

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	24576
Total RAM Bits	147456
Number of I/O	300
Number of Gates	100000
Voltage - Supply	1.14V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 85°C (TA)
Package / Case	484-BGA
Supplier Device Package	484-FPBGA (23x23)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/m1agl1000v2-fgg484i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

VersaTiles are connected with any of the four levels of routing hierarchy. Flash switches are distributed throughout the device to provide nonvolatile, reconfigurable interconnect programming. Maximum core utilization is possible for virtually any design.

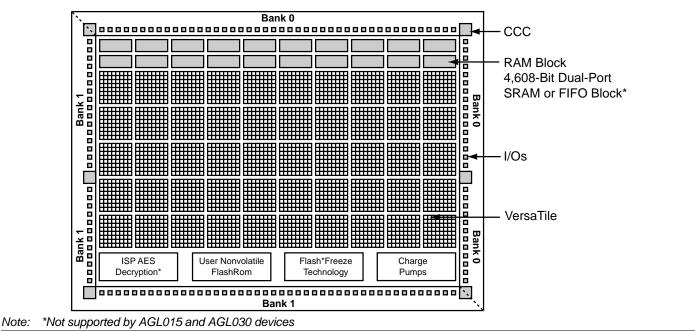


Figure 1-1 • IGLOO Device Architecture Overview with Two I/O Banks (AGL015, AGL030, AGL060, and AGL125)

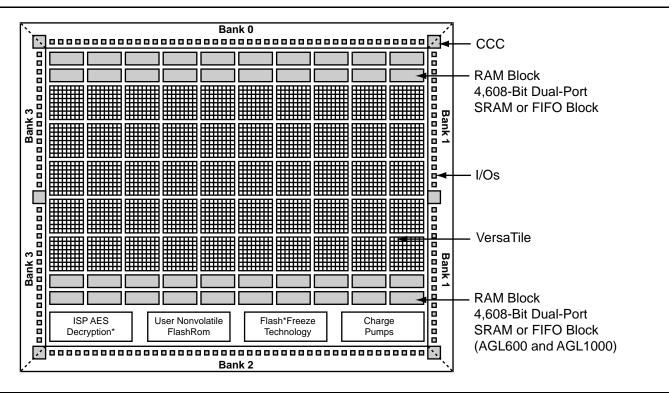


Figure 1-2 • IGLOO Device Architecture Overview with Four I/O Banks (AGL250, AGL600, AGL400, and AGL1000)

Wide Range I/O Support

IGLOO devices support JEDEC-defined wide range I/O operation. IGLOO devices support both the JESD8-B specification, covering 3 V and 3.3 V supplies, for an effective operating range of 2.7 V to 3.6 V, and JESD8-12 with its 1.2 V nominal, supporting an effective operating range of 1.14 V to 1.575 V.

Wider I/O range means designers can eliminate power supplies or power conditioning components from the board or move to less costly components with greater tolerances. Wide range eases I/O bank management and provides enhanced protection from system voltage spikes, while providing the flexibility to easily run custom voltage applications.

Specifying I/O States During Programming

You can modify the I/O states during programming in FlashPro. In FlashPro, this feature is supported for PDB files generated from Designer v8.5 or greater. See the *FlashPro User Guide* for more information.

- Note: PDB files generated from Designer v8.1 to Designer v8.4 (including all service packs) have limited display of Pin Numbers only.
 - 1. Load a PDB from the FlashPro GUI. You must have a PDB loaded to modify the I/O states during programming.
 - 2. From the FlashPro GUI, click PDB Configuration. A FlashPoint Programming File Generator window appears.
 - 3. Click the Specify I/O States During Programming button to display the Specify I/O States During Programming dialog box.
 - 4. Sort the pins as desired by clicking any of the column headers to sort the entries by that header. Select the I/Os you wish to modify (Figure 1-5 on page 1-9).
 - 5. Set the I/O Output State. You can set Basic I/O settings if you want to use the default I/O settings for your pins, or use Custom I/O settings to customize the settings for each pin. Basic I/O state settings:
 - 1 I/O is set to drive out logic High
 - 0 I/O is set to drive out logic Low

Last Known State – I/O is set to the last value that was driven out prior to entering the programming mode, and then held at that value during programming

Z -Tri-State: I/O is tristated

Product Grade	Programming Cycles	Program Retention (biased/unbiased)	Maximum Storage Temperature T _{STG} (°C) ²	Maximum Operating Junction Temperature T _J (°C) ²
Commercial	500	20 years	110	100
Industrial	500	20 years	110	100

Table 2-3 • Flash Programming Limits – Retention, Storage, and Operating Temperature¹

Notes:

1. This is a stress rating only; functional operation at any condition other than those indicated is not implied.

2. These limits apply for program/data retention only. Refer to Table 2-1 on page 2-1 and Table 2-2 on page 2-2 for device operating conditions and absolute limits.

