

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

ĿXF

Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	24576
Total RAM Bits	147456
Number of I/O	97
Number of Gates	1000000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 70°C (TA)
Package / Case	144-LBGA
Supplier Device Package	144-FPBGA (13x13)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/m1agl1000v5-fg144

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

VersaTiles are connected with any of the four levels of routing hierarchy. Flash switches are distributed throughout the device to provide nonvolatile, reconfigurable interconnect programming. Maximum core utilization is possible for virtually any design.

Figure 1-1 • IGLOO Device Architecture Overview with Two I/O Banks (AGL015, AGL030, AGL060, and AGL125)

Figure 1-2 • IGLOO Device Architecture Overview with Four I/O Banks (AGL250, AGL600, AGL400, and AGL1000)

Figure 2-5 • Output Buffer Model and Delays (example)

 Table 2-32 •
 Summary of I/O Timing Characteristics—Software Default Settings, Std. Speed Grade, Commercial-Case

 Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI (per standard)

 Applicable to Standard Plus I/O Banks

I/O Standard	Drive Strength	Equivalent Software Default Drive Strength Option ¹ (mA ⁾	Slew Rate	Capacitive Load (pF)	External Resistor (Ω)	t _{bour} (ns)	t _{DP} (ns)	t _{DIN} (ns)	t _{PY} (ns)	t _{Eour} (ns)	t _{ZL} (ns)	t _{zH} (ns)	t _{LZ} (ns)	t _{HZ} (ns)	t _{ZLS} (ns)	t _{ZHS} (ns)	Units
3.3 V LVTTL / 3.3 V LVCMOS	12 mA	12	High	5	_	0.97	1.75	0.18	0.85	0.66	1.79	1.40	2.36	2.79	5.38	4.99	ns
3.3 V LVCMOS Wide Range ²	100 µA	12	High	5	_	0.97	2.45	0.18	1.20	0.66	2.47	1.92	3.33	3.90	6.06	5.51	ns
2.5 V LVCMOS	12 mA	12	High	5	-	0.97	1.75	0.18	1.08	0.66	1.79	1.52	2.38	2.70	5.39	5.11	ns
1.8 V LVCMOS	8 mA	8	High	5	Ι	0.97	1.97	0.18	1.01	0.66	2.02	1.76	2.46	2.66	5.61	5.36	ns
1.5 V LVCMOS	4 mA	4	High	5	Ι	0.97	2.25	0.18	1.18	0.66	2.30	2.00	2.53	2.68	5.89	5.59	ns
3.3 V PCI	Per PCI spec	Ι	High	10	25 ²	0.97	1.97	0.18	0.73	0.66	2.01	1.50	2.36	2.79	5.61	5.10	ns
3.3 V PCI-X	Per PCI- X spec	Ι	High	10	25 ²	0.97	1.97	0.19	0.70	0.66	2.01	1.50	2.36	2.79	5.61	5.10	ns

Notes:

1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ±100 μA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.

2. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD-8B specification.

3. Resistance is used to measure I/O propagation delays as defined in PCI specifications. See Figure 2-12 on page 2-79 for connectivity. This resistor is not required during normal operation.

4. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

2.5 V LVCMOS

Low-Voltage CMOS for 2.5 V is an extension of the LVCMOS standard (JESD8-5) used for general-purpose 2.5 V applications.

2.5 V LVCMOS	v	1L	v	IH	VOL	VОН	IOL	юн	IOSH	IOSL	IIL ¹	IIH ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
2 mA	-0.3	0.7	1.7	2.7	0.7	1.7	2	2	16	18	10	10
4 mA	-0.3	0.7	1.7	2.7	0.7	1.7	4	4	16	18	10	10
6 mA	-0.3	0.7	1.7	2.7	0.7	1.7	6	6	32	37	10	10
8 mA	-0.3	0.7	1.7	2.7	0.7	1.7	8	8	32	37	10	10
12 mA	-0.3	0.7	1.7	2.7	0.7	1.7	12	12	65	74	10	10
16 mA	-0.3	0.7	1.7	2.7	0.7	1.7	16	16	83	87	10	10
24 mA	-0.3	0.7	1.7	2.7	0.7	1.7	24	24	169	124	10	10

Table 2-79 • Minimum and Maximum DC Input and Output Levels Applicable to Advanced I/O Banks

Notes:

1. IIL is the input leakage current per I/O pin over recommended operation conditions where -0.3 V < VIN < VIL.

2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges

3. Currents are measured at 100°C junction temperature and maximum voltage.

4. Currents are measured at 85°C junction temperature.

5. Software default selection highlighted in gray.

 Table 2-80 •
 Minimum and Maximum DC Input and Output Levels

 Applicable to Standard Plus I/O Banks

2.5 V LVCMOS	v	ΊL	v	ΊH	VOL	vон	IOL	юн	IOSH	IOSL	IIL ¹	IIH ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
2 mA	-0.3	0.7	1.7	2.7	0.7	1.7	2	2	16	18	10	10
4 mA	-0.3	0.7	1.7	2.7	0.7	1.7	4	4	16	18	10	10
6 mA	-0.3	0.7	1.7	2.7	0.7	1.7	6	6	32	37	10	10
8 mA	-0.3	0.7	1.7	2.7	0.7	1.7	8	8	32	37	10	10
12 mA	-0.3	0.7	1.7	2.7	0.7	1.7	12	12	65	74	10	10

Notes:

1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.

