

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

E·XFl

Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	24576
Total RAM Bits	147456
Number of I/O	177
Number of Gates	1000000
Voltage - Supply	1.14V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 85°C (TA)
Package / Case	256-LBGA
Supplier Device Package	256-FPBGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/m1agl1000v2-fgg256i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

IGLOO Ordering Information

Note: Marking Information: IGLOO V2 devices do not have V2 marking, but IGLOO V5 devices are marked accordingly.

VersaTiles are connected with any of the four levels of routing hierarchy. Flash switches are distributed throughout the device to provide nonvolatile, reconfigurable interconnect programming. Maximum core utilization is possible for virtually any design.

Figure 1-1 • IGLOO Device Architecture Overview with Two I/O Banks (AGL015, AGL030, AGL060, and AGL125)

Figure 1-2 • IGLOO Device Architecture Overview with Four I/O Banks (AGL250, AGL600, AGL400, and AGL1000)

Temperature and Voltage Derating Factors

Table 2-6 •Temperature and Voltage Derating Factors for Timing Delays (normalized to T_J = 70°C, VCC = 1.425 V)For IGLOO V2 or V5 devices, 1.5 V DC Core Supply Voltage

Array Voltage VCC (V)		Junction Temperature (°C)										
	–40°C	0°C	25°C	70°C	85°C	100°C						
1.425	0.934	0.953	0.971	1.000	1.007	1.013						
1.500	0.855	0.874	0.891	0.917	0.924	0.929						
1.575	0.799	0.816	0.832	0.857	0.864	0.868						

Table 2-7 • Temperature and Voltage Derating Factors for Timing Delays (normalized to T_J = 70°C, VCC = 1.14 V) For IGLOO V2, 1.2 V DC Core Supply Voltage

Array Voltage VCC		Junction Temperature (°C)										
(V)	–40°C	0°C	25°C	70°C	85°C	100°C						
1.14	0.967	0.978	0.991	1.000	1.006	1.010						
1.20	0.864	0.874	0.885	0.894	0.899	0.902						
1.26	0.794	0.803	0.814	0.821	0.827	0.830						

Calculating Power Dissipation

Quiescent Supply Current

Quiescent supply current (IDD) calculation depends on multiple factors, including operating voltages (VCC, VCCI, and VJTAG), operating temperature, system clock frequency, and power modes usage. Microsemi recommends using the PowerCalculator and SmartPower software estimation tools to evaluate the projected static and active power based on the user design, power mode usage, operating voltage, and temperature.

Table 2-8 • Power Supply State per Mode

		Power Supply Configurations									
Modes/power supplies	VCC	VCCPLL	VCCI	VJTAG	VPUMP						
Flash*Freeze	On	On	On	On	On/off/floating						
Sleep	Off	Off	On	Off	Off						
Shutdown	Off	Off	Off	Off	Off						
No Flash*Freeze	On	On	On	On	On/off/floating						

Note: Off: Power supply level = 0 V

Table 2-9 •	Quiescent Supply Current (IDD) Characteristics, IGLOO Flash*Freeze Mod	e*
-------------	--	----

	Core Voltage	AGL015	AGL030	AGL060	AGL125	AGL250	AGL400	AGL600	AGL1000	Units
Typical	1.2 V	4	4	8	13	20	27	30	44	μΑ
(25°C)	1.5 V	6	6	10	18	34	51	72	127	μΑ

Note: *IDD includes VCC, VPUMP, VCCI, VCCPLL, and VMV currents. Values do not include I/O static contribution, which is shown in Table 2-13 on page 2-10 through Table 2-15 on page 2-11 and Table 2-16 on page 2-11 through Table 2-18 on page 2-12 (PDC6 and PDC7).

Power Calculation Methodology

This section describes a simplified method to estimate power consumption of an application. For more accurate and detailed power estimations, use the SmartPower tool in Microsemi Libero SoC software.

The power calculation methodology described below uses the following variables:

- The number of PLLs as well as the number and the frequency of each output clock generated
- The number of combinatorial and sequential cells used in the design
- The internal clock frequencies
- The number and the standard of I/O pins used in the design
- The number of RAM blocks used in the design
- Toggle rates of I/O pins as well as VersaTiles—guidelines are provided in Table 2-23 on page 2-19.
- Enable rates of output buffers—guidelines are provided for typical applications in Table 2-24 on page 2-19.
- Read rate and write rate to the memory—guidelines are provided for typical applications in Table 2-24 on page 2-19. The calculation should be repeated for each clock domain defined in the design.

