

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	24576
Total RAM Bits	147456
Number of I/O	215
Number of Gates	1000000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 85°C (TA)
Package / Case	281-TFBGA, CSBGA
Supplier Device Package	281-CSP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/m1agl1000v5-csg281i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- Wide input frequency range ($f_{IN CCC}$) = 1.5 MHz up to 250 MHz
- Output frequency range (f_{OUT CCC}) = 0.75 MHz up to 250 MHz
- 2 programmable delay types for clock skew minimization
- Clock frequency synthesis (for PLL only)

Additional CCC specifications:

- Internal phase shift = 0°, 90°, 180°, and 270°. Output phase shift depends on the output divider configuration (for PLL only).
- Output duty cycle = $50\% \pm 1.5\%$ or better (for PLL only)
- Low output jitter: worst case < 2.5% × clock period peak-to-peak period jitter when single global network used (for PLL only)
- Maximum acquisition time is 300 µs (for PLL only)
- Exceptional tolerance to input period jitter—allowable input jitter is up to 1.5 ns (for PLL only)
- Four precise phases; maximum misalignment between adjacent phases of 40 ps × 250 MHz / f_{OUT_CCC} (for PLL only)

Global Clocking

IGLOO devices have extensive support for multiple clocking domains. In addition to the CCC and PLL support described above, there is a comprehensive global clock distribution network.

Each VersaTile input and output port has access to nine VersaNets: six chip (main) and three quadrant global networks. The VersaNets can be driven by the CCC or directly accessed from the core via multiplexers (MUXes). The VersaNets can be used to distribute low-skew clock signals or for rapid distribution of high-fanout nets.

I/Os with Advanced I/O Standards

The IGLOO family of FPGAs features a flexible I/O structure, supporting a range of voltages (1.2 V, 1.5 V, 1.8 V, 2.5 V, 3.0 V wide range, and 3.3 V). IGLOO FPGAs support many different I/O standards—single-ended and differential.

The I/Os are organized into banks, with two or four banks per device. The configuration of these banks determines the I/O standards supported (Table 1-1).

		I/O Standards Supported			
I/O Bank Type	Device and Bank Location	LVTTL/ LVCMOS	PCI/PCI-X	LVPECL, LVDS, B-LVDS, M-LVDS	
Advanced	East and west banks of AGL250 and larger devices	\checkmark	\checkmark	\checkmark	
Standard Plus	North and south banks of AGL250 and larger devices All banks of AGL060 and AGL125K	\checkmark	\checkmark	Not supported	
Standard	All banks of AGL015 and AGL030	\checkmark	Not supported	Not supported	

Table 1-1 • I/O Standards Supported

Each I/O module contains several input, output, and enable registers. These registers allow the implementation of the following:

- Single-Data-Rate applications
- Double-Data-Rate applications—DDR LVDS, B-LVDS, and M-LVDS I/Os for point-to-point communications

IGLOO banks for the AGL250 device and above support LVPECL, LVDS, B-LVDS, and M-LVDS. B-LVDS and M-LVDS can support up to 20 loads.

Hot-swap (also called hot-plug, or hot-insertion) is the operation of hot-insertion or hot-removal of a card in a poweredup system.

Cold-sparing (also called cold-swap) refers to the ability of a device to leave system data undisturbed when the system is powered up, while the component itself is powered down, or when power supplies are floating.

Table 2-15 • Summary of I/O Input Buffer Power (per pin) – Default I/O Software Settings Applicable to Standard I/O Banks

	VCCI (V)	Static Power PDC6 (mW) ¹	Dynamic Power PAC9 (μW/MHz) ²
Single-Ended			
3.3 V LVTTL / 3.3 V LVCMOS	3.3	-	17.24
3.3 V LVCMOS Wide Range ³	3.3	-	17.24
2.5 V LVCMOS	2.5	-	5.64
1.8 V LVCMOS	1.8	-	2.63
1.5 V LVCMOS (JESD8-11)	1.5	-	1.97
1.2 V LVCMOS ⁴	1.2	-	0.57
1.2 V LVCMOS Wide Range ⁴	1.2	-	0.57

Notes:

1. PDC6 is the static power (where applicable) measured on VCCI.

2. PAC9 is the total dynamic power measured on VCCI.

3. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD-8B specification.