2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges

3. Currents are measured at 100°C junction temperature and maximum voltage.

4. Currents are measured at 85°C junction temperature.

5. Software default selection highlighted in gray.

1.8 V LVCMOS

Low-voltage CMOS for 1.8 V is an extension of the LVCMOS standard (JESD8-5) used for general-purpose 1.8 V applications. It uses a 1.8 V input buffer and a push-pull output buffer.

1.8 V LVCMOS		VIL	VIH		VOL	VOH	IOL	юн	IOSH	IOSL	IIL ¹	IIH ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
2 mA	-0.3	0.35 * VCCI	0.65 * VCCI	1.9	0.45	VCCI - 0.45	2	2	9	11	10	10
4 mA	-0.3	0.35 * VCCI	0.65 * VCCI	1.9	0.45	VCCI - 0.45	4	4	17	22	10	10
6 mA	-0.3	0.35 * VCCI	0.65 * VCCI	1.9	0.45	VCCI - 0.45	6	6	35	44	10	10
8 mA	-0.3	0.35 * VCCI	0.65 * VCCI	1.9	0.45	VCCI - 0.45	8	8	45	51	10	10
12 mA	-0.3	0.35 * VCCI	0.65 * VCCI	1.9	0.45	VCCI - 0.45	12	12	91	74	10	10
16 mA	-0.3	0.35 * VCCI	0.65 * VCCI	1.9	0.45	VCCI - 0.45	16	16	91	74	10	10

Table 2-95 • Minimum and Maximum DC Input and Output Levels Applicable to Advanced I/O Banks

Notes:

1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.

2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges

3. Currents are measured at 100°C junction temperature and maximum voltage.

4. Currents are measured at 85°C junction temperature.

5. Software default selection highlighted in gray.

Table 2-96 • Minimum and Maximum DC Input and Output Levels Applicable to Standard Plus I/O Banks

1.8 V LVCMOS		VIL	VIH		VOL	VOH	IOL	ЮН	IOSH	IOSL	IIL ¹	IIH ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
2 mA	-0.3	0.35 * VCCI	0.65 * VCCI	1.9	0.45	VCCI - 0.45	2	2	9	11	10	10
4 mA	-0.3	0.35 * VCCI	0.65 * VCCI	1.9	0.45	VCCI - 0.45	4	4	17	22	10	10
6 mA	-0.3	0.35 * VCCI	0.65 * VCCI	1.9	0.45	VCCI - 0.45	6	6	35	44	10	10
8 mA	-0.3	0.35 * VCCI	0.65 * VCCI	1.9	0.45	VCCI - 0.45	8	8	35	44	10	10

Notes:

1. IIL is the input leakage current per I/O pin over recommended operation conditions where -0.3 V < VIN < VIL.

2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges

3. Currents are measured at 100°C junction temperature and maximum voltage.

4. Currents are measured at 85°C junction temperature.

5. Software default selection highlighted in gray.

Table 2-187 • AGL600 Global Resource

Commercial-Case Conditions: T_J = 70°C, VCC = 1.14 V

		Std.		
Parameter	Description	Min. ¹	Max. ²	Units
t _{RCKL}	Input Low Delay for Global Clock	2.22	2.67	ns
t _{RCKH}	Input High Delay for Global Clock	2.32	2.93	ns
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock	1.40		ns
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock	1.65		ns
t _{RCKSW}	Maximum Skew for Global Clock		0.61	ns

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

Table 2-188 • AGL1000 Global Resource

Commercial-Case Conditions: T_J = 70°C, VCC = 1.14 V

		S	td.	
Parameter	Description	Min. ¹	Max. ²	Units
t _{RCKL}	Input Low Delay for Global Clock	2.31	2.76	ns
t _{RCKH}	Input High Delay for Global Clock	2.42	3.03	ns
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock	1.40		ns
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock	1.65		ns
t _{RCKSW}	Maximum Skew for Global Clock		0.61	ns

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

Table 2-190 • IGLOO CCC/PLL Specification For IGLOO V2 Devices, 1.2 V DC Core Supply Voltage

