14	GDA2/IO114RSB2	
T15	TMS	
T16	GND	

FG484		
Pin Number AGL400 Function		
G5	IO151UDB3	
G6	GAC2/IO153UDB3	
G7	IO06RSB0	
G8	GNDQ	
G9	IO10RSB0	
G10	IO19RSB0	
G11	IO26RSB0	
G12	IO30RSB0	
G13	IO40RSB0	
G14	IO46RSB0	
G15	GNDQ	
G16	IO47RSB0	
G17	GBB2/IO61PPB1	
G18	IO53RSB0	
G19	IO63NDB1	
G20	NC	
G21	NC	
G22	NC	
H1	NC	
H2	NC	
H3	VCC	
H4	IO150PDB3	
H5	IO08RSB0	
H6	IO153VDB3	
H7	IO152VDB3	
H8	VMV0	
H9	VCCIB0	
H10	VCCIB0	
H11	IO25RSB0	
H12	IO31RSB0	
H13	VCCIB0	
H14	VCCIB0	
H15	VMV1	
H16	GBC2/IO62PDB1	
H17	IO65RSB1	
H18	IO52RSB0	

FG484		
Pin Number	AGL400 Function	
N17	IO74RSB1	
N18	IO72NPB1	
N19	IO70NDB1	
N20	NC	
N21	NC	
N22	NC	
P1	NC	
P2	NC	
P3	NC	
P4	IO142NDB3	
P5	IO141NPB3	
P6	IO125RSB2	
P7	IO139RSB3	
P8	VCCIB3	
P9	GND	
P10	VCC	
P11	VCC	
P12	VCC	
P13	VCC	
P14	GND	
P15	VCCIB1	
P16	GDB0/IO78VPB1	
P17	IO76VDB1	
P18	IO76UDB1	
P19	IO75PDB1	
P20	NC	
P21	NC	
P22	NC	
R1	NC	
R2	NC	
R3	VCC	
R4	IO140PDB3	
R5	IO130RSB2	
R6	IO138NPB3	
R7	GEC0/IO137NPB3	
R8	VMV3	

Package Pin Assignments

FG484		
Pin Number AGL400 Function		
R9	VCCIB2	
R10	VCCIB2	
R11	IO108RSB2	
R12	IO101RSB2	
R13	VCCIB2	
R14	VCCIB2	
R15	VMV2	
R16	IO83RSB2	
R17	GDB1/IO78UPB1	
R18	GDC1/IO77UDB1	
R19	IO75NDB1	
R20	VCC	
R21	NC	
R22	NC	
T1	NC	
T2	NC	
Т3	NC	
T4	IO140NDB3	
T5	IO138PPB3	
T6	GEC1/IO137PPB3	
T7	IO131RSB2	
Т8	GNDQ	
Т9	GEA2/IO134RSB2	
T10	IO117RSB2	
T11	IO111RSB2	
T12	IO99RSB2	
T13	IO94RSB2	
T14	IO87RSB2	
T15	GNDQ	
T16	IO93RSB2	
T17	VJTAG	
T18	GDC0/IO77VDB1	
T19	GDA1/IO79UDB1	
T20	NC	
T21	NC	
T22	NC	

FG484		
Pin Number AGL600 Function		
M3	IO158NPB3	
M4	GFA2/IO161PPB3	
M5	GFA1/IO162PDB3	
M6	VCCPLF	
M7	IO160NDB3	
M8	GFB2/IO160PDB3	
M9	VCC	
M10	GND	
M11	GND	
M12	GND	
M13	GND	
M14	VCC	
M15	GCB2/IO73PPB1	
M16	GCA1/IO71PPB1	
M17	GCC2/IO74PPB1	
M18	IO80PPB1	
M19	GCA2/IO72PDB1	
M20	IO79PPB1	
M21	IO78PPB1	
M22	NC	
N1	IO154NDB3	
N2	IO154PDB3	
N3	NC	
N4	GFC2/IO159PDB3	
N5	IO161NPB3	
N6	IO156PPB3	
N7	IO129RSB2	
N8	VCCIB3	
N9	VCC	
N10	GND	
N11	GND	
N12	GND	
N13	GND	
N14	VCC	
N15	VCCIB1	
N16	IO73NPB1	