4. Applicable for IGLOO V2 devices only.

Table 2-16 • Summary of I/O Output Buffer Power (per pin) – Default I/O Software Settings¹ Applicable to Advanced I/O Banks

	C _{LOAD} (pF)	VCCI (V)	Static Power PDC7 (mW) ²	Dynamic Power PAC10 (μW/MHz) ³
Single-Ended				
3.3 V LVTTL / 3.3 V LVCMOS	5	3.3	-	136.95
3.3 V LVCMOS Wide Range ⁴	5	3.3	-	136.95
2.5 V LVCMOS	5	2.5	-	76.84
1.8 V LVCMOS	5	1.8	_	49.31
1.5 V LVCMOS (JESD8-11)	5	1.5	_	33.36
1.2 V LVCMOS ⁵	5	1.2	-	16.24
1.2 V LVCMOS Wide Range ⁵	5	1.2	-	16.24
3.3 V PCI	10	3.3	-	194.05
3.3 V PCI-X	10	3.3	_	194.05
Differential				
LVDS	-	2.5	7.74	156.22
LVPECL	_	3.3	19.54	339.35

Notes:

1. Dynamic power consumption is given for standard load and software default drive strength and output slew.

2. PDC7 is the static power (where applicable) measured on VCCI.

3. PAC10 is the total dynamic power measured on VCCI.

4. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD-8B specification.

5. Applicable for IGLOO V2 devices only.

Combinatorial Cells Contribution—P_{C-CELL}

 $\mathsf{P}_{\text{C-CELL}} = \mathsf{N}_{\text{C-CELL}} * \alpha_1 / 2 * \mathsf{P}_{\text{AC7}} * \mathsf{F}_{\text{CLK}}$

N_{C-CELL} is the number of VersaTiles used as combinatorial modules in the design.

 α_1 is the toggle rate of VersaTile outputs—guidelines are provided in Table 2-23 on page 2-19.

 F_{CLK} is the global clock signal frequency.

Routing Net Contribution—P_{NET}

 $\mathsf{P}_{\mathsf{NET}} = (\mathsf{N}_{\mathsf{S}\text{-}\mathsf{CELL}} + \mathsf{N}_{\mathsf{C}\text{-}\mathsf{CELL}}) * \alpha_1 / 2 * \mathsf{P}_{\mathsf{AC8}} * \mathsf{F}_{\mathsf{CLK}}$

N_{S-CELL} is the number of VersaTiles used as sequential modules in the design.

 $N_{C\text{-}CELL}$ is the number of VersaTiles used as combinatorial modules in the design.

 α_1 is the toggle rate of VersaTile outputs—guidelines are provided in Table 2-23 on page 2-19.

 F_{CLK} is the global clock signal frequency.

I/O Input Buffer Contribution—P_{INPUTS}

 $P_{INPUTS} = N_{INPUTS} * \alpha_2 / 2 * P_{AC9} * F_{CLK}$

 $N_{\mbox{\rm INPUTS}}$ is the number of I/O input buffers used in the design.

 α_2 is the I/O buffer toggle rate—guidelines are provided in Table 2-23 on page 2-19.

F_{CLK} is the global clock signal frequency.

I/O Output Buffer Contribution—P_{OUTPUTS}

 $P_{OUTPUTS} = N_{OUTPUTS} * \alpha_2 / 2 * \beta_1 * P_{AC10} * F_{CLK}$

 $N_{OUTPUTS}$ is the number of I/O output buffers used in the design.

 α_2 is the I/O buffer toggle rate—guidelines are provided in Table 2-23 on page 2-19.

 β_1 is the I/O buffer enable rate—guidelines are provided in Table 2-24 on page 2-19.

F_{CLK} is the global clock signal frequency.

RAM Contribution—P_{MEMORY}

 $P_{MEMORY} = P_{AC11} * N_{BLOCKS} * F_{READ-CLOCK} * \beta_2 + P_{AC12} * N_{BLOCK} * F_{WRITE-CLOCK} * \beta_3$

 $N_{\mbox{\scriptsize BLOCKS}}$ is the number of RAM blocks used in the design.

F_{READ-CLOCK} is the memory read clock frequency.

 β_2 is the RAM enable rate for read operations.

F_{WRITE-CLOCK} is the memory write clock frequency.

 β_3 is the RAM enable rate for write operations—guidelines are provided in Table 2-24 on page 2-19.

PLL Contribution—P_{PLL}

 $P_{PLL} = P_{DC4} + P_{AC13} * F_{CLKOUT}$

F_{CLKOUT} is the output clock frequency.[†]

[†] If a PLL is used to generate more than one output clock, include each output clock in the formula by adding its corresponding contribution (P_{AC13}* F_{CLKOUT} product) to the total PLL contribution.