Parameter	Min.	Тур.	Max.	Units
Clock Conditioning Circuitry Input Frequency fIN_CCC	1.5		160	MHz
Clock Conditioning Circuitry Output Frequency f _{OUT_CCC}	0.75		160	MHz
Delay Increments in Programmable Delay Blocks ^{1,2}		580 ³		ps
Number of Programmable Values in Each Programmable Delay Block			32	
Serial Clock (SCLK) for Dynamic PLL ^{4,5}			60	ns
Input Cycle-to-Cycle Jitter (peak magnitude)			0.25	ns
Acquisition Time				
LockControl = 0			300	μs
LockControl = 1			6.0	ms
Tracking Jitter ⁶				
LockControl = 0			4	ns
LockControl = 1			3	ns
Output Duty Cycle	48.5		51.5	%
Delay Range in Block: Programmable Delay 1 ^{1,2}	2.3		20.86	ns
Delay Range in Block: Programmable Delay 2 ^{1,2}	0.863		20.86	ns
Delay Range in Block: Fixed Delay ^{1, 2, 5}		5.7		ns
CCC Output Peak-to-Peak Period Jitter F _{CCC_OUT}	Maxim	um Peak-to-F	Peak Jitter Dat	a ^{7,8}
	$SSO \geq 4^9$	$SSO \geq 8^9$	$SSO \geq 16^9$	
0.75 MHz to 50 MHz	1.20%	2.00%	3.00%	
50 MHz to 160 MHz	5.00%	7.00%	15.00%	

Notes:

1. This delay is a function of voltage and temperature. See Table 2-6 on page 2-7 and Table 2-7 on page 2-7 for deratings.

2. $T_J = 25^{\circ}C$, $V_{CC} = 1.2 V$

3. When the CCC/PLL core is generated by Microsemi core generator software, not all delay values of the specified delay increments are available. Refer to the Libero SoC Online Help associated with the core for more information.

4. Maximum value obtained for a Std. speed grade device in Worst-Case Commercial Conditions. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

5. The AGL030 device does not support a PLL.

6. Tracking jitter is defined as the variation in clock edge position of PLL outputs with reference to the PLL input clock edge. Tracking jitter does not measure the variation in PLL output period, which is covered by the period jitter parameter.

7. VCO output jitter is calculated as a percentage of the VCO frequency. The jitter (in ps) can be calculated by multiplying the VCO period by the per cent jitter. The VCO jitter (in ps) applies to CCC_OUT regardless of the output divider settings. For example, if the jitter on VCO is 300 ps, the jitter on CCC_OUT is also 300 ps, regardless of the output divider settings.

Measurements done with LVTTL 3.3 V, 8 mA I/O drive strength, and high slew Rate. VCC/VCCPLL = 1.14 V, VQ/PQ/TQ type of packages, 20 pF load.

 SSO are outputs that are synchronous to a single clock domain and have clock-to-out times that are within ±200 ps of each other. Switching I/Os are placed outside of the PLL bank. Refer to the "Simultaneously Switching Outputs (SSOs) and Printed Circuit Board Layout" section in the IGLOO FPGA Fabric User Guide.

10. For definitions of Type 1 and Type 2, refer to the PLL Block Diagram in the "Clock Conditioning Circuits in IGLOO and ProASIC3 Devices" chapter of the IGLOO FPGA Fabric User Guide.

Embedded SRAM and FIFO Characteristics

SRAM

Figure 2-31 • RAM Models

Timing Waveforms

Figure 2-32 • RAM Read for Pass-Through Output. Applicable to Both RAM4K9 and RAM512x18.

Figure 2-33 • RAM Read for Pipelined Output. Applicable to Both RAM4K9 and RAM512x18.

Figure 2-34 • RAM Write, Output Retained. Applicable to Both RAM4K9 and RAM512x18.

Figure 2-35 • RAM Write, Output as Write Data (WMODE = 1). Applicable to RAM4K9 only.

Timing Characteristics

1.5 V DC Core Voltage

Table 2-195 • FIFO

Worst Commercial-Case Conditions: T_J = 70°C, VCC = 1.425 V

Parameter	Description	Std.	Units
t _{ENS}	REN, WEN Setup Time	1.99	ns
t _{ENH}	REN, WEN Hold Time	0.16	ns
t _{BKS}	BLK Setup Time	0.30	ns
t _{BKH}	BLK Hold Time	0.00	ns
t _{DS}	Input Data (WD) Setup Time	0.76	ns
t _{DH}	Input Data (WD) Hold Time	0.25	ns
t _{CKQ1}	Clock High to New Data Valid on RD (flow-through)	3.33	ns
t _{CKQ2}	Clock High to New Data Valid on RD (pipelined)	1.80	ns
t _{RCKEF}	RCLK High to Empty Flag Valid	3.53	ns
t _{WCKFF}	WCLK High to Full Flag Valid	3.35	ns
t _{CKAF}	Clock High to Almost Empty/Full Flag Valid	12.85	ns
t _{RSTFG}	RESET Low to Empty/Full Flag Valid	3.48	ns
t _{RSTAF}	RESET Low to Almost Empty/Full Flag Valid	12.72	ns
t _{RSTBQ}	RESET Low to Data Out Low on RD (flow-through)	2.02	ns
	RESET Low to Data Out Low on RD (pipelined)	2.02	ns
t _{REMRSTB}	RESET Removal	0.61	ns
t _{RECRSTB}	RESET Recovery	3.21	ns
t _{MPWRSTB}	RESET Minimum Pulse Width	0.68	ns
t _{CYC}	Clock Cycle Time	6.24	ns
F _{MAX}	Maximum Frequency for FIFO	160	MHz