FG484		
Pin Number AGL600 Function		
R9	VCCIB2	
R10	VCCIB2	
R11	IO117RSB2	
R12	IO110RSB2	
R13	VCCIB2	
R14	VCCIB2	
R15	VMV2	
R16	IO94RSB2	
R17	GDB1/IO87PPB1	
R18	GDC1/IO86PDB1	
R19	IO84NDB1	
R20	VCC	
R21	IO81NDB1	
R22	IO82PDB1	
T1	IO152PDB3	
T2	IO152NDB3	
Т3	NC	
T4	IO150NDB3	
T5	IO147PPB3	
Т6	GEC1/IO146PPB3	
T7	IO140RSB2	
Т8	GNDQ	
Т9	GEA2/IO143RSB2	
T10	IO126RSB2	
T11	IO120RSB2	
T12	IO108RSB2	
T13	IO103RSB2	
T14	IO99RSB2	
T15	GNDQ	
T16	IO92RSB2	
T17	VJTAG	
T18	GDC0/IO86NDB1	
T19	GDA1/IO88PDB1	
T20	NC	
T21	IO83PDB1	
T22	IO82NDB1	

IGLOO Low Power Flash FPGAs

Revision	Changes	Page
Revision 23 (December 2012)	The "IGLOO Ordering Information" section has been updated to mention "Y" as "Blank" mentioning "Device Does Not Include License to Implement IP Based on the Cryptography Research, Inc. (CRI) Patent Portfolio" (SAR 43173).	III
	The note in Table 2-189 · IGLOO CCC/PLL Specification and Table 2-190 · IGLOO CCC/PLL Specification referring the reader to SmartGen was revised to refer instead to the online help associated with the core (SAR 42564). Additionally, note regarding SSOs was added.	2-115, 2-116
	Live at Power-Up (LAPU) has been replaced with 'Instant On'.	NA
Revision 22 (September 2012)	The "Security" section was modified to clarify that Microsemi does not support read- back of programmed data.	1-2
	Libero Integrated Design Environment (IDE) was changed to Libero System-on-Chip (SoC) throughout the document (SAR 40271).	N/A
Revision 21 (May 2012)	Under AGL125, in the Package Pin list, CS121 was incorrectly added to the datasheet in revision 19 and has been removed (SAR 38217).	I to IV
	Corrected the inadvertent error for Max Values for LVPECL VIH and revised the same to '3.6' in Table 2-151 · Minimum and Maximum DC Input and Output Levels (SAR 37685).	2-82
	Figure 2-38 • FIFO Read and Figure 2-39 • FIFO Write have been added (SAR 34841).	2-127
	The following sentence was removed from the VMVx description in the "Pin Descriptions" section: "Within the package, the VMV plane is decoupled from the simultaneous switching noise originating from the output buffer VCCI domain" and replaced with "Within the package, the VMV plane biases the input stage of the I/Os in the I/O banks" (SAR 38317). The datasheet mentions that "VMV pins must be connected to the corresponding VCCI pins" for an ESD enhancement.	3-1