Methodology

Total Power Consumption—P_{TOTAL}

 $P_{TOTAL} = P_{STAT} + P_{DYN}$

 $\mathsf{P}_{\mathsf{STAT}}$ is the total static power consumption.

P_{DYN} is the total dynamic power consumption.

Total Static Power Consumption—PSTAT

P_{STAT} = (P_{DC1} or P_{DC2} or P_{DC3}) + N_{BANKS} * P_{DC5} + N_{INPUTS} * P_{DC6} + N_{OUTPUTS} * P_{DC7}

N_{INPUTS} is the number of I/O input buffers used in the design.

N_{OUTPUTS} is the number of I/O output buffers used in the design.

N_{BANKS} is the number of I/O banks powered in the design.

Total Dynamic Power Consumption—PDYN

 $P_{DYN} = P_{CLOCK} + P_{S-CELL} + P_{C-CELL} + P_{NET} + P_{INPUTS} + P_{OUTPUTS} + P_{MEMORY} + P_{PLL}$

Global Clock Contribution—P_{CLOCK}

 $P_{CLOCK} = (P_{AC1} + N_{SPINE} * P_{AC2} + N_{ROW} * P_{AC3} + N_{S-CELL} * P_{AC4}) * F_{CLK}$

N_{SPINE} is the number of global spines used in the user design—guidelines are provided in the "Spine Architecture" section of the *IGLOO FPGA Fabric User Guide.*

N_{ROW} is the number of VersaTile rows used in the design—guidelines are provided in the "Spine Architecture" section of the *IGLOO FPGA Fabric User Guide*.

 $\mathsf{F}_{\mathsf{CLK}}$ is the global clock signal frequency.

N_{S-CELL} is the number of VersaTiles used as sequential modules in the design.

P_{AC1}, P_{AC2}, P_{AC3}, and P_{AC4} are device-dependent.

Sequential Cells Contribution—P_{S-CELL}

 $\mathsf{P}_{\text{S-CELL}} = \mathsf{N}_{\text{S-CELL}} * (\mathsf{P}_{\text{AC5}} + \alpha_1 / 2 * \mathsf{P}_{\text{AC6}}) * \mathsf{F}_{\text{CLK}}$

 N_{S-CELL} is the number of VersaTiles used as sequential modules in the design. When a multi-tile sequential cell is used, it should be accounted for as 1.

 α_1 is the toggle rate of VersaTile outputs—guidelines are provided in Table 2-23 on page 2-19.

 F_{CLK} is the global clock signal frequency.

 Table 2-31 •
 Summary of I/O Timing Characteristics—Software Default Settings, Std. Speed Grade, Commercial-Case

 Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI (per standard)

 Applicable to Advanced I/O Banks

I/O Standard	Drive Strength	Equivalent Software Default Drive Strength Option ¹ (mA)	Slew Rate	Capacitive Load (pF)	External Resistor (Ω)	t _{DoUT} (ns)	t _{DP} (ns)	t _{DIN} (ns)	t _{þY} (ns)	t _{Eour} (ns)	t _{ZL} (ns)	t _{zH} (ns)	t _{LZ} (ns)	t _{HZ} (ns)	t _{ZLS} (ns)	t _{zHS} (ns)	Units
3.3 V LVTTL / 3.3 V LVCMOS	12 mA	12	High	5	_	0.97	2.09	0.18	0.85	0.66	2.14	1.68	2.67	3.05	5.73	5.27	ns
3.3 V LVCMOS Wide Range ²	100 µA	12	High	5	_	0.97	2.93	0.18	1.19	0.66	2.95	2.27	3.81	4.30	6.54	5.87	ns
2.5 V LVCMOS	12 mA	12	High	5	_	0.97	2.09	0.18	1.08	0.66	2.14	1.83	2.73	2.93	5.73	5.43	ns
1.8 V LVCMOS	12 mA	12	High	5	—	0.97	2.24	0.18	1.01	0.66	2.29	2.00	3.02	3.40	5.88	5.60	ns
1.5 V LVCMOS	12 mA	12	High	5	—	0.97	2.50	0.18	1.17	0.66	2.56	2.27	3.21	3.48	6.15	5.86	ns
3.3 V PCI	Per PCI spec	_	High	10	25 ²	0.97	2.32	0.18	0.74	0.66	2.37	1.78	2.67	3.05	5.96	5.38	ns
3.3 V PCI-X	Per PCI- X spec	_	High	10	25 ²	0.97	2.32	0.19	0.70	0.66	2.37	1.78	2.67	3.05	5.96	5.38	ns
LVDS	24 mA	-	High	-	-	0.97	1.74	0.19	1.35	—	—	—	—	-	-	-	ns
LVPECL	24 mA	-	High	-	—	0.97	1.68	0.19	1.16	—	-	—	—	-	—	—	ns