Table 2-42 • I/O Short Currents IOSH/IOSL Applicable to Advanced I/O Banks

	Drive Strength	IOSL (mA)*	IOSH (mA)*
3.3 V LVTTL / 3.3 V LVCMOS	2 mA	25	27
	4 mA	25	27
	6 mA	51	54
	8 mA	51	54
	12 mA	103	109
	16 mA	132	127
	24 mA	268	181
3.3 V LVCMOS Wide Range	100 μA	Same as regular 3.3 V LVCMOS	Same as regular 3.3 V LVCMOS
2.5 V LVCMOS	2 mA	16	18
	4 mA	16	18
	6 mA	32	37
	8 mA	32	37
	12 mA	65	74
	16 mA	83	87
	24 mA	169	124
1.8 V LVCMOS	2 mA	9	11
	4 mA	17	22
	6 mA	35	44
	8 mA	45	51
	12 mA	91	74
	16 mA	91	74
1.5 V LVCMOS	2 mA	13	16
	4 mA	25	33
	6 mA	32	39
	8 mA	66	55
	12 mA	66	55
1.2 V LVCMOS	2 mA	20	26
1.2 V LVCMOS Wide Range	100 μA	20	26
3.3 V PCI/PCI-X	Per PCI/PCI-X specification	103	109

Note: $^{*}T_{J} = 100^{\circ}C$

DC Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
VCCI	Supply Voltage	3.0 3.3		3.6		V		
VOL	Output Low Voltage	0.96	1.27	1.06	1.43	1.30	1.57	V
VOH	Output High Voltage	1.8	2.11	1.92	2.28	2.13	2.41	V
VIL, VIH	Input Low, Input High Voltages	0	3.6	0	3.6	0	3.6	V
V _{ODIFF}	Differential Output Voltage	0.625	0.97	0.625	0.97	0.625	0.97	V
V _{OCM}	Output Common-Mode Voltage	1.762	1.98	1.762	1.98	1.762	1.98	V
V _{ICM}	Input Common-Mode Voltage	1.01	2.57	1.01	2.57	1.01	2.57	V
V _{IDIFF}	Input Differential Voltage	300		300		300		mV

Table 2-151 • Minimum and Maximum DC Input and Output Levels

Table 2-152 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)
1.64	1.94	Cross point

Note: *Measuring point = Vtrip. See Table 2-28 on page 2-104 for a complete table of trip points.

Timing Characteristics

1.5 V DC Core Voltage

Table 2-153 • LVPECL – Applies to 1.5 V DC Core Voltage

Commercial-Case Conditions: $T_J = 70^{\circ}$ C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V Applicable to Standard Banks

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	Units
Std.	0.97	1.67	0.19	1.16	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

1.2 V DC Core Voltage

Table 2-154 • LVPECL – Applies to 1.2 V DC Core Voltage

```
Commercial-Case Conditions: T_J = 70^{\circ}C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 3.0 V
Applicable to Standard Banks
```

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	Units
Std.	1.55	2.24	0.25	1.37	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.

1.2 V DC Core Voltage

Table 2-165 • Input DDR Propagation Delays Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V

Parameter	Description	Std.	Units
t _{DDRICLKQ1}	Clock-to-Out Out_QR for Input DDR	0.76	ns
t _{DDRICLKQ2}	Clock-to-Out Out_QF for Input DDR	0.94	ns
t _{DDRISUD1}	Data Setup for Input DDR (negedge)	0.93	ns
t _{DDRISUD2}	Data Setup for Input DDR (posedge)	0.84	ns
t _{DDRIHD1}	Data Hold for Input DDR (negedge)	0.00	ns
t _{DDRIHD2}	Data Hold for Input DDR (posedge)	0.00	ns
t _{DDRICLR2Q1}	Asynchronous Clear-to-Out Out_QR for Input DDR	1.23	ns
t _{DDRICLR2Q2}	Asynchronous Clear-to-Out Out_QF for Input DDR	1.42	ns
t _{DDRIREMCLR}	Asynchronous Clear Removal Time for Input DDR	0.00	ns
t _{DDRIRECCLR}	Asynchronous Clear Recovery Time for Input DDR	0.24	ns
t _{DDRIWCLR}	Asynchronous Clear Minimum Pulse Width for Input DDR	0.19	ns
t _{DDRICKMPWH}	Clock Minimum Pulse Width High for Input DDR	0.31	ns
t _{DDRICKMPWL}	Clock Minimum Pulse Width Low for Input DDR	0.28	ns
F _{DDRIMAX}	Maximum Frequency for Input DDR	160.00	MHz

Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.

Timing Characteristics

1.5 V DC Core Voltage

Table 2-171 • Register Delays

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V

Parameter	Description	Std.	Units
t _{CLKQ}	Clock-to-Q of the Core Register	0.89	ns
t _{SUD}	Data Setup Time for the Core Register	0.81	ns
t _{HD}	Data Hold Time for the Core Register	0.00	ns
t _{SUE}	Enable Setup Time for the Core Register	0.73	ns
t _{HE}	Enable Hold Time for the Core Register	0.00	ns
t _{CLR2Q}	Asynchronous Clear-to-Q of the Core Register	0.60	ns
t _{PRE2Q}	Asynchronous Preset-to-Q of the Core Register	0.62	ns
t _{REMCLR}	Asynchronous Clear Removal Time for the Core Register	0.00	ns
t _{RECCLR}	Asynchronous Clear Recovery Time for the Core Register	0.24	ns
t _{REMPRE}	Asynchronous Preset Removal Time for the Core Register	0.00	ns
t _{RECPRE}	Asynchronous Preset Recovery Time for the Core Register	0.23	ns
t _{WCLR}	Asynchronous Clear Minimum Pulse Width for the Core Register	0.30	ns
t _{WPRE}	Asynchronous Preset Minimum Pulse Width for the Core Register	0.30	ns
t _{CKMPWH}	Clock Minimum Pulse Width High for the Core Register	0.56	ns
t _{CKMPWL}	Clock Minimum Pulse Width Low for the Core Register	0.56	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