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

VJTAG JTAG Supply Voltage

Low power flash devices have a separate bank for the dedicated JTAG pins. The JTAG pins can be run at any voltage from 1.5 V to 3.3 V (nominal). Isolating the JTAG power supply in a separate I/O bank gives greater flexibility in supply selection and simplifies power supply and PCB design. If the JTAG interface is neither used nor planned for use, the VJTAG pin together with the TRST pin could be tied to GND. It should be noted that VCC is required to be powered for JTAG operation; VJTAG alone is insufficient. If a device is in a JTAG chain of interconnected boards, the board containing the device can be powered down, provided both VJTAG and VCC to the part remain powered; otherwise, JTAG signals will not be able to transition the device, even in bypass mode.

Microsemi recommends that VPUMP and VJTAG power supplies be kept separate with independent filtering capacitors rather than supplying them from a common rail.

VPUMP Programming Supply Voltage

IGLOO devices support single-voltage ISP of the configuration flash and FlashROM. For programming, VPUMP should be 3.3 V nominal. During normal device operation, VPUMP can be left floating or can be tied (pulled up) to any voltage between 0 V and the VPUMP maximum. Programming power supply voltage (VPUMP) range is listed in the datasheet.

When the VPUMP pin is tied to ground, it will shut off the charge pump circuitry, resulting in no sources of oscillation from the charge pump circuitry.

For proper programming, 0.01 μ F and 0.33 μ F capacitors (both rated at 16 V) are to be connected in parallel across VPUMP and GND, and positioned as close to the FPGA pins as possible.

Microsemi recommends that VPUMP and VJTAG power supplies be kept separate with independent filtering capacitors rather than supplying them from a common rail.

User Pins

I/O

User Input/Output

The I/O pin functions as an input, output, tristate, or bidirectional buffer. Input and output signal levels are compatible with the I/O standard selected.

During programming, I/Os become tristated and weakly pulled up to VCCI. With VCCI, VMV, and VCC supplies continuously powered up, when the device transitions from programming to operating mode, the I/Os are instantly configured to the desired user configuration.

Unused I/Os are configured as follows:

- Output buffer is disabled (with tristate value of high impedance)
- Input buffer is disabled (with tristate value of high impedance)
- Weak pull-up is programmed

GL Globals

GL I/Os have access to certain clock conditioning circuitry (and the PLL) and/or have direct access to the global network (spines). Additionally, the global I/Os can be used as regular I/Os, since they have identical capabilities. Unused GL pins are configured as inputs with pull-up resistors.

See more detailed descriptions of global I/O connectivity in the "Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs" chapter of the *IGLOO FPGA Fabric User Guide*. All inputs labeled GC/GF are direct inputs into the quadrant clocks. For example, if GAA0 is used for an input, GAA1 and GAA2 are no longer available for input to the quadrant globals. All inputs labeled GC/GF are direct inputs into the chip-level globals, and the rest are connected to the quadrant globals. The inputs to the global network are multiplexed, and only one input can be used as a global input.

Refer to the "I/O Structures in IGLOO and ProASIC3 Devices" chapter of the *IGLOO FPGA Fabric User Guide* for an explanation of the naming of global pins.

FF

Flash*Freeze Mode Activation Pin

Flash*Freeze mode is available on IGLOO devices. The FF pin is a dedicated input pin used to enter and exit Flash*Freeze mode. The FF pin is active low, has the same characteristics as a single-ended I/O, and must meet the maximum rise and fall times. When Flash*Freeze mode is not used in the design, the FF pin is available as a regular I/O.

When Flash*Freeze mode is used, the FF pin must not be left floating to avoid accidentally entering Flash*Freeze mode. While in Flash*Freeze mode, the Flash*Freeze pin should be constantly asserted.

	CS81		CS81
Pin Number	AGL250 Function	Pin Number	AGL250 Function
A1	GAA0/IO00RSB0	E1	GFB0/IO109NDB3
A2	GAA1/IO01RSB0	E2	GFB1/IO109PDB3
A3	GAC0/IO04RSB0	E3	GFA1/IO108PSB3
A4	IO13RSB0	E4	VCCIB3
A5	IO21RSB0	E5	VCC
A6	IO27RSB0	E6	VCCIB1
A7	GBB0/IO37RSB0	E7	GCA0/IO50NDB1
A8	GBA1/IO40RSB0	E8	GCA1/IO50PDB1
A9	GBA2/IO41PPB1	E9	GCB2/IO52PPB1
B1	GAA2/IO118UPB3	F1	VCCPLF
B2	GAB0/IO02RSB0	F2	VCOMPLF
B3	GAC1/IO05RSB0	F3	GND
B4	IO11RSB0	F4	GND
B5	IO23RSB0	F5	VCCIB2
B6	GBC0/IO35RSB0	F6	GND
B7	GBB1/IO38RSB0	F7	GDA1/IO60USB1
B8	IO41NPB1	F8	GDC1/IO58UDB1
B9	GBB2/IO42PSB1	F9	GDC0/IO58VDB1
C1	GAB2/IO117UPB3	G1	GEA0/IO98NDB3
C2	IO118VPB3	G2	GEC1/IO100PDB3
C3	GND	G3	GEC0/IO100NDB3
C4	IO15RSB0	G4	IO91RSB2
C5	IO25RSB0	G5	IO86RSB2
C6	GND	G6	IO71RSB2
C7	GBA0/IO39RSB0	G7	GDB2/IO62RSB2
C8	GBC2/IO43PDB1	G8	VJTAG
C9	IO43NDB1	G9	TRST
D1	GAC2/IO116USB3	H1	GEA1/IO98PDB3
D2	IO117VPB3	H2	FF/GEB2/IO96RSB2
D3	GFA2/IO107PSB3	H3	IO93RSB2
D4	VCC	H4	IO90RSB2
D5	VCCIB0	H5	IO85RSB2
D6	GND	H6	IO77RSB2
D7	IO52NPB1	H7	GDA2/IO61RSB2
D8	GCC1/IO48PDB1	H8	TDI
D9	GCC0/IO48NDB1	H9	TDO
l	1	L	