Table 2-4 • Overshoot and Undershoot Limits¹

VCCI	Average VCCI–GND Overshoot or Undershoot Duration as a Percentage of Clock Cycle ²	Maximum Overshoot/ Undershoot ²
2.7 V or less	10%	1.4 V
F	5%	1.49 V
3 V	10%	1.1 V
F	5%	1.19 V
3.3 V	10%	0.79 V
F	5%	0.88 V
3.6 V	10%	0.45 V
F	5%	0.54 V

Notes:

1. Based on reliability requirements at junction temperature at 85°C.

2. The duration is allowed at one out of six clock cycles. If the overshoot/undershoot occurs at one out of two cycles, the maximum overshoot/undershoot has to be reduced by 0.15 V.

3. This table does not provide PCI overshoot/undershoot limits.

I/O Power-Up and Supply Voltage Thresholds for Power-On Reset (Commercial and Industrial)

Sophisticated power-up management circuitry is designed into every IGLOO device. These circuits ensure easy transition from the powered-off state to the powered-up state of the device. The many different supplies can power up in any sequence with minimized current spikes or surges. In addition, the I/O will be in a known state through the power-up sequence. The basic principle is shown in Figure 2-1 on page 2-4 and Figure 2-2 on page 2-5.

There are five regions to consider during power-up.

IGLOO I/Os are activated only if ALL of the following three conditions are met:

- 1. VCC and VCCI are above the minimum specified trip points (Figure 2-1 on page 2-4 and Figure 2-2 on page 2-5).
- 2. VCCI > VCC 0.75 V (typical)
- 3. Chip is in the operating mode.

VCCI Trip Point:

Ramping up (V5 devices): 0.6 V < trip_point_up < 1.2 V Ramping down (V5 Devices): 0.5 V < trip_point_down < 1.1 V Ramping up (V2 devices): 0.75 V < trip_point_up < 1.05 V Ramping down (V2 devices): 0.65 V < trip_point_down < 0.95 V

VCC Trip Point:

Ramping up (V5 devices): 0.6 V < trip_point_up < 1.1 V Ramping down (V5 devices): 0.5 V < trip_point_down < 1.0 V

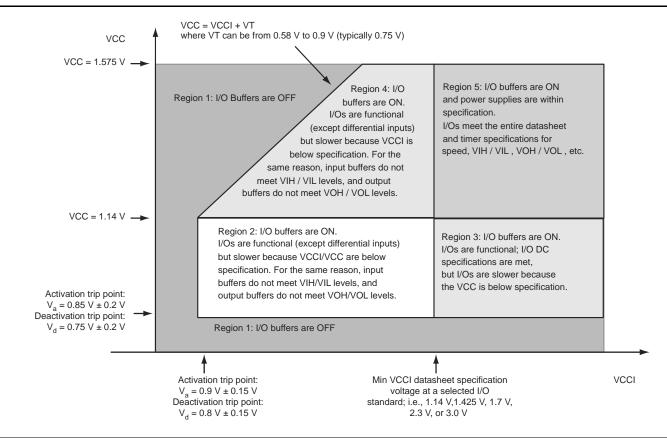


Figure 2-2 • V2 Devices – I/O State as a Function of VCCI and VCC Voltage Levels

Thermal Characteristics

Introduction

The temperature variable in the Designer software refers to the junction temperature, not the ambient temperature. This is an important distinction because dynamic and static power consumption cause the chip junction to be higher than the ambient temperature.

EQ 1 can be used to calculate junction temperature.

 T_J = Junction Temperature = ΔT + T_A

where:

 T_A = Ambient Temperature

 ΔT = Temperature gradient between junction (silicon) and ambient ΔT = θ_{ia} * P

 θ_{ia} = Junction-to-ambient of the package. θ_{ia} numbers are located in Table 2-5 on page 2-6.

P = Power dissipation

Power per I/O Pin

	VCCI (V)	Static Power PDC6 (mW) ¹	Dynamic Power PAC9 (μW/MHz) ²
Single-Ended			
3.3 V LVTTL / 3.3 V LVCMOS	3.3	_	16.27
3.3 V LVCMOS Wide Range ³	3.3	-	16.27
2.5 V LVCMOS	2.5	-	4.65
1.8 V LVCMOS	1.8	-	1.61
1.5 V LVCMOS (JESD8-11)	1.5	-	0.96
1.2 V LVCMOS ⁴	1.2	_	0.58
1.2 V LVCMOS Wide Range ⁴	1.2	-	0.58
3.3 V PCI	3.3	-	17.67
3.3 V PCI-X	3.3	-	17.67
Differential			
LVDS	2.5	2.26	23.39
LVPECL	3.3	5.72	59.05

Table 2-13 • Summary of I/O Input Buffer Power (per pin) – Default I/O Software Settings Applicable to Advanced I/O Banks

Notes:

1. P_{DC6} is the static power (where applicable) measured on VCCI.

2. P_{AC9} is the total dynamic power measured on VCCI.

3. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD-8B specification.