Table 2-177 • AGL250 Global Resource

Commercial-Case Conditions: T_J = 70°C, VCC = 1.425 V

		S	td.	
Parameter	Description	Min. ¹	Max. ²	Units
t _{RCKL}	Input Low Delay for Global Clock	1.39	1.73	ns
t _{RCKH}	Input High Delay for Global Clock	1.41	1.84	ns
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock	1.18		ns
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock	1.15		ns
t _{RCKSW}	Maximum Skew for Global Clock		0.43	ns

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

Table 2-178 • AGL400 Global Resource

Commercial-Case Conditions: T_J = 70°C, VCC = 1.425 V

		Std.		
Parameter	Description	Min. ¹	Max. ²	Units
t _{RCKL}	Input Low Delay for Global Clock	1.45	1.79	ns
t _{RCKH}	Input High Delay for Global Clock	1.48	1.91	ns
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock	1.18		ns
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock	1.15		ns
t _{RCKSW}	Maximum Skew for Global Clock		0.43	ns

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

3. For specific junction temperature and voltage-supply levels, refer to Table 2-6 on page 2-7 for derating values.

Table 2-190 • IGLOO CCC/PLL Specification For IGLOO V2 Devices, 1.2 V DC Core Supply Voltage

Parameter	Min.	Тур.	Max.	Units
Clock Conditioning Circuitry Input Frequency fIN_CCC	1.5		160	MHz
Clock Conditioning Circuitry Output Frequency f _{OUT_CCC}	0.75		160	MHz
Delay Increments in Programmable Delay Blocks ^{1,2}		580 ³		ps
Number of Programmable Values in Each Programmable Delay Block			32	
Serial Clock (SCLK) for Dynamic PLL ^{4,5}			60	ns
Input Cycle-to-Cycle Jitter (peak magnitude)			0.25	ns
Acquisition Time				
LockControl = 0			300	μs
LockControl = 1			6.0	ms
Tracking Jitter ⁶				
LockControl = 0			4	ns
LockControl = 1			3	ns
Output Duty Cycle	48.5		51.5	%
Delay Range in Block: Programmable Delay 1 ^{1,2}	2.3		20.86	ns
Delay Range in Block: Programmable Delay 2 ^{1,2}	0.863		20.86	ns
Delay Range in Block: Fixed Delay ^{1, 2, 5}		5.7		ns
CCC Output Peak-to-Peak Period Jitter F _{CCC_OUT}	Maxim	Maximum Peak-to-Peak Jitter Data ^{7,8}		
	$SSO \geq 4^9$	$SSO \geq 8^9$	$SSO \geq 16^9$	
0.75 MHz to 50 MHz	1.20%	2.00%	3.00%	
50 MHz to 160 MHz	5.00%	7.00%	15.00%	

Notes:

1. This delay is a function of voltage and temperature. See Table 2-6 on page 2-7 and Table 2-7 on page 2-7 for deratings.

2. $T_J = 25^{\circ}C$, $V_{CC} = 1.2 V$

3. When the CCC/PLL core is generated by Microsemi core generator software, not all delay values of the specified delay increments are available. Refer to the Libero SoC Online Help associated with the core for more information.

4. Maximum value obtained for a Std. speed grade device in Worst-Case Commercial Conditions. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

5. The AGL030 device does not support a PLL.

6. Tracking jitter is defined as the variation in clock edge position of PLL outputs with reference to the PLL input clock edge. Tracking jitter does not measure the variation in PLL output period, which is covered by the period jitter parameter.

7. VCO output jitter is calculated as a percentage of the VCO frequency. The jitter (in ps) can be calculated by multiplying the VCO period by the per cent jitter. The VCO jitter (in ps) applies to CCC_OUT regardless of the output divider settings. For example, if the jitter on VCO is 300 ps, the jitter on CCC_OUT is also 300 ps, regardless of the output divider settings.

Measurements done with LVTTL 3.3 V, 8 mA I/O drive strength, and high slew Rate. VCC/VCCPLL = 1.14 V, VQ/PQ/TQ type of packages, 20 pF load.

 SSO are outputs that are synchronous to a single clock domain and have clock-to-out times that are within ±200 ps of each other. Switching I/Os are placed outside of the PLL bank. Refer to the "Simultaneously Switching Outputs (SSOs) and Printed Circuit Board Layout" section in the IGLOO FPGA Fabric User Guide.