CS81						
Pin Number	AGL250 Function					
J1	GEA2/IO97RSB2					
J2	GEC2/IO95RSB2					
J3	IO92RSB2					
J4	IO88RSB2					
J5	IO84RSB2					
J6	IO74RSB2					
J7	ТСК					
J8	TMS					
J9	VPUMP					

Package Pin Assignments

CS281				
Pin Number	AGL1000 Function	F		
A1	GND			
A2	GAB0/IO02RSB0			
A3	GAC1/IO05RSB0			
A4	IO13RSB0			
A5	IO11RSB0			
A6	IO16RSB0			
A7	IO20RSB0			
A8	IO24RSB0			
A9	IO29RSB0			
A10	VCCIB0			
A11	IO39RSB0			
A12	IO45RSB0			
A13	IO48RSB0			
A14	IO58RSB0			
A15	IO61RSB0			
A16	IO62RSB0			
A17	GBC1/IO73RSB0			
A18	GBA0/IO76RSB0			
A19	GND			
B1	GAA2/IO225PPB3			
B2	VCCIB0			
B3	GAB1/IO03RSB0			
B4	GAC0/IO04RSB0			
B5	IO12RSB0			
B6	GND			
B7	IO21RSB0			
B8	IO26RSB0			
B9	IO34RSB0			
B10	IO35RSB0			
B11	IO36RSB0			
B12	IO46RSB0			
B13	IO52RSB0			
B14	GND			
B15	IO59RSB0			
B16	GBC0/IO72RSB0			
B17	GBA1/IO77RSB0			
		. –		

CS281				
Pin Number	AGL1000 Function			
B18	VCCIB1			
B19	IO79NDB1			
C1	GAB2/IO224PPB3			
C2	IO225NPB3			
C6	IO18RSB0			
C14	IO63RSB0			
C18	IO78NPB1			
C19	GBB2/IO79PDB1			
D1	IO219PPB3			
D2	IO223NPB3			
D4	GAA0/IO00RSB0			
D5	GAA1/IO01RSB0			
D6	IO15RSB0			
D7	IO19RSB0			
D8	IO27RSB0			
D9	IO32RSB0			
D10	GND			
D11	IO38RSB0			
D12	IO44RSB0			
D13	IO47RSB0			
D14	IO60RSB0			
D15	GBB0/IO74RSB0			
D16	GBA2/IO78PPB1			
D18	GBC2/IO80PPB1			
D19	IO88NPB1			
E1	IO217NPB3			
E2	IO221PPB3			
E4	IO221NPB3			
E5	IO10RSB0			
E6	IO14RSB0			
E7	IO25RSB0			
E8	IO28RSB0			
E9	IO31RSB0			
E10	IO33RSB0			
E11	IO42RSB0			
E12	IO49RSB0			

CS281				
Pin Number	AGL1000 Function			
E13	IO53RSB0			
E14	GBB1/IO75RSB0			
E15	IO80NPB1			
E16	IO85PPB1			
E18	IO83PPB1			
E19	IO84NPB1			
F1	IO214NPB3			
F2	GND			
F3	IO217PPB3			
F4	IO219NPB3			
F5	IO224NPB3			
F15	IO85NPB1			
F16	IO84PPB1			
F17	IO83NPB1			
F18	GND			
F19	IO90PPB1			
G1	IO212NPB3			
G2	IO211NDB3			
G4	IO214PPB3			
G5	IO212PPB3			
G7	GAC2/IO223PPB3			
G8	VCCIB0			
G9	IO30RSB0			
G10	IO37RSB0			
G11	IO43RSB0			
G12	VCCIB0			
G13	IO88PPB1			
G15	IO89NDB1			
G16	IO89PDB1			
G18	GCC0/IO91NPB1			
G19	GCB1/IO92PPB1			
H1	GFB0/IO208NPB3			
H2	IO211PDB3			
H4	GFC1/IO209PPB3			
H5	GFB1/IO208PPB3			
H7	VCCIB3			