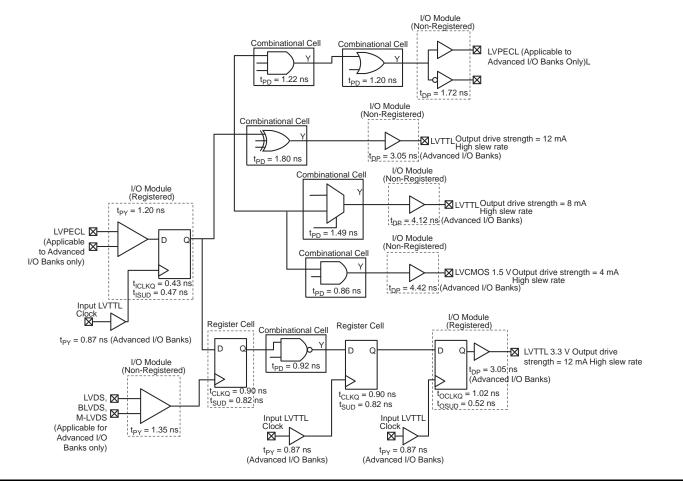
4. Applicable for IGLOO V2 devices only

Table 2-14 • Summary of I/O Input Buffer Power (per pin) – Default I/O Software Settings Applicable to Standard Plus I/O Banks

	VCCI (V)	Static Power PDC6 (mW) ¹	Dynamic Power PAC9 (μW/MHz) ²
Single-Ended			
3.3 V LVTTL / 3.3 V LVCMOS	3.3	-	16.41
3.3 V LVCMOS Wide Range ³	3.3	-	16.41
2.5 V LVCMOS	2.5	-	4.75
1.8 V LVCMOS	1.8	-	1.66
1.5 V LVCMOS (JESD8-11)	1.5	-	1.00
1.2 V LVCMOS ⁴	1.2	-	0.61
1.2 V LVCMOS Wide Range ⁴	1.2	-	0.61
3.3 V PCI	3.3	-	17.78
3.3 V PCI-X	3.3	_	17.78

Notes:

1. PDC6 is the static power (where applicable) measured on VCCI.


2. PAC9 is the total dynamic power measured on VCCI.

3. Applicable for IGLOO V2 devices only.

4. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD-8B specification.

User I/O Characteristics

Timing Model

Figure 2-3 • Timing Model

Operating Conditions: Std. Speed, Commercial Temperature Range ($T_J = 70^{\circ}$ C), Worst-Case VCC = 1.425 V, for DC 1.5 V Core Voltage, Applicable to V2 and V5 Devices

Table 2-42 • I/O Short Currents IOSH/IOSL Applicable to Advanced I/O Banks

	Drive Strength	IOSL (mA)*	IOSH (mA)*
3.3 V LVTTL / 3.3 V LVCMOS	2 mA	25	27
	4 mA	25	27
	6 mA	51	54
	8 mA	51	54
	12 mA	103	109
	16 mA	132	127
	24 mA	268	181
3.3 V LVCMOS Wide Range	100 μA	Same as regular 3.3 V LVCMOS	Same as regular 3.3 V LVCMOS
2.5 V LVCMOS	2 mA	16	18
	4 mA	16	18
	6 mA	32	37
	8 mA	32	37
	12 mA	65	74
	16 mA	83	87
	24 mA	169	124
1.8 V LVCMOS	2 mA	9	11
	4 mA	17	22
	6 mA	35	44
	8 mA	45	51
	12 mA	91	74
	16 mA	91	74
1.5 V LVCMOS	2 mA	13	16
	4 mA	25	33
	6 mA	32	39
	8 mA	66	55
	12 mA	66	55
1.2 V LVCMOS	2 mA	20	26
1.2 V LVCMOS Wide Range	100 μA	20	26
3.3 V PCI/PCI-X	Per PCI/PCI-X specification	103	109

Note: $^{*}T_{J} = 100^{\circ}C$

Applies to 1.2 V DC Core Voltage

Table 2-73 • 3.3 V LVCMOS Wide Range Low Slew – Applies to 1.2 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 2.7 V
Applicable to Advanced Banks

Drive Strength	Equivalent Software Default Drive Strength Option ¹	Speed Grade	t _{dout}	t _{DP}	t _{DIN}	t _{PY}	t _{eout}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{ZHS}	Units
100 µA	2 mA	Std.	1.55	7.52	0.26	1.32	1.10	7.52	6.38	3.84	4.02	13.31	12.16	ns
100 µA	4 mA	Std.	1.55	7.52	0.26	1.32	1.10	7.52	6.38	3.84	4.02	13.31	12.16	ns
100 µA	6 mA	Std.	1.55	6.37	0.26	1.32	1.10	6.37	5.57	4.23	4.73	12.16	11.35	ns
100 µA	8 mA	Std.	1.55	6.37	0.26	1.32	1.10	6.37	5.57	4.23	4.73	12.16	11.35	ns
100 µA	12 mA	Std.	1.55	5.55	0.26	1.32	1.10	5.55	4.96	4.50	5.18	11.34	10.75	ns
100 µA	16 mA	Std.	1.55	5.32	0.26	1.32	1.10	5.32	4.82	4.56	5.29	11.10	10.61	ns
100 µA	24 mA	Std.	1.55	5.19	0.26	1.32	1.10	5.19	4.85	4.63	5.74	10.98	10.63	ns

Notes:

1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ± 100 μA. Drive strengths displayed in software are supported for normal range only. For a detailed I/V curve, refer to the IBIS models.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