10. For definitions of Type 1 and Type 2, refer to the PLL Block Diagram in the "Clock Conditioning Circuits in IGLOO and ProASIC3 Devices" chapter of the IGLOO FPGA Fabric User Guide.

VJTAG JTAG Supply Voltage

Low power flash devices have a separate bank for the dedicated JTAG pins. The JTAG pins can be run at any voltage from 1.5 V to 3.3 V (nominal). Isolating the JTAG power supply in a separate I/O bank gives greater flexibility in supply selection and simplifies power supply and PCB design. If the JTAG interface is neither used nor planned for use, the VJTAG pin together with the TRST pin could be tied to GND. It should be noted that VCC is required to be powered for JTAG operation; VJTAG alone is insufficient. If a device is in a JTAG chain of interconnected boards, the board containing the device can be powered down, provided both VJTAG and VCC to the part remain powered; otherwise, JTAG signals will not be able to transition the device, even in bypass mode.

Microsemi recommends that VPUMP and VJTAG power supplies be kept separate with independent filtering capacitors rather than supplying them from a common rail.

VPUMP Programming Supply Voltage

IGLOO devices support single-voltage ISP of the configuration flash and FlashROM. For programming, VPUMP should be 3.3 V nominal. During normal device operation, VPUMP can be left floating or can be tied (pulled up) to any voltage between 0 V and the VPUMP maximum. Programming power supply voltage (VPUMP) range is listed in the datasheet.

When the VPUMP pin is tied to ground, it will shut off the charge pump circuitry, resulting in no sources of oscillation from the charge pump circuitry.

For proper programming, 0.01 μ F and 0.33 μ F capacitors (both rated at 16 V) are to be connected in parallel across VPUMP and GND, and positioned as close to the FPGA pins as possible.

Microsemi recommends that VPUMP and VJTAG power supplies be kept separate with independent filtering capacitors rather than supplying them from a common rail.

User Pins

I/O

User Input/Output

The I/O pin functions as an input, output, tristate, or bidirectional buffer. Input and output signal levels are compatible with the I/O standard selected.

During programming, I/Os become tristated and weakly pulled up to VCCI. With VCCI, VMV, and VCC supplies continuously powered up, when the device transitions from programming to operating mode, the I/Os are instantly configured to the desired user configuration.

Unused I/Os are configured as follows:

- Output buffer is disabled (with tristate value of high impedance)
- Input buffer is disabled (with tristate value of high impedance)
- Weak pull-up is programmed

GL Globals

GL I/Os have access to certain clock conditioning circuitry (and the PLL) and/or have direct access to the global network (spines). Additionally, the global I/Os can be used as regular I/Os, since they have identical capabilities. Unused GL pins are configured as inputs with pull-up resistors.

See more detailed descriptions of global I/O connectivity in the "Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs" chapter of the *IGLOO FPGA Fabric User Guide*. All inputs labeled GC/GF are direct inputs into the quadrant clocks. For example, if GAA0 is used for an input, GAA1 and GAA2 are no longer available for input to the quadrant globals. All inputs labeled GC/GF are direct inputs into the chip-level globals, and the rest are connected to the quadrant globals. The inputs to the global network are multiplexed, and only one input can be used as a global input.

Refer to the "I/O Structures in IGLOO and ProASIC3 Devices" chapter of the *IGLOO FPGA Fabric User Guide* for an explanation of the naming of global pins.

FF

Flash*Freeze Mode Activation Pin

Flash*Freeze mode is available on IGLOO devices. The FF pin is a dedicated input pin used to enter and exit Flash*Freeze mode. The FF pin is active low, has the same characteristics as a single-ended I/O, and must meet the maximum rise and fall times. When Flash*Freeze mode is not used in the design, the FF pin is available as a regular I/O.

When Flash*Freeze mode is used, the FF pin must not be left floating to avoid accidentally entering Flash*Freeze mode. While in Flash*Freeze mode, the Flash*Freeze pin should be constantly asserted.

The Flash*Freeze pin can be used with any single-ended I/O standard supported by the I/O bank in which the pin is located, and input signal levels compatible with the I/O standard selected. The FF pin should be treated as a sensitive asynchronous signal. When defining pin placement and board layout, simultaneously switching outputs (SSOs) and their effects on sensitive asynchronous pins must be considered.

Unused FF or I/O pins are tristated with weak pull-up. This default configuration applies to both Flash*Freeze mode and normal operation mode. No user intervention is required.

Table 3-1 shows the Flash*Freeze pin location on the available packages for IGLOO a devices. The Flash*Freeze pin location is independent of device, allowing migration to larger or smaller IGLOO devices while maintaining the same pin location on the board. Refer to the "Flash*Freeze Technology and Low Power Modes" chapter of the *IGLOO FPGA Fabric User Guide* for more information on I/O states during Flash*Freeze mode.