Notes:

1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ±100 μA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.

2. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD-8B specification.

3. Resistance is used to measure I/O propagation delays as defined in PCI specifications. See Figure 2-12 on page 2-79 for connectivity. This resistor is not required during normal operation.

4. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

Detailed I/O DC Characteristics

Table 2-37 • Input Capacitance

Symbol	Definition	Conditions	Min.	Max.	Units
C _{IN}	Input capacitance	VIN = 0, f = 1.0 MHz		8	pF
CINCLK	Input capacitance on the clock pin	VIN = 0, f = 1.0 MHz		8	pF

Table 2-38 • I/O Output Buffer Maximum Resistances¹ Applicable to Advanced I/O Banks

Standard	Drive Strength	R _{PULL-DOWN} (Ω) ²	$R_{PULL-UP}$ $(\Omega)^3$
3.3 V LVTTL / 3.3 V LVCMOS	2 mA	100	300
	4 mA	100	300
	6 mA	50	150
	8 mA	50	150
	12 mA	25	75
	16 mA	17	50
	24 mA	11	33
3.3 V LVCMOS Wide Range	100 μA	Same as regular 3.3 V LVCMOS	Same as regular 3.3 V LVCMOS
2.5 V LVCMOS	2 mA	100	200
	4 mA	100	200
	6 mA	50	100
	8 mA	50	100
	12 mA	25	50
	16 mA	20	40
1.5 V LVCMOS	2 mA	200	224
	4 mA	100	112
	6 mA	67	75
	8 mA	33	37
	12 mA	33	37
1.2 V LVCMOS ⁴	2 mA	158	164
1.2 V LVCMOS Wide Range ⁴	100 μA	Same as regular 1.2 V LVCMOS	Same as regular 1.2 V LVCMOS
3.3 V PCI/PCI-X	Per PCI/PCI-X specification	25	75

Notes:

1. These maximum values are provided for informational reasons only. Minimum output buffer resistance values depend on VCCI, drive strength selection, temperature, and process. For board design considerations and detailed output buffer resistances, use the corresponding IBIS models located at http://www.microsemi.com/soc/download/ibis/default.aspx.

2. R_(PULL-DOWN-MAX) = (VOLspec) / I_{OLspec}

3. R_(PULL-UP-MAX) = (VCCImax – VOHspec) / I_{OHspec}

4. Applicable to IGLOO V2 Devices operating at VCCI ≥ VCC

Table 2-42 • I/O Short Currents IOSH/IOSL Applicable to Advanced I/O Banks

	Drive Strength	IOSL (mA)*	IOSH (mA)*
3.3 V LVTTL / 3.3 V LVCMOS	2 mA	25	27
	4 mA	25	27
	6 mA	51	54
	8 mA	51	54
	12 mA	103	109
	16 mA	132	127
	24 mA	268	181
3.3 V LVCMOS Wide Range	100 μA	Same as regular 3.3 V LVCMOS	Same as regular 3.3 V LVCMOS
2.5 V LVCMOS	2 mA	16	18
	4 mA	16	18
	6 mA	32	37
	8 mA	32	37
	12 mA	65	74
	16 mA	83	87
	24 mA	169	124
1.8 V LVCMOS	2 mA	9	11
	4 mA	17	22
	6 mA	35	44
	8 mA	45	51
	12 mA	91	74
	16 mA	91	74
1.5 V LVCMOS	2 mA	13	16
	4 mA	25	33
	6 mA	32	39
	8 mA	66	55
	12 mA	66	55
1.2 V LVCMOS	2 mA	20	26
1.2 V LVCMOS Wide Range	100 μA	20	26
3.3 V PCI/PCI-X	Per PCI/PCI-X specification	103	109