Datasheet Information

Revision	Changes	Page
Revision 19	The following figures were deleted (SAR 29991). Reference was made to a new application note, <i>Simultaneous Read-Write Operations in Dual-Port SRAM for Flash-Based cSoCs and FPGAs</i> , which covers these cases in detail (SAR 21770).	N/A
	Figure 2-36 • Write Access after Write onto Same Address	
	Figure 2-37 • Read Access after Write onto Same Address	
	Figure 2-38 • Write Access after Read onto Same Address	2-119 to
	The port names in the SRAM "Timing Waveforms", SRAM "Timing Characteristics" tables, Figure 2-40 • FIFO Reset, and the FIFO "Timing Characteristics" tables were revised to ensure consistency with the software names (SARs 29991, 30510).	2-130
	The "Pin Descriptions" chapter has been added (SAR 21642).	3-1
	Package names used in the "Package Pin Assignments" section were revised to match standards given in <i>Package Mechanical Drawings</i> (SAR 27395).	4-1
	The "CS81" pin table for AGL250 is new (SAR 22737).	4-5
	The CS121 pin table for AGL125 is new (SAR 22737).	
	The P3 function was revised in the "CS196" pin table for AGL250 (SAR 24800).	4-12
	The "QN132" pin table for AGL250 was added.	4-35,
	The "FG144" pin table for AGL060 was added (SAR 33689)	4-42
July 2010	The versioning system for datasheets has been changed. Datasheets are assigned a revision number that increments each time the datasheet is revised. The "IGLOO Device Status" table indicates the status for each device in the device family.	N/A

Microsemi

IGLOO Low Power Flash FPGAs

Revision / Version	Changes	Page
Revision 3 (Feb 2008) Product Brief rev. 2	This document was updated to include AGL015 device information. QN68 is a new package offered in the AGL015. The following sections were updated: "Features and Benefits" "IGLOO Ordering Information" "Temperature Grade Offerings" "IGLOO Devices" Product Family Table Table 1 • IGLOO FPGAs Package Sizes Dimensions "AGL015 and AGL030" note The "Temperature Grade Offerings" table was updated to include M1AGL600. In the "IGLOO Ordering Information" table, the QN package measurements were updated to include both 0.4 mm and 0.5 mm.	N/A IV III
	In the "General Description" section, the number of I/Os was updated from 288 to 300.	1-1
Packaging v1.2	The "QN68" section is new.	4-25
Revision 2 (Jan 2008) Packaging v1.1	The "CS196" package and pin table was added for AGL125.	4-10
Revision 1 (Jan 2008) Product Brief rev. 1	The "Low Power" section was updated to change the description of low power active FPGA operation to "from 12 μ W" from "from 25 μ W." The same update was made in the "General Description" section and the "Flash*Freeze Technology" section.	l, 1-1
Revision 0 (Jan 2008)	This document was previously in datasheet Advance v0.7. As a result of moving to the handbook format, Actel has restarted the numbering.	N/A
Advance v0.7 (December 2007)	Table 1 • IGLOO Product Family, the "I/Os Per Package1" table, and the Temperature Grade Offerings table were updated to reflect the following: CS196 is now supported for AGL250; device/package support for QN132 is to be determined for AGL250; the CS281 package was added for AGL600 and AGL1000.	i, ii, iv
	Table 2 • IGLOO FPGAs Package Sizes Dimensions is new, and package sizes were removed from the "I/Os Per Package1" table.	ii
	The "I/Os Per Package1"table was updated to reflect 77 instead of 79 single- ended I/Os for the VG100 package for AGL030.	ii
	The "Timing Model" was updated to be consistent with the revised timing numbers.	2-20
	In Table 2-27 • Summary of Maximum and Minimum DC Input and Output Levels Applicable to Commercial and Industrial Conditions—Software Default Settings, T_J was changed to T_A in notes 1 and 2.	2-26
	All AC Loading figures for single-ended I/O standards were changed from Datapaths at 35 pF to 5 pF.	N/A
	The "1.2 V LVCMOS (JESD8-12A)" section is new.	2-74
	This document was previously in datasheet Advance v0.7. As a result of moving to the handbook format, Actel has restarted the version numbers. The new version number is Advance v0.1.	N/A
	Table 2-4 • IGLOO CCC/PLL Specification and Table 2-5 • IGLOO CCC/PLL Specification were updated.	2-19, 2-20