Table 3-1 • Flash*Freeze Pin Location in IGLOO Family Packages (device-independent)

IGLOO Packages	Flash*Freeze Pin
CS81/UC81	H2
CS121	J5
CS196	P3
CS281	W2
QN48	14
QN68	18
QN132	B12
VQ100	27
FG144	L3
FG256	Т3
FG484	W6

Note: This is the bottom view of the package.

Note

For more information on package drawings, see PD3068: Package Mechanical Drawings.

Microsemi

Package Pin Assignments

CS196		CS196		CS196		
Pin Number	AGL125 Function	Pin Number	AGL125 Function	Pin Number	AGL125 Function	
A1	GND	C9	IO23RSB0	F3	IO113RSB1	
A2	GAA0/IO00RSB0	C10	IO29RSB0	F4	IO112RSB1	
A3	GAC0/IO04RSB0	C11	VCCIB0	F5	IO111RSB1	
A4	GAC1/IO05RSB0	C12	IO42RSB0	F6	NC	
A5	IO09RSB0	C13	GNDQ	F7	VCC	
A6	IO15RSB0	C14	IO44RSB0	F8	VCC	
A7	IO18RSB0	D1	IO127RSB1	F9	NC	
A8	IO22RSB0	D2	IO129RSB1	F10	IO07RSB0	
A9	IO27RSB0	D3	GAA2/IO132RSB1	F11	IO25RSB0	
A10	GBC0/IO35RSB0	D4	IO126RSB1	F12	IO10RSB0	
A11	GBB0/IO37RSB0	D5	IO06RSB0	F13	IO33RSB0	
A12	GBB1/IO38RSB0	D6	IO13RSB0	F14	IO47RSB0	
A13	GBA1/IO40RSB0	D7	IO19RSB0	G1	GFB1/IO121RSB1	
A14	GND	D8	IO21RSB0	G2	GFA0/IO119RSB1	
B1	VCCIB1	D9	IO26RSB0	G3	GFA2/IO117RSB1	
B2	VMV0	D10	IO31RSB0	G4	VCOMPLF	
B3	GAA1/IO01RSB0	D11	IO30RSB0	G5	GFC0/IO122RSB1	
B4	GAB1/IO03RSB0	D12	VMV0	G6	VCC	
B5	GND	D13	IO46RSB0	G7	GND	
B6	IO16RSB0	D14	GBC2/IO45RSB0	G8	GND	
B7	IO20RSB0	E1	IO125RSB1	G9	VCC	
B8	IO24RSB0	E2	GND	G10	GCC0/IO52RSB0	
B9	IO28RSB0	E3	IO131RSB1	G11	GCB1/IO53RSB0	
B10	GND	E4	VCCIB1	G12	GCA0/IO56RSB0	
B11	GBC1/IO36RSB0	E5	NC	G13	IO48RSB0	
B12	GBA0/IO39RSB0	E6	IO08RSB0	G14	GCC2/IO59RSB0	
B13	GBA2/IO41RSB0	E7	IO17RSB0	H1	GFB0/IO120RSB1	
B14	GBB2/IO43RSB0	E8	IO12RSB0	H2	GFA1/IO118RSB1	
C1	GAC2/IO128RSB1	E9	IO11RSB0	H3	VCCPLF	
C2	GAB2/IO130RSB1	E10	NC	H4	GFB2/IO116RSB1	
C3	GNDQ	E11	VCCIB0	H5	GFC1/IO123RSB1	
C4	VCCIB0	E12	IO32RSB0	H6	VCC	
C5	GAB0/IO02RSB0	E13	GND	H7	GND	
C6	IO14RSB0	E14	IO34RSB0	H8	GND	
C7	VCCIB0	F1	IO124RSB1	H9	VCC	
C8	NC	F2	IO114RSB1	H10	GCC1/IO51RSB0	