Note: $^{*}T_{J} = 100^{\circ}C$

Table 2-77 • 3.3 V LVCMOS Wide Range Low Slew – Applies to 1.2 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case V_{CC} = 1.14 V, Worst-Case VCCI = 2.7
Applicable to Standard Banks

Drive Strength	Equivalent Software Default Drive Strength Option ¹	Speed Grade	t _{dout}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	Units
100 µA	2 mA	Std.	1.55	6.44	0.26	1.29	1.10	6.44	5.64	2.99	3.28	ns
100 µA	4 mA	Std.	1.55	6.44	0.26	1.29	1.10	6.44	5.64	2.99	3.28	ns
100 µA	6 mA	Std.	1.55	5.41	0.26	1.29	1.10	5.41	4.91	3.35	3.89	ns
100 µA	8 mA	Std.	1.55	5.41	0.26	1.29	1.10	5.41	4.91	3.35	3.89	ns

Notes:

1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ± 100 μA. Drive strengths displayed in software are supported for normal range only. For a detailed I/V curve, refer to the IBIS models.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

Table 2-78 • 3.3 V LVCMOS Wide Range High Slew – Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 2.7 Applicable to Standard Banks

Drive Strength	Equivalent Software Default Drive Strength Option ¹	Speed Grade	t _{dout}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	Units
100 µA	2 mA	Std.	1.55	3.89	0.26	1.29	1.10	3.89	3.13	2.99	3.45	ns
100 µA	4 mA	Std.	1.55	3.89	0.26	1.29	1.10	3.89	3.13	2.99	3.45	ns
100 µA	6 mA	Std.	1.55	3.33	0.26	1.29	1.10	3.33	2.62	3.34	4.07	ns
100 µA	8 mA	Std.	1.55	3.33	0.26	1.29	1.10	3.33	2.62	3.34	4.07	ns

Notes:

1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ± 100 μA. Drive strengths displayed in software are supported for normal range only. For a detailed I/V curve, refer to the IBIS models.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

3. Software default selection highlighted in gray.

Table 2-113 • Minimum and Maximum DC Input and Output Levels Applicable to Standard I/O Banks

1.5 V LVCMOS		VIL	VIH		VOL	VOH	IOL	юн	IOSH	IOSL	IIL ¹	IIH ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
2 mA	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.25 * VCCI	0.75 * VCCI	2	2	13	16	10	10

Notes:

1. IIL is the input leakage current per I/O pin over recommended operation conditions where -0.3 V < VIN < VIL.

- 2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN <V CCI. Input current is larger when operating outside recommended ranges
- 3. Currents are measured at 100°C junction temperature and maximum voltage.
- 4. Currents are measured at 85°C junction temperature.

5. Software default selection highlighted in gray.

Figure 2-10 • AC Loading

Table 2-114 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	C _{LOAD} (pF)
0	1.5	0.75	5

Note: *Measuring point = Vtrip. See Table 2-29 on page 2-28 for a complete table of trip points.

Table 2-123 • 1.5 V LVCMOS Low Slew – Applies to 1.2 V DC Core VoltageCommercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.4 VApplicable to Standard Plus Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{ZHS}	Units
2 mA	Std.	1.55	6.43	0.26	1.27	1.10	6.54	5.95	2.82	2.83	12.32	11.74	ns
4 mA	Std.	1.55	5.59	0.26	1.27	1.10	5.68	5.27	3.07	3.27	11.47	11.05	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.

Table 2-124 • 1.5 V LVCMOS High Slew – Applies to 1.2 V DC Core Voltage

Commercial-Case Conditions: $T_J = 70^{\circ}$ C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.4 V Applicable to Standard Plus Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
2 mA	Std.	1.55	3.02	0.26	1.27	1.10	3.07	2.81	2.82	2.92	8.85	8.59	ns
4 mA	Std.	1.55	2.68	0.26	1.27	1.10	2.72	2.39	3.07	3.37	8.50	8.18	ns

Notes:

1. Software default selection highlighted in gray.

2. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.