	QN132	QN132		QN132	
Pin Number	AGL250 Function	Pin Number	AGL250 Function	Pin Number	AGL250 Function
A1	GAB2/IO117UPB3	A37	GBB1/IO38RSB0	B25	GND
A2	IO117VPB3	A38	GBC0/IO35RSB0	B26	IO54PDB1
A3	VCCIB3	A39	VCCIB0	B27	GCB2/IO52PDB1
A4	GFC1/IO110PDB3	A40	IO28RSB0	B28	GND
A5	GFB0/IO109NPB3	A41	IO22RSB0	B29	GCB0/IO49NDB1
A6	VCCPLF	A42	IO18RSB0	B30	GCC1/IO48PDB1
A7	GFA1/IO108PPB3	A43	IO14RSB0	B31	GND
A8	GFC2/IO105PPB3	A44	IO11RSB0	B32	GBB2/IO42PDB1
A9	IO103NDB3	A45	IO07RSB0	B33	VMV1
A10	VCC	A46	VCC	B34	GBA0/IO39RSB0
A11	GEA1/IO98PPB3	A47	GAC1/IO05RSB0	B35	GBC1/IO36RSB0
A12	GEA0/IO98NPB3	A48	GAB0/IO02RSB0	B36	GND
A13	GEC2/IO95RSB2	B1	IO118VDB3	B37	IO26RSB0
A14	IO91RSB2	B2	GAC2/IO116UDB3	B38	IO21RSB0
A15	VCC	B3	GND	B39	GND
A16	IO90RSB2	B4	GFC0/IO110NDB3	B40	IO13RSB0
A17	IO87RSB2	B5	VCOMPLF	B41	IO08RSB0
A18	IO85RSB2	B6	GND	B42	GND
A19	IO82RSB2	B7	GFB2/IO106PSB3	B43	GAC0/IO04RSB0
A20	IO76RSB2	B8	IO103PDB3	B44	GNDQ
A21	IO70RSB2	B9	GND	C1	GAA2/IO118UDB3
A22	VCC	B10	GEB0/IO99NDB3	C2	IO116VDB3
A23	GDB2/IO62RSB2	B11	VMV3	C3	VCC
A24	TDI	B12	FF/GEB2/IO96RSB2	C4	GFB1/IO109PPB3
A25	TRST	B13	IO92RSB2	C5	GFA0/IO108NPB3
A26	GDC1/IO58UDB1	B14	GND	C6	GFA2/IO107PSB3
A27	VCC	B15	IO89RSB2	C7	IO105NPB3
A28	IO54NDB1	B16	IO86RSB2	C8	VCCIB3
A29	IO52NDB1	B17	GND	C9	GEB1/IO99PDB3
A30	GCA2/IO51PPB1	B18	IO78RSB2	C10	GNDQ
A31	GCA0/IO50NPB1	B19	IO72RSB2	C11	GEA2/IO97RSB2
A32	GCB1/IO49PDB1	B20	GND	C12	IO94RSB2
A33	IO47NSB1	B21	GNDQ	C13	VCCIB2
A34	VCC	B22	TMS	C14	IO88RSB2
A35	IO41NPB1	B23	TDO	C15	IO84RSB2
A36	GBA2/IO41PPB1	B24	GDC0/IO58VDB1	C16	IO80RSB2