Microsemi

IGLOO Low Power Flash FPGAs

	CS196	CS196		
Pin Number	AGL250 Function	Pin Number	AGL250 Function	
H11	GCB0/IO49NDB1	L5	IO89RSB2	
H12	GCA1/IO50PDB1	L6	IO92RSB2	
H13	IO51NDB1	L7	IO75RSB2	
H14	GCA2/IO51PDB1	L8	IO66RSB2	
J1	GFC2/IO105PDB3	L9	IO65RSB2	
J2	IO104PPB3	L10	IO71RSB2	
J3	IO106NPB3	L11	VPUMP	
J4	IO103PDB3	L12	VJTAG	
J5	IO103NDB3	L13	GDA0/IO60VPB1	
J6	IO80RSB2	L14	GDB0/IO59VDB1	
J7	VCC	M1	GEB0/IO99NDB3	
J8	VCC	M2	GEA1/IO98PPB3	
J9	IO64RSB2	M3	GNDQ	
J10	IO56PDB1	M4	VCCIB2	
J11	GCB2/IO52PDB1	M5	IO88RSB2	
J12	IO52NDB1	M6	IO87RSB2	
J13	GDC1/IO58UDB1	M7	IO82RSB2	
J14	GDC0/IO58VDB1	M8	VCCIB2	
K1	IO105NDB3	M9	IO67RSB2	
K2	GND	M10	GDB2/IO62RSB2	
K3	IO104NPB3	M11	VCCIB2	
K4	VCCIB3	M12	VMV2	
K5	IO101PPB3	M13	TRST	
K6	IO91RSB2	M14	VCCIB1	
K7	IO81RSB2	N1	GEA0/IO98NPB3	
K8	IO73RSB2	N2	VMV3	
K9	IO77RSB2	N3	GEC2/IO95RSB2	
K10	IO56NDB1	N4	IO94RSB2	
K11	VCCIB1	N5	GND	
K12	GDA1/IO60UPB1	N6	IO86RSB2	
K13	GND	N7	IO78RSB2	
K14	GDB1/IO59UDB1	N8	IO74RSB2	
L1	GEB1/IO99PDB3	N9	IO69RSB2	
L2	GEC1/IO100PDB3	N10	GND	
L3	GEC0/IO100NDB3	N11	ТСК	
L4	IO101NPB3	N12	TDI	

CS196				
Pin Number	AGL250 Function			
N13	GNDQ			
N14	TDO			
P1	GND			
P2	GEA2/IO97RSB2			
P3	FF/GEB2/IO96RSB2			
P4	IO90RSB2			
P5	IO85RSB2			
P6	IO83RSB2			
P7	IO79RSB2			
P8	IO76RSB2			
P9	IO72RSB2			
P10	IO68RSB2			
P11	GDC2/IO63RSB2			
P12	GDA2/IO61RSB2			
P13	TMS			
P14	GND			

Microsemi

Package Pin Assignments

CS281		CS281		CS281		
Pin Number	AGL600 Function	Pin Number	AGL600 Function	Pin Number	AGL600 Function	
H8	VCC	K15	IO73NPB1	N4	IO150PPB3	
H9	VCCIB0	K16	GND	N5	IO148NPB3	
H10	VCC	K18	IO74NPB1	N7	GEA2/IO143RSB2	
H11	VCCIB0	K19	VCCIB1	N8	VCCIB2	
H12	VCC	L1	GFB2/IO160PDB3	N9	IO117RSB2	
H13	VCCIB1	L2	IO160NDB3	N10	IO115RSB2	
H15	IO68NPB1	L4	GFC2/IO159PPB3	N11	IO114RSB2	
H16	GCB0/IO70NPB1	L5	IO153PPB3	N12	VCCIB2	
H18	GCA1/IO71PPB1	L7	IO153NPB3	N13	VPUMP	
H19	GCA2/IO72PPB1	L8	VCCIB3	N15	IO82PPB1	
J1	VCOMPLF	L9	GND	N16	IO85PPB1	
J2	GFA0/IO162NDB3	L10	GND	N18	IO82NPB1	
J4	VCCPLF	L11	GND	N19	IO81PPB1	
J5	GFC0/IO164NPB3	L12	VCCIB1	P1	IO151PDB3	
J7	GFA2/IO161PDB3	L13	IO76PPB1	P2	GND	
J8	VCCIB3	L15	IO76NPB1	P3	IO151NDB3	
J9	GND	L16	IO77PPB1	P4	IO149PPB3	
J10	GND	L18	IO78NPB1	P5	GEA0/IO144NPB3	
J11	GND	L19	IO77NPB1	P15	IO83NDB1	
J12	VCCIB1	M1	IO158PDB3	P16	IO83PDB1	
J13	GCC1/IO69PPB1	M2	IO158NDB3	P17	GDC1/IO86PPB1	
J15	GCA0/IO71NPB1	M4	IO154NPB3	P18	GND	
J16	GCB2/IO73PPB1	M5	IO152PPB3	P19	IO85NPB1	
J18	IO72NPB1	M7	VCCIB3	R1	IO150NPB3	
J19	IO75PSB1	M8	VCC	R2	IO149NPB3	
K1	VCCIB3	M9	VCCIB2	R4	GEC1/IO146PPB3	
K2	GFA1/IO162PDB3	M10	VCC	R5	GEB1/IO145PPB3	
K4	GND	M11	VCCIB2	R6	IO138RSB2	
K5	IO159NPB3	M12	VCC	R7	IO127RSB2	
K7	IO161NDB3	M13	VCCIB1	R8	IO123RSB2	
K8	VCC	M15	IO79NPB1	R9	IO118RSB2	
K9	GND	M16	IO81NPB1	R10	IO111RSB2	
K10	GND	M18	IO79PPB1	R11	IO106RSB2	
K11	GND	M19	IO78PPB1	R12	IO103RSB2	
K12	VCC	N1	IO154PPB3	R13	IO97RSB2	
K13	GCC2/IO74PPB1	N2	IO152NPB3	R14	IO95RSB2	