Table 2-125 • 1.5 V LVCMOS Low Slew – Applies to 1.2 V DC Core Voltage

Commercial-Case Conditions: $T_J = 70^{\circ}$ C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.4 V Applicable to Standard Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	Units
2 mA	Std.	1.55	6.35	0.26	1.22	1.10	6.46	5.93	2.40	2.46	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.

Table 2-126 • 1.5 V LVCMOS High Slew – Applies to 1.2 V DC Core Voltage

Commercial-Case Conditions: $T_J = 70^{\circ}$ C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.4 V Applicable to Standard Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	Units
2 mA	Std.	1.55	2.92	0.26	1.22	1.10	2.96	2.60	2.40	2.56	ns

Notes:

1. Software default selection highlighted in gray.

2. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.

I/O Register Specifications

Fully Registered I/O Buffers with Synchronous Enable and Asynchronous Preset

Figure 2-16 • Timing Model of Registered I/O Buffers with Synchronous Enable and Asynchronous Preset

Global Tree Timing Characteristics

Global clock delays include the central rib delay, the spine delay, and the row delay. Delays do not include I/O input buffer clock delays, as these are I/O standard–dependent, and the clock may be driven and conditioned internally by the CCC module. For more details on clock conditioning capabilities, refer to the "Clock Conditioning Circuits" section on page 2-115. Table 2-173 to Table 2-188 on page 2-114 present minimum and maximum global clock delays within each device. Minimum and maximum delays are measured with minimum and maximum loading.

Timing Characteristics

1.5 V DC Core Voltage

Table 2-173 • AGL015 Global Resource

Commercial-Case Conditions: T_J = 70°C, VCC = 1.425 V

		S	Std.	
Parameter	Description	Min. ¹	Max. ²	Units
t _{RCKL}	Input Low Delay for Global Clock	1.21	1.42	ns
t _{RCKH}	Input High Delay for Global Clock	1.23	1.49	ns
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock	1.18		ns
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock	1.15		ns
t _{RCKSW}	Maximum Skew for Global Clock		0.27	ns

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

Table 2-174 • AGL030 Global Resource

Commercial-Case Conditions: T_J = 70°C, VCC = 1.425 V

	S		td.	
Parameter	Description	Min. ¹	Max. ²	Units
t _{RCKL}	Input Low Delay for Global Clock	1.21	1.42	ns
t _{RCKH}	Input High Delay for Global Clock	1.23	1.49	ns
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock	1.18		ns
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock	1.15		ns
t _{RCKSW}	Maximum Skew for Global Clock		0.27	ns

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

Embedded FlashROM Characteristics

Figure 2-45 • Timing Diagram

Timing Characteristics

1.5 V DC Core Voltage

Table 2-197 • Embedded FlashROM Access TimeWorst Commercial-Case Conditions: T_J = 70°C, VCC = 1.425 V

Parameter	Description	Std.	Units
t _{SU}	Address Setup Time	0.57	ns
t _{HOLD}	Address Hold Time	0.00	ns
t _{СК2Q}	Clock to Out	34.14	ns
F _{MAX}	Maximum Clock Frequency	15	MHz

1.2 V DC Core Voltage

Table 2-198 • Embedded FlashROM Access TimeWorst Commercial-Case Conditions: $T_J = 70^{\circ}$ C, VCC = 1.14 V

Parameter	Description	Std.	Units
t _{SU}	Address Setup Time	0.59	ns
t _{HOLD}	Address Hold Time	0.00	ns
t _{CK2Q}	Clock to Out	52.90	ns
F _{MAX}	Maximum Clock Frequency	10	MHz