Table 2-74 • 3.3 V LVCMOS Wide Range High Slew – Applies to 1.2 V DC Core VoltageCommercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 2.7Applicable to Advanced Banks

Drive Strength	Equivalent Software Default Drive Strength Option ¹	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{eout}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{ZHS}	Units
100 µA	2 mA	Std.	1.55	4.75	0.26	1.32	1.10	4.75	3.77	3.84	4.27	10.54	9.56	ns
100 µA	4 mA	Std.	1.55	4.75	0.26	1.32	1.10	4.75	3.77	3.84	4.27	10.54	9.56	ns
100 µA	6 mA	Std.	1.55	4.10	0.26	1.32	1.10	4.10	3.19	4.24	4.98	9.88	8.98	ns
100 µA	8 mA	Std.	1.55	4.10	0.26	1.32	1.10	4.10	3.19	4.24	4.98	9.88	8.98	ns
100 µA	12 mA	Std.	1.55	3.73	0.26	1.32	1.10	3.73	2.91	4.51	5.43	9.52	8.69	ns
100 µA	16 mA	Std.	1.55	3.67	0.26	1.32	1.10	3.67	2.85	4.57	5.55	9.46	8.64	ns
100 µA	24 mA	Std.	1.55	3.70	0.26	1.32	1.10	3.70	2.79	4.65	6.01	9.49	8.58	ns

Notes:

1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ± 100 μA. Drive strengths displayed in software are supported for normal range only. For a detailed I/V curve, refer to the IBIS models.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

3. Software default selection highlighted in gray.

Table 2-81 •	Minimum and Maximum DC Input and Output Levels
	Applicable to Standard I/O Banks

2.5 V LVCMOS	v	ΊL	v	н	VOL	VOH	IOL	юн	IOSH	IOSL	IIL¹	IIH ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
2 mA	-0.3	0.7	1.7	3.6	0.7	1.7	2	2	16	18	10	10
4 mA	-0.3	0.7	1.7	3.6	0.7	1.7	4	4	16	18	10	10
6 mA	-0.3	0.7	1.7	3.6	0.7	1.7	6	6	32	37	10	10
8 mA	-0.3	0.7	1.7	3.6	0.7	1.7	8	8	32	37	10	10

Notes:

1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.

2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges

3. Currents are measured at 100°C junction temperature and maximum voltage.

- 4. Currents are measured at 85°C junction temperature.
- 5. Software default selection highlighted in gray.

Test Point
Datapath
$$\downarrow$$
 5 pF $R = 1 k$
Enable Path \downarrow $R = 1 k$
 $Test Point$
Enable Path \downarrow $Test Point$
 $F = 1 k$
 $R to VCCI for t_{LZ} / t_{ZL} / t_{ZLS}$
 $R to GND for t_{HZ} / t_{ZH} / t_{ZHS} / t_{ZL} / t_{ZLS}$

Figure 2-8 • AC Loading

Table 2-82 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	C _{LOAD} (pF)
0	2.5	1.2	5

Note: *Measuring point = Vtrip. See Table 2-29 on page 2-28 for a complete table of trip points.

Parameter Name	Parameter Definition	Measuring Nodes (from, to)*
t _{oclkq}	Clock-to-Q of the Output Data Register	HH, DOUT
tosud	Data Setup Time for the Output Data Register	FF, HH
t _{OHD}	Data Hold Time for the Output Data Register	FF, HH
tosue	Enable Setup Time for the Output Data Register	GG, HH
t _{OHE}	Enable Hold Time for the Output Data Register	GG, HH
toclr2Q	Asynchronous Clear-to-Q of the Output Data Register	LL, DOUT
toremclr	Asynchronous Clear Removal Time for the Output Data Register	LL, HH
torecclr	Asynchronous Clear Recovery Time for the Output Data Register	LL, HH
t _{oeclkq}	Clock-to-Q of the Output Enable Register	HH, EOUT
tOESUD	Data Setup Time for the Output Enable Register	JJ, HH
t _{OEHD}	Data Hold Time for the Output Enable Register	JJ, HH
tOESUE	Enable Setup Time for the Output Enable Register	KK, HH
t _{OEHE}	Enable Hold Time for the Output Enable Register	KK, HH
t _{OECLR2Q}	Asynchronous Clear-to-Q of the Output Enable Register	II, EOUT
t _{OEREMCLR}	Asynchronous Clear Removal Time for the Output Enable Register	II, HH
t _{OERECCLR}	Asynchronous Clear Recovery Time for the Output Enable Register	II, HH
t _{ICLKQ}	Clock-to-Q of the Input Data Register	AA, EE
tISUD	Data Setup Time for the Input Data Register	CC, AA
t _{IHD}	Data Hold Time for the Input Data Register	CC, AA
t _{ISUE}	Enable Setup Time for the Input Data Register	BB, AA
t _{IHE}	Enable Hold Time for the Input Data Register	BB, AA
t _{ICLR2Q}	Asynchronous Clear-to-Q of the Input Data Register	DD, EE
t _{IREMCLR}	Asynchronous Clear Removal Time for the Input Data Register	DD, AA
t _{IRECCLR}	Asynchronous Clear Recovery Time for the Input Data Register	DD, AA

Table 2-156 • Parameter Definition and Measuring Nodes

Note: *See Figure 2-17 on page 2-86 for more information.