	FG144	FG144		FG144	
Pin Number	AGL600 Function	Pin Number	AGL600 Function	Pin Number	AGL600 Function
A1	GNDQ	D1	IO169PDB3	G1	GFA1/IO162PPB3
A2	VMV0	D2	IO169NDB3	G2	GND
A3	GAB0/IO02RSB0	D3	IO172NDB3	G3	VCCPLF
A4	GAB1/IO03RSB0	D4	GAA2/IO174PPB3	G4	GFA0/IO162NPB3
A5	IO10RSB0	D5	GAC0/IO04RSB0	G5	GND
A6	GND	D6	GAC1/IO05RSB0	G6	GND
A7	IO34RSB0	D7	GBC0/IO54RSB0	G7	GND
A8	VCC	D8	GBC1/IO55RSB0	G8	GDC1/IO86PPB1
A9	IO50RSB0	D9	GBB2/IO61PDB1	G9	IO74NDB1
A10	GBA0/IO58RSB0	D10	IO61NDB1	G10	GCC2/IO74PDB1
A11	GBA1/IO59RSB0	D11	IO62NPB1	G11	IO73NDB1
A12	GNDQ	D12	GCB1/IO70PPB1	G12	GCB2/IO73PDB1
B1	GAB2/IO173PDB3	E1	VCC	H1	VCC
B2	GND	E2	GFC0/IO164NDB3	H2	GFB2/IO160PDB3
B3	GAA0/IO00RSB0	E3	GFC1/IO164PDB3	H3	GFC2/IO159PSB3
B4	GAA1/IO01RSB0	E4	VCCIB3	H4	GEC1/IO146PDB3
B5	IO13RSB0	E5	IO174NPB3	H5	VCC
B6	IO19RSB0	E6	VCCIB0	H6	IO80PDB1
B7	IO31RSB0	E7	VCCIB0	H7	IO80NDB1
B8	IO39RSB0	E8	GCC1/IO69PDB1	H8	GDB2/IO90RSB2
B9	GBB0/IO56RSB0	E9	VCCIB1	H9	GDC0/IO86NPB1
B10	GBB1/IO57RSB0	E10	VCC	H10	VCCIB1
B11	GND	E11	GCA0/IO71NDB1	H11	IO84PSB1
B12	VMV1	E12	IO72NDB1	H12	VCC
C1	IO173NDB3	F1	GFB0/IO163NPB3	J1	GEB1/IO145PDB3
C2	GFA2/IO161PPB3	F2	VCOMPLF	J2	IO160NDB3
C3	GAC2/IO172PDB3	F3	GFB1/IO163PPB3	J3	VCCIB3
C4	VCC	F4	IO161NPB3	J4	GEC0/IO146NDB3
C5	IO16RSB0	F5	GND	J5	IO129RSB2
C6	IO25RSB0	F6	GND	J6	IO131RSB2
C7	IO28RSB0	F7	GND	J7	VCC
C8	IO42RSB0	F8	GCC0/IO69NDB1	J8	TCK
C9	IO45RSB0	F9	GCB0/IO70NPB1	J9	GDA2/IO89RSB2
C10	GBA2/IO60PDB1	F10	GND	J10	TDO
C11	IO60NDB1	F11	GCA1/IO71PDB1	J11	GDA1/IO88PDB1
C12	GBC2/IO62PPB1	F12	GCA2/IO72PDB1	J12	GDB1/IO87PDB1

Package Pin Assignments

	FG256	FG256		FG256	
Pin Number	AGL400 Function	Pin Number	AGL400 Function	Pin Number	AGL400 Function
A1	GND	C7	IO20RSB0	E13	GBC2/IO62PDB1
A2	GAA0/IO00RSB0	C8	IO24RSB0	E14	IO65RSB1
A3	GAA1/IO01RSB0	C9	IO33RSB0	E15	IO52RSB0
A4	GAB0/IO02RSB0	C10	IO39RSB0	E16	IO66PDB1
A5	IO16RSB0	C11	IO45RSB0	F1	IO150NDB3
A6	IO17RSB0	C12	GBC0/IO54RSB0	F2	IO149NPB3
A7	IO22RSB0	C13	IO48RSB0	F3	IO09RSB0
A8	IO28RSB0	C14	VMV0	F4	IO152UDB3
A9	IO34RSB0	C15	IO61NPB1	F5	VCCIB3
A10	IO37RSB0	C16	IO63PDB1	F6	GND
A11	IO41RSB0	D1	IO151VDB3	F7	VCC
A12	IO43RSB0	D2	IO151UDB3	F8	VCC
A13	GBB1/IO57RSB0	D3	GAC2/IO153UDB3	F9	VCC
A14	GBA0/IO58RSB0	D4	IO06RSB0	F10	VCC
A15	GBA1/IO59RSB0	D5	GNDQ	F11	GND
A16	GND	D6	IO10RSB0	F12	VCCIB1
B1	GAB2/IO154UDB3	D7	IO19RSB0	F13	IO62NDB1
B2	GAA2/IO155UDB3	D8	IO26RSB0	F14	IO49RSB0
B3	IO12RSB0	D9	IO30RSB0	F15	IO64PPB1
B4	GAB1/IO03RSB0	D10	IO40RSB0	F16	IO66NDB1
B5	IO13RSB0	D11	IO46RSB0	G1	IO148NDB3
B6	IO14RSB0	D12	GNDQ	G2	IO148PDB3
B7	IO21RSB0	D13	IO47RSB0	G3	IO149PPB3
B8	IO27RSB0	D14	GBB2/IO61PPB1	G4	GFC1/IO147PPB3
B9	IO32RSB0	D15	IO53RSB0	G5	VCCIB3
B10	IO38RSB0	D16	IO63NDB1	G6	VCC
B11	IO42RSB0	E1	IO150PDB3	G7	GND
B12	GBC1/IO55RSB0	E2	IO08RSB0	G8	GND
B13	GBB0/IO56RSB0	E3	IO153VDB3	G9	GND
B14	IO44RSB0	E4	IO152VDB3	G10	GND
B15	GBA2/IO60PDB1	E5	VMV0	G11	VCC
B16	IO60NDB1	E6	VCCIB0	G12	VCCIB1
C1	IO154VDB3	E7	VCCIB0	G13	GCC1/IO67PPB1
C2	IO155VDB3	E8	IO25RSB0	G14	IO64NPB1
C3	IO11RSB0	E9	IO31RSB0	G15	IO73PDB1
C4	IO07RSB0	E10	VCCIB0	G16	IO73NDB1
C5	GAC0/IO04RSB0	E11	VCCIB0	H1	GFB0/IO146NPB3
C6	GAC1/IO05RSB0	E12	VMV1	H2	GFA0/IO145NDB3