	CS281		CS281
Pin Number	AGL600 Function	Pin Number	AGL600 Function
R15	IO94RSB2	V10	IO112RSB2
R16	GDA1/IO88PPB1	V11	IO110RSB2
R18	GDB0/IO87NPB1	V12	IO108RSB2
R19	GDC0/IO86NPB1	V13	IO102RSB2
T1	IO148PPB3	V14	GND
T2	GEC0/IO146NPB3	V15	IO93RSB2
T4	GEB0/IO145NPB3	V16	GDA2/IO89RSB2
T5	IO132RSB2	V17	TDI
Т6	IO136RSB2	V18	VCCIB2
T7	IO130RSB2	V19	TDO
Т8	IO126RSB2	W1	GND
Т9	IO120RSB2	W2	FF/GEB2/IO142RSB2
T10	GND	W3	IO139RSB2
T11	IO113RSB2	W4	IO137RSB2
T12	IO104RSB2	W5	IO134RSB2
T13	IO101RSB2	W6	IO133RSB2
T14	IO98RSB2	W7	IO128RSB2
T15	GDC2/IO91RSB2	W8	IO124RSB2
T16	TMS	W9	IO119RSB2
T18	VJTAG	W10	VCCIB2
T19	GDB1/IO87PPB1	W11	IO109RSB2
U1	IO147PDB3	W12	IO107RSB2
U2	GEA1/IO144PPB3	W13	IO105RSB2
U6	IO131RSB2	W14	IO100RSB2
U14	IO99RSB2	W15	IO96RSB2
U18	TRST	W16	IO92RSB2
U19	GDA0/IO88NPB1	W17	GDB2/IO90RSB2
V1	IO147NDB3	W18	ТСК
V2	VCCIB3	W19	GND
V3	GEC2/IO141RSB2		
V4	IO140RSB2]	
V5	IO135RSB2]	
V6	GND		
V7	IO125RSB2		
V8	IO122RSB2	1	

V9

IO116RSB2

Package Pin Assignments

QN132

Notes:

2. The die attach paddle center of the package is tied to ground (GND).

Note

QN132 package is discontinued and is not available for IGLOO devices. For more information on package drawings, see *PD3068: Package Mechanical Drawings*.

^{1.} This is the bottom view of the package.

	FG484				
Pin Number AGL400 Function					
AA15	NC				
AA16	NC				
AA17	NC				
AA18	NC				
AA19	NC				
AA20	NC				
AA21	VCCIB1				
AA22	GND				
AB1	GND				
AB2	GND				
AB3	VCCIB2				
AB4	NC				
AB5	NC				
AB6	IO121RSB2				
AB7	IO119RSB2				
AB8	IO114RSB2				
AB9	IO109RSB2				
AB10	NC				
AB11	NC				
AB12	IO104RSB2				
AB13	IO103RSB2				
AB14	NC				
AB15	NC				
AB16	IO91RSB2				
AB17	IO90RSB2				
AB18	NC				
AB19	NC				
AB20	VCCIB2				
AB21	GND				
AB22	GND				
B1	GND				
B2	VCCIB3				
B3	NC				
B4	NC				
B5	NC				
B6	NC				

Datasheet Information

Revision	Changes	Page
Revision 19	The following figures were deleted (SAR 29991). Reference was made to a new application note, <i>Simultaneous Read-Write Operations in Dual-Port SRAM for Flash-Based cSoCs and FPGAs</i> , which covers these cases in detail (SAR 21770).	
	Figure 2-36 • Write Access after Write onto Same Address	
	Figure 2-37 • Read Access after Write onto Same Address	
	Figure 2-38 • Write Access after Read onto Same Address	2-119 to
	The port names in the SRAM "Timing Waveforms", SRAM "Timing Characteristics" tables, Figure 2-40 • FIFO Reset, and the FIFO "Timing Characteristics" tables were revised to ensure consistency with the software names (SARs 29991, 30510).	2-130
	The "Pin Descriptions" chapter has been added (SAR 21642).	
	Package names used in the "Package Pin Assignments" section were revised to match standards given in <i>Package Mechanical Drawings</i> (SAR 27395).	4-1
	The "CS81" pin table for AGL250 is new (SAR 22737).	4-5
	The CS121 pin table for AGL125 is new (SAR 22737).	
	The P3 function was revised in the "CS196" pin table for AGL250 (SAR 24800).	4-12
	The "QN132" pin table for AGL250 was added.	4-35,
	The "FG144" pin table for AGL060 was added (SAR 33689)	4-42
July 2010	The versioning system for datasheets has been changed. Datasheets are assigned a revision number that increments each time the datasheet is revised. The "IGLOO Device Status" table indicates the status for each device in the device family.	N/A