VersaTile Characteristics

VersaTile Specifications as a Combinatorial Module

The IGLOO library offers all combinations of LUT-3 combinatorial functions. In this section, timing characteristics are presented for a sample of the library. For more details, refer to the *IGLOO, Fusion, and ProASIC3 Macro Library Guide*.

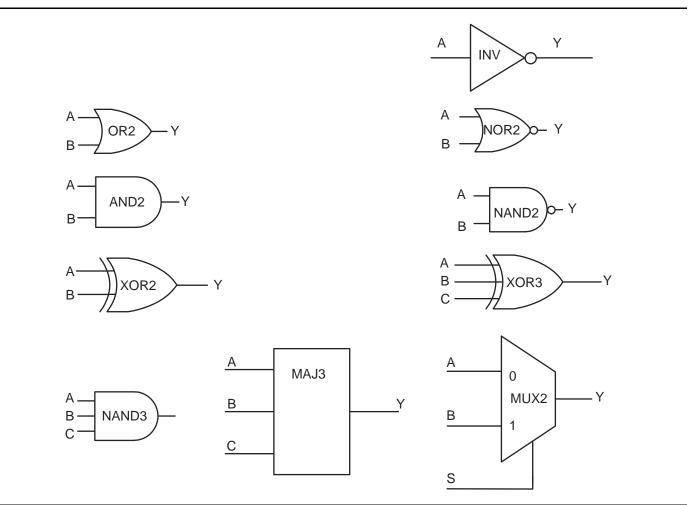


Figure 2-25 • Sample of Combinatorial Cells

Table 2-190 • IGLOO CCC/PLL Specification For IGLOO V2 Devices, 1.2 V DC Core Supply Voltage

Parameter	Min.	Тур.	Max.	Units	
Clock Conditioning Circuitry Input Frequency fIN_CCC	1.5		160	MHz	
Clock Conditioning Circuitry Output Frequency f _{OUT_CCC}	0.75		160	MHz	
Delay Increments in Programmable Delay Blocks ^{1, 2}		580 ³		ps	
Number of Programmable Values in Each Programmable Delay Block			32		
Serial Clock (SCLK) for Dynamic PLL ^{4,5}			60	ns	
Input Cycle-to-Cycle Jitter (peak magnitude)			0.25	ns	
Acquisition Time					
LockControl = 0			300	μs	
LockControl = 1			6.0	ms	
Tracking Jitter ⁶					
LockControl = 0			4	ns	
LockControl = 1			3	ns	
Output Duty Cycle	48.5		51.5	%	
Delay Range in Block: Programmable Delay 1 ^{1,2}	2.3		20.86	ns	
Delay Range in Block: Programmable Delay 2 ^{1,2}	0.863		20.86	ns	
Delay Range in Block: Fixed Delay ^{1, 2, 5}		5.7		ns	
CCC Output Peak-to-Peak Period Jitter F _{CCC OUT}		Maximum Peak-to-Peak Jitter Data ^{7,8}			
	$SSO \geq 4^9$	$SSO \geq 8^9$	$SSO \geq 16^9$		
0.75 MHz to 50 MHz	1.20%	2.00%	3.00%		
50 MHz to 160 MHz	5.00%	7.00%	15.00%		

Notes:

1. This delay is a function of voltage and temperature. See Table 2-6 on page 2-7 and Table 2-7 on page 2-7 for deratings.

2. $T_J = 25^{\circ}C$, $V_{CC} = 1.2 V$

3. When the CCC/PLL core is generated by Microsemi core generator software, not all delay values of the specified delay increments are available. Refer to the Libero SoC Online Help associated with the core for more information.

4. Maximum value obtained for a Std. speed grade device in Worst-Case Commercial Conditions. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

5. The AGL030 device does not support a PLL.

6. Tracking jitter is defined as the variation in clock edge position of PLL outputs with reference to the PLL input clock edge. Tracking jitter does not measure the variation in PLL output period, which is covered by the period jitter parameter.

7. VCO output jitter is calculated as a percentage of the VCO frequency. The jitter (in ps) can be calculated by multiplying the VCO period by the per cent jitter. The VCO jitter (in ps) applies to CCC_OUT regardless of the output divider settings. For example, if the jitter on VCO is 300 ps, the jitter on CCC_OUT is also 300 ps, regardless of the output divider settings.

Measurements done with LVTTL 3.3 V, 8 mA I/O drive strength, and high slew Rate. VCC/VCCPLL = 1.14 V, VQ/PQ/TQ type of packages, 20 pF load.

 SSO are outputs that are synchronous to a single clock domain and have clock-to-out times that are within ±200 ps of each other. Switching I/Os are placed outside of the PLL bank. Refer to the "Simultaneously Switching Outputs (SSOs) and Printed Circuit Board Layout" section in the IGLOO FPGA Fabric User Guide.

10. For definitions of Type 1 and Type 2, refer to the PLL Block Diagram in the "Clock Conditioning Circuits in IGLOO and ProASIC3 Devices" chapter of the IGLOO FPGA Fabric User Guide.