FG484				
Pin Number AGL1000 Function				
K11	GND			
K12	GND			
K13	GND			
K14	VCC			
K15	VCCIB1			
K16	GCC1/IO91PPB1			
K17	IO90NPB1			
K18	IO88PDB1			
K19	IO88NDB1			
K20	IO94NPB1			
K21	IO98NDB1			
K22	IO98PDB1			
L1	NC			
L2	IO200PDB3			
L3	IO210NPB3			
L4	GFB0/IO208NPB3			
L5	GFA0/IO207NDB3			
L6	GFB1/IO208PPB3			
L7	VCOMPLF			
L8	GFC0/IO209NPB3			
L9	VCC			
L10	GND			
L11	GND			
L12	GND			
L13	GND			
L14	VCC			
L15	GCC0/IO91NPB1			
L16	GCB1/IO92PPB1			
L17	GCA0/IO93NPB1			
L18	IO96NPB1			
L19	GCB0/IO92NPB1			
L20	IO97PDB1			
L21	IO97NDB1			
L22	IO99NPB1			
M1	NC			
M2	IO200NDB3			

FG484				
Pin Number AGL1000 Function				
V15	IO125RSB2			
V16	GDB2/IO115RSB2			
V17	TDI			
V18	GNDQ			
V19	TDO			
V20	GND			
V21	NC			
V22	IO109NDB1			
W1	NC			
W2	IO191PDB3			
W3	NC			
W4	GND			
W5	IO183RSB2			
W6	FF/GEB2/IO186RSB2			
W7	IO172RSB2			
W8	IO170RSB2			
W9	IO164RSB2			
W10	IO158RSB2			
W11	IO153RSB2			
W12	IO142RSB2			
W13	IO135RSB2			
W14	IO130RSB2			
W15	GDC2/IO116RSB2			
W16	IO120RSB2			
W17	GDA2/IO114RSB2			
W18	TMS			
W19	GND			
W20	NC			
W21	NC			
W22	NC			
Y1	VCCIB3			
Y2	IO191NDB3			
Y3	NC			
Y4	IO182RSB2			
Y5	GND			
Y6	IO177RSB2			

Revision / Version	Changes	Page
Revision 3 (Feb 2008) Product Brief rev. 2	This document was updated to include AGL015 device information. QN68 is a new package offered in the AGL015. The following sections were updated: "Features and Benefits"	N/A
	"IGLOO Ordering Information"	
	"Temperature Grade Offerings"	
	"IGLOO Devices" Product Family Table	
	Table 1 • IGLOO FPGAs Package Sizes Dimensions	
	"AGL015 and AGL030" note	
	The "Temperature Grade Offerings" table was updated to include M1AGL600.	IV
	In the "IGLOO Ordering Information" table, the QN package measurements were updated to include both 0.4 mm and 0.5 mm.	
	In the "General Description" section, the number of I/Os was updated from 288 to 300.	1-1
Packaging v1.2	The "QN68" section is new.	4-25
Revision 2 (Jan 2008)	The "CS196" package and pin table was added for AGL125.	4-10
Packaging v1.1		
Revision 1 (Jan 2008) Product Brief rev. 1	The "Low Power" section was updated to change the description of low power active FPGA operation to "from 12 μ W" from "from 25 μ W." The same update was made in the "General Description" section and the "Flash*Freeze Technology" section.	I, 1-1
Revision 0 (Jan 2008)	This document was previously in datasheet Advance v0.7. As a result of moving to the handbook format, Actel has restarted the numbering.	N/A
Advance v0.7 (December 2007)	Table 1 • IGLOO Product Family, the "I/Os Per Package1" table, and the Temperature Grade Offerings table were updated to reflect the following: CS196 is now supported for AGL250; device/package support for QN132 is to be determined for AGL250; the CS281 package was added for AGL600 and AGL1000.	i, ii, iv
	Table 2 • IGLOO FPGAs Package Sizes Dimensions is new, and package sizes were removed from the "I/Os Per Package1" table.	ii
	The "I/Os Per Package1"table was updated to reflect 77 instead of 79 single- ended I/Os for the VG100 package for AGL030.	ii
	The "Timing Model" was updated to be consistent with the revised timing numbers.	2-20
	In Table 2-27 • Summary of Maximum and Minimum DC Input and Output Levels Applicable to Commercial and Industrial Conditions—Software Default Settings, T_J was changed to T_A in notes 1 and 2.	2-26
	All AC Loading figures for single-ended I/O standards were changed from Datapaths at 35 pF to 5 pF.	N/A
	The "1.2 V LVCMOS (JESD8-12A)" section is new.	2-74
	This document was previously in datasheet Advance v0.7. As a result of moving to the handbook format, Actel has restarted the version numbers. The new version number is Advance v0.1.	N/A
	Table 2-4 • IGLOO CCC/PLL Specification and Table 2-5 • IGLOO CCC/PLL Specification were updated.	2-19, 2-20