Microsemi

IGLOO Low Power Flash FPGAs

	CS281		CS281		CS281
Pin Number	AGL600 Function	Pin Number	AGL600 Function	Pin Number	AGL600 Function
A1	GND	B18	VCCIB1	E13	IO46RSB0
A2	GAB0/IO02RSB0	B19	IO61NDB1	E14	GBB1/IO57RSB0
A3	GAC1/IO05RSB0	C1	GAB2/IO173PPB3	E15	IO62NPB1
A4	IO07RSB0	C2	IO174NPB3	E16	IO63PPB1
A5	IO10RSB0	C6	IO12RSB0	E18	IO64PPB1
A6	IO14RSB0	C14	IO50RSB0	E19	IO65NPB1
A7	IO18RSB0	C18	IO60NPB1	F1	IO168NPB3
A8	IO21RSB0	C19	GBB2/IO61PDB1	F2	GND
A9	IO22RSB0	D1	IO170PPB3	F3	IO169PPB3
A10	VCCIB0	D2	IO172NPB3	F4	IO170NPB3
A11	IO33RSB0	D4	GAA0/IO00RSB0	F5	IO173NPB3
A12	IO40RSB0	D5	GAA1/IO01RSB0	F15	IO63NPB1
A13	IO37RSB0	D6	IO09RSB0	F16	IO65PPB1
A14	IO48RSB0	D7	IO16RSB0	F17	IO64NPB1
A15	IO51RSB0	D8	IO19RSB0	F18	GND
A16	IO53RSB0	D9	IO26RSB0	F19	IO68PPB1
A17	GBC1/IO55RSB0	D10	GND	G1	IO167NPB3
A18	GBA0/IO58RSB0	D11	IO34RSB0	G2	IO165NDB3
A19	GND	D12	IO45RSB0	G4	IO168PPB3
B1	GAA2/IO174PPB3	D13	IO49RSB0	G5	IO167PPB3
B2	VCCIB0	D14	IO47RSB0	G7	GAC2/IO172PPB3
B3	GAB1/IO03RSB0	D15	GBB0/IO56RSB0	G8	VCCIB0
B4	GAC0/IO04RSB0	D16	GBA2/IO60PPB1	G9	IO28RSB0
B5	IO06RSB0	D18	GBC2/IO62PPB1	G10	IO32RSB0
B6	GND	D19	IO66NPB1	G11	IO43RSB0
B7	IO15RSB0	E1	IO169NPB3	G12	VCCIB0
B8	IO20RSB0	E2	IO171PPB3	G13	IO66PPB1
B9	IO23RSB0	E4	IO171NPB3	G15	IO67NDB1
B10	IO24RSB0	E5	IO08RSB0	G16	IO67PDB1
B11	IO36RSB0	E6	IO11RSB0	G18	GCC0/IO69NPB1
B12	IO35RSB0	E7	IO13RSB0	G19	GCB1/IO70PPB1
B13	IO44RSB0	E8	IO17RSB0	H1	GFB0/IO163NPB3
B14	GND	E9	IO25RSB0	H2	IO165PDB3
B15	IO52RSB0	E10	IO30RSB0	H4	GFC1/IO164PPB3
B16	GBC0/IO54RSB0	E11	IO41RSB0	H5	GFB1/IO163PPB3
B17	GBA1/IO59RSB0	E12	IO42RSB0	H7	VCCIB3

(QN68	Γ
Pin Number	AGL030 Function	
1	IO82RSB1	
2	IO80RSB1	
3	IO78RSB1	
4	IO76RSB1	
5	GEC0/IO73RSB1	
6	GEA0/IO72RSB1	
7	GEB0/IO71RSB1	
8	VCC	
9	GND	
10	VCCIB1	
11	IO68RSB1	
12	IO67RSB1	
13	IO66RSB1	
14	IO65RSB1	
15	IO64RSB1	
16	IO63RSB1	
17	IO62RSB1	
18	FF/IO60RSB1	
19	IO58RSB1	
20	IO56RSB1	
21	IO54RSB1	
22	IO52RSB1	
23	IO51RSB1	
24	VCC	
25	GND	
26	VCCIB1	
27	IO50RSB1	
28	IO48RSB1	
29	IO46RSB1	
30	IO44RSB1	
31	IO42RSB1	Γ
32	тск	
33	TDI	
34	TMS	
35	VPUMP	
36	TDO	

	QN68	
I	Pin Number	AGL030 Function
	37	TRST
	38	VJTAG
	39	IO40RSB0
	40	IO37RSB0
	41	GDB0/IO34RSB0
	42	GDA0/IO33RSB0
	43	GDC0/IO32RSB0
	44	VCCIB0
	45	GND
	46	VCC
	47	IO31RSB0
	48	IO29RSB0
	49	IO28RSB0
	50	IO27RSB0
	51	IO25RSB0
	52	IO24RSB0
	53	IO22RSB0
	54	IO21RSB0
	55	IO19RSB0
	56	IO17RSB0
	57	IO15RSB0
	58	IO14RSB0
	59	VCCIB0
	60	GND
	61	VCC
	62	IO12RSB0
	63	IO10RSB0
	64	IO08RSB0
	65	IO06RSB0
	66	IO04RSB0
	67	IO02RSB0
	68	IO00RSB0