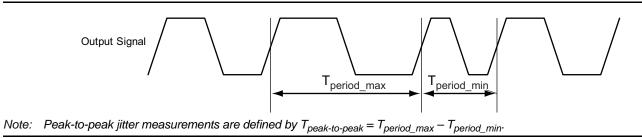


Figure 2-30 • Peak-to-Peak Jitter Definition

JTAG 1532 Characteristics

JTAG timing delays do not include JTAG I/Os. To obtain complete JTAG timing, add I/O buffer delays to the corresponding standard selected; refer to the I/O timing characteristics in the "User I/O Characteristics" section on page 2-20 for more details.

Timing Characteristics

Table 2-199 • JTAG 1532

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V

Parameter	Description	Std.	Units
t _{DISU}	Test Data Input Setup Time	1.00	ns
t _{DIHD}	Test Data Input Hold Time	2.00	ns
t _{TMSSU}	Test Mode Select Setup Time	1.00	ns
t _{TMDHD}	Test Mode Select Hold Time	2.00	ns
t _{TCK2Q}	Clock to Q (data out)	8.00	ns
t _{RSTB2Q}	Reset to Q (data out)	25.00	ns
F _{TCKMAX}	TCK Maximum Frequency	15	MHz
t _{TRSTREM}	ResetB Removal Time	0.58	ns
t _{TRSTREC}	ResetB Recovery Time	0.00	ns
t _{TRSTMPW}	ResetB Minimum Pulse	TBD	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

Table 2-200 • JTAG 1532

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V

Parameter	Description	Std.	Units
t _{DISU}	Test Data Input Setup Time	1.50	ns
t _{DIHD}	Test Data Input Hold Time	3.00	ns
t _{TMSSU}	Test Mode Select Setup Time	1.50	ns
t _{TMDHD}	Test Mode Select Hold Time	3.00	ns
t _{TCK2Q}	Clock to Q (data out)	11.00	ns
t _{RSTB2Q}	Reset to Q (data out)	30.00	ns
F _{TCKMAX}	TCK Maximum Frequency	9.00	MHz
t _{TRSTREM}	ResetB Removal Time	1.18	ns
t _{TRSTREC}	ResetB Recovery Time	0.00	ns
t _{TRSTMPW}	ResetB Minimum Pulse	TBD	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

IGLOO Low Power Flash FPGAs

CS281		CS281		CS281		
Pin Number	AGL600 Function	Pin Number	AGL600 Function	Pin Number	AGL600 Function	
A1	GND	B18	VCCIB1	E13	IO46RSB0	
A2	GAB0/IO02RSB0	B19	IO61NDB1	E14	GBB1/IO57RSB0	
A3	GAC1/IO05RSB0	C1	GAB2/IO173PPB3	E15	IO62NPB1	
A4	IO07RSB0	C2	IO174NPB3	E16	IO63PPB1	
A5	IO10RSB0	C6	IO12RSB0	E18	IO64PPB1	
A6	IO14RSB0	C14	IO50RSB0	E19	IO65NPB1	
A7	IO18RSB0	C18	IO60NPB1	F1	IO168NPB3	
A8	IO21RSB0	C19	GBB2/IO61PDB1	F2	GND	
A9	IO22RSB0	D1	IO170PPB3	F3	IO169PPB3	
A10	VCCIB0	D2	IO172NPB3	F4	IO170NPB3	
A11	IO33RSB0	D4	GAA0/IO00RSB0	F5	IO173NPB3	
A12	IO40RSB0	D5	GAA1/IO01RSB0	F15	IO63NPB1	
A13	IO37RSB0	D6	IO09RSB0	F16	IO65PPB1	
A14	IO48RSB0	D7	IO16RSB0	F17	IO64NPB1	
A15	IO51RSB0	D8	IO19RSB0	F18	GND	
A16	IO53RSB0	D9	IO26RSB0	F19	IO68PPB1	
A17	GBC1/IO55RSB0	D10	GND	G1	IO167NPB3	
A18	GBA0/IO58RSB0	D11	IO34RSB0	G2	IO165NDB3	
A19	GND	D12	IO45RSB0	G4	IO168PPB3	
B1	GAA2/IO174PPB3	D13	IO49RSB0	G5	IO167PPB3	
B2	VCCIB0	D14	IO47RSB0	G7	GAC2/IO172PPB	
B3	GAB1/IO03RSB0	D15	GBB0/IO56RSB0	G8	VCCIB0	
B4	GAC0/IO04RSB0	D16	GBA2/IO60PPB1	G9	IO28RSB0	
B5	IO06RSB0	D18	GBC2/IO62PPB1	G10	IO32RSB0	
B6	GND	D19	IO66NPB1	G11	IO43RSB0	
B7	IO15RSB0	E1	IO169NPB3	G12	VCCIB0	
B8	IO20RSB0	E2	IO171PPB3	G13	IO66PPB1	
B9	IO23RSB0	E4	IO171NPB3	G15	IO67NDB1	
B10	IO24RSB0	E5	IO08RSB0	G16	IO67PDB1	
B11	IO36RSB0	E6	IO11RSB0	G18	GCC0/IO69NPB1	
B12	IO35RSB0	E7	IO13RSB0	G19	GCB1/IO70PPB1	
B13	IO44RSB0	E8	IO17RSB0	H1	GFB0/IO163NPB	
B14	GND	E9	IO25RSB0	H2	IO165PDB3	
B15	IO52RSB0	E10	IO30RSB0	H4	GFC1/IO164PPB	
B16	GBC0/IO54RSB0	E11	IO41RSB0	H5	GFB1/IO163PPB3	
B17	GBA1/IO59RSB0	E12	IO42RSB0	H7	VCCIB3	

CS281 CS281		CS281		CS281	
Pin Number	AGL600 Function	Pin Number	AGL600 Function	Pin Number	AGL600 Function
H8	VCC	K15	IO73NPB1	N4	IO150PPB3
H9	VCCIB0	K16	GND	N5	IO148NPB3
H10	VCC	K18	IO74NPB1	N7	GEA2/IO143RSB2
H11	VCCIB0	K19	VCCIB1	N8	VCCIB2
H12	VCC	L1	GFB2/IO160PDB3	N9	IO117RSB2
H13	VCCIB1	L2	IO160NDB3	N10	IO115RSB2
H15	IO68NPB1	L4	GFC2/IO159PPB3	N11	IO114RSB2
H16	GCB0/IO70NPB1	L5	IO153PPB3	N12	VCCIB2
H18	GCA1/IO71PPB1	L7	IO153NPB3	N13	VPUMP
H19	GCA2/IO72PPB1	L8	VCCIB3	N15	IO82PPB1
J1	VCOMPLF	L9	GND	N16	IO85PPB1
J2	GFA0/IO162NDB3	L10	GND	N18	IO82NPB1
J4	VCCPLF	L11	GND	N19	IO81PPB1
J5	GFC0/IO164NPB3	L12	VCCIB1	P1	IO151PDB3
J7	GFA2/IO161PDB3	L13	IO76PPB1	P2	GND
J8	VCCIB3	L15	IO76NPB1	P3	IO151NDB3
J9	GND	L16	IO77PPB1	P4	IO149PPB3
J10	GND	L18	IO78NPB1	P5	GEA0/IO144NPB3
J11	GND	L19	IO77NPB1	P15	IO83NDB1
J12	VCCIB1	M1	IO158PDB3	P16	IO83PDB1
J13	GCC1/IO69PPB1	M2	IO158NDB3	P17	GDC1/IO86PPB1
J15	GCA0/IO71NPB1	M4	IO154NPB3	P18	GND
J16	GCB2/IO73PPB1	M5	IO152PPB3	P19	IO85NPB1
J18	IO72NPB1	M7	VCCIB3	R1	IO150NPB3
J19	IO75PSB1	M8	VCC	R2	IO149NPB3
K1	VCCIB3	M9	VCCIB2	R4	GEC1/IO146PPB3
K2	GFA1/IO162PDB3	M10	VCC	R5	GEB1/IO145PPB3
K4	GND	M11	VCCIB2	R6	IO138RSB2
K5	IO159NPB3	M12	VCC	R7	IO127RSB2
K7	IO161NDB3	M13	VCCIB1	R8	IO123RSB2
K8	VCC	M15	IO79NPB1	R9	IO118RSB2
K9	GND	M16	IO81NPB1	R10	IO111RSB2
K10	GND	M18	IO79PPB1	R11	IO106RSB2
K11	GND	M19	IO78PPB1	R12	IO103RSB2
K12	VCC	N1	IO154PPB3	R13	IO97RSB2
K13	GCC2/IO74PPB1	N2	IO152NPB3	R14	IO95RSB2

QN48			
Pin Number AGL030 Function			
1	IO82RSB1		
2	GEC0/IO73RSB1		
3	GEA0/IO72RSB1		
4	GEB0/IO71RSB1		
5	GND		
6	VCCIB1		
7	IO68RSB1		
8	IO67RSB1		
9	IO66RSB1		
10	IO65RSB1		
11	IO64RSB1		
12	IO62RSB1		
13	IO61RSB1		
14	FF/IO60RSB1		
15	IO57RSB1		
16	IO55RSB1		
17	IO53RSB1		
18	VCC		
19	VCCIB1		
20	IO46RSB1		
21	IO42RSB1		
22	ТСК		
23	TDI		
24	TMS		
25	VPUMP		
26	TDO		
27	TRST		
28	VJTAG		
29	IO38RSB0		
30	GDB0/IO34RSB0		
31	GDA0/IO33RSB0		
32	GDC0/IO32RSB0		
33	VCCIB0		
34	GND		
35	VCC		
36	IO25RSB0		

QN48			
Pin Number	AGL030 Function		
37	IO24RSB0		
38	IO22RSB0		
39	IO20RSB0		
40	IO18RSB0		
41	IO16RSB0		
42	IO14RSB0		
43	IO10RSB0		
44	IO08RSB0		
45	IO06RSB0		
46	IO04RSB0		
47	IO02RSB0		
48	IO00RSB0		