FG256		
Pin Number	AGL600 Function	
R5	IO132RSB2	
R6	IO127RSB2	
R7	IO121RSB2	
R8	IO114RSB2	
R9	IO109RSB2	
R10	IO105RSB2	
R11	IO98RSB2	
R12	IO96RSB2	
R13	GDB2/IO90RSB2	
R14	TDI	
R15	GNDQ	
R16	TDO	
T1	GND	
T2	IO137RSB2	
Т3	FF/GEB2/IO142RSB2	
T4	IO134RSB2	
T5	IO125RSB2	
T6	IO123RSB2	
T7	IO118RSB2	
T8	IO115RSB2	
Т9	IO111RSB2	
T10	IO106RSB2	
T11	IO102RSB2	
T12	GDC2/IO91RSB2	
T13	IO93RSB2	
T14	GDA2/IO89RSB2	
T15	TMS	
T16	GND	

Package Pin Assignments

	FG484
Pin Number	AGL400 Function
A1	GND
A2	GND
A3	VCCIB0
A4	NC
A5	NC
A6	IO15RSB0
A7	IO18RSB0
A8	NC
A9	NC
A10	IO23RSB0
A11	IO29RSB0
A12	IO35RSB0
A13	IO36RSB0
A14	NC
A15	NC
A16	IO50RSB0
A17	IO51RSB0
A18	NC
A19	NC
A20	VCCIB0
A21	GND
A22	GND
AA1	GND
AA2	VCCIB3
AA3	NC
AA4	NC
AA5	NC
AA6	NC
AA7	NC
AA8	NC
AA9	NC
AA10	NC
AA11	NC
AA12	NC
AA13	NC
AA14	NC

Package Pin Assignments

FG484				
AGL400 Function				
NC				
VCCIB1				
GND				
VCCIB3				
NC				
NC				
NC				
GND				
NC				
NC				
VCC				
VCC				
NC				
VCC				
VCC				
NC				
NC				
GND				
NC				
NC				

Package Pin Assignments

FG484			
Pin Number	AGL400 Function		
M3	NC		
M4	GFA2/IO144PPB3		
M5	GFA1/IO145PDB3		
M6	VCCPLF		
M7	IO143NDB3		
M8	GFB2/IO143PDB3		
M9	VCC		
M10	GND		
M11	GND		
M12	GND		
M13	GND		
M14	VCC		
M15	GCB2/IO71PPB1		
M16	GCA1/IO69PPB1		
M17	GCC2/IO72PPB1		
M18	NC		
M19	GCA2/IO70PDB1		
M20	NC		
M21	NC		
M22	NC		
N1	NC		
N2	NC		
N3	NC		
N4	GFC2/IO142PDB3		
N5	IO144NPB3		
N6	IO141PPB3		
N7	IO120RSB2		
N8	VCCIB3		
N9	VCC		
N10	GND		
N11	GND		
N12	GND		
N13	GND		
N14	VCC		
N15	VCCIB1		
N16	IO71NPB1		

FG484		
Pin Number	AGL600 Function	
U1	IO149PDB3	
U2	IO149NDB3	
U3	NC	
U4	GEB1/IO145PDB3	
U5	GEB0/IO145NDB3	
U6	VMV2	
U7	IO138RSB2	
U8	IO136RSB2	
U9	IO131RSB2	
U10	IO124RSB2	
U11	IO119RSB2	
U12	IO107RSB2	
U13	IO104RSB2	
U14	IO97RSB2	
U15	VMV1	
U16	TCK	
U17	VPUMP	
U18	TRST	
U19	GDA0/IO88NDB1	
U20	NC	
U21	IO83NDB1	
U22	NC	
V1	NC	
V2	NC	
V3	GND	
V4	GEA1/IO144PDB3	
V5	GEA0/IO144NDB3	
V6	IO139RSB2	
V7	GEC2/IO141RSB2	
V8	IO132RSB2	
V9	IO127RSB2	
V10	IO121RSB2	
V11	IO114RSB2	
V12	IO109RSB2	
V13	IO105RSB2	
V14	IO98RSB2	