FG256 FG256		FG256	FG256		
Pin Number	AGL600 Function	Pin Number AGL600 Function		Pin Number	AGL600 Function
H3	GFB1/IO163PPB3	K9	GND	M15	GDC1/IO86PDB1
H4	VCOMPLF	K10	GND	M16	IO84NDB1
H5	GFC0/IO164NPB3	K11	VCC	N1	IO150NDB3
H6	VCC	K12	VCCIB1	N2	IO147PPB3
H7	GND	K13	IO73NPB1	N3	GEC1/IO146PPB
H8	GND	K14	IO80NPB1	N4	IO140RSB2
H9	GND	K15	IO74NPB1	N5	GNDQ
H10	GND	K16	IO72NDB1	N6	GEA2/IO143RSB
H11	VCC	L1	IO159NDB3	N7	IO126RSB2
H12	GCC0/IO69NPB1	L2	IO156NPB3	N8	IO120RSB2
H13	GCB1/IO70PPB1	L3	IO151PPB3	N9	IO108RSB2
H14	GCA0/IO71NPB1	L4	IO158PSB3	N10	IO103RSB2
H15	IO67NPB1	L5	VCCIB3	N11	IO99RSB2
H16	GCB0/IO70NPB1	L6	GND	N12	GNDQ
J1	GFA2/IO161PPB3	L7	VCC	N13	IO92RSB2
J2	GFA1/IO162PDB3	L8	VCC	N14	VJTAG
J3	VCCPLF	L9	VCC	N15	GDC0/IO86NDB
J4	IO160NDB3	L10	VCC	N16	GDA1/IO88PDB1
J5	GFB2/IO160PDB3	L11	GND	P1	GEB1/IO145PDB
J6	VCC	L12	VCCIB1	P2	GEB0/IO145NDB
J7	GND	L13	GDB0/IO87NPB1	P3	VMV2
J8	GND	L14	IO85NDB1	P4	IO138RSB2
J9	GND	L15	IO85PDB1	P5	IO136RSB2
J10	GND	L16	IO84PDB1	P6	IO131RSB2
J11	VCC	M1	IO150PDB3	P7	IO124RSB2
J12	GCB2/IO73PPB1	M2	IO151NPB3	P8	IO119RSB2
J13	GCA1/IO71PPB1	M3	IO147NPB3	P9	IO107RSB2
J14	GCC2/IO74PPB1	M4	GEC0/IO146NPB3	P10	IO104RSB2
J15	IO80PPB1	M5	VMV3	P11	IO97RSB2
J16	GCA2/IO72PDB1	M6	VCCIB2	P12	VMV1
K1	GFC2/IO159PDB3	M7	VCCIB2	P13	ТСК
K2	IO161NPB3	M8	IO117RSB2	P14	VPUMP
K3	IO156PPB3	M9	IO110RSB2	P15	TRST
K4	IO129RSB2	M10	VCCIB2	P16	GDA0/IO88NDB1
K5	VCCIB3	M11	VCCIB2	R1	GEA1/IO144PDB
K6	VCC	M12	VMV2	R2	GEA0/IO144NDB
K7	GND	M13	IO94RSB2	R3	IO139RSB2
K8	GND	M14	GDB1/IO87PPB1	R4	GEC2/IO141RSB

FG484			
Pin Number AGL400 Function			
V15	IO85RSB2		
V16	GDB2/IO81RSB2		
V17	TDI		
V18	NC		
V19	TDO		
V20	GND		
V21	NC		
V22	NC		
W1	NC		
W2	NC		
W3	NC		
W4	GND		
W5	IO126RSB2		
W6	FF/GEB2/IO133RSB2		
W7	IO124RSB2		
W8	IO116RSB2		
W9	IO113RSB2		
W10	IO107RSB2		
W11	IO105RSB2		
W12	IO102RSB2		
W13	IO97RSB2		
W14	IO92RSB2		
W15	GDC2/IO82RSB2		
W16	IO86RSB2		
W17	GDA2/IO80RSB2		
W18	TMS		
W19	GND		
W20	NC		
W21	NC		
W22	NC		
Y1	VCCIB3		
Y2	NC		
Y3	NC		
Y4	NC		
Y5	GND		
Y6	NC		

FG484			
Pin Number AGL600 Function			
C21	NC		
C22	VCCIB1		
D1	NC		
D2	NC		
D3	NC		
D4	GND		
D5	GAA0/IO00RSB0		
D6	GAA1/IO01RSB0		
D7	GAB0/IO02RSB0		
D8	IO11RSB0		
D9	IO16RSB0		
D10	IO18RSB0		
D11	IO28RSB0		
D12	IO34RSB0		
D13	IO37RSB0		
D14	IO41RSB0		
D15 IO43RSB0			
D16	GBB1/IO57RSB0		
D17	GBA0/IO58RSB0		
D18	GBA1/IO59RSB0		
D19	GND		
D20	NC		
D21	NC		
D22	NC		
E1	NC		
E2	NC		
E3	GND		
E4	GAB2/IO173PDB3		
E5	GAA2/IO174PDB3		
E6	GNDQ		
E7	GAB1/IO03RSB0		
E8	IO13RSB0		
E9	IO14RSB0		
E10	IO21RSB0		
E11	IO27RSB0		
E12	IO32RSB0		