

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Ξ·XF

Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	24576
Total RAM Bits	147456
Number of I/O	97
Number of Gates	1000000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 85°C (TA)
Package / Case	144-LBGA
Supplier Device Package	144-FPBGA (13x13)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/m1agl1000v5-fg144i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1 – IGLOO Device Family Overview

General Description

The IGLOO family of flash FPGAs, based on a 130-nm flash process, offers the lowest power FPGA, a single-chip solution, small footprint packages, reprogrammability, and an abundance of advanced features.

The Flash*Freeze technology used in IGLOO devices enables entering and exiting an ultra-low power mode that consumes as little as 5 μ W while retaining SRAM and register data. Flash*Freeze technology simplifies power management through I/O and clock management with rapid recovery to operation mode.

The Low Power Active capability (static idle) allows for ultra-low power consumption (from 12 μ W) while the IGLOO device is completely functional in the system. This allows the IGLOO device to control system power management based on external inputs (e.g., scanning for keyboard stimulus) while consuming minimal power.

Nonvolatile flash technology gives IGLOO devices the advantage of being a secure, low power, singlechip solution that is Instant On. IGLOO is reprogrammable and offers time-to-market benefits at an ASIClevel unit cost.

These features enable designers to create high-density systems using existing ASIC or FPGA design flows and tools.

IGLOO devices offer 1 kbit of on-chip, reprogrammable, nonvolatile FlashROM storage as well as clock conditioning circuitry based on an integrated phase-locked loop (PLL). The AGL015 and AGL030 devices have no PLL or RAM support. IGLOO devices have up to 1 million system gates, supported with up to 144 kbits of true dual-port SRAM and up to 300 user I/Os.

M1 IGLOO devices support the high-performance, 32-bit Cortex-M1 processor developed by ARM for implementation in FPGAs. Cortex-M1 is a soft processor that is fully implemented in the FPGA fabric. It has a three-stage pipeline that offers a good balance between low power consumption and speed when implemented in an M1 IGLOO device. The processor runs the ARMv6-M instruction set, has a configurable nested interrupt controller, and can be implemented with or without the debug block. Cortex-M1 is available for free from Microsemi for use in M1 IGLOO FPGAs.

The ARM-enabled devices have ordering numbers that begin with M1AGL and do not support AES decryption.

Flash*Freeze Technology

The IGLOO device offers unique Flash*Freeze technology, allowing the device to enter and exit ultra-low power Flash*Freeze mode. IGLOO devices do not need additional components to turn off I/Os or clocks while retaining the design information, SRAM content, and registers. Flash*Freeze technology is combined with in-system programmability, which enables users to quickly and easily upgrade and update their designs in the final stages of manufacturing or in the field. The ability of IGLOO V2 devices to support a wide range of core voltage (1.2 V to 1.5 V) allows further reduction in power consumption, thus achieving the lowest total system power.

When the IGLOO device enters Flash*Freeze mode, the device automatically shuts off the clocks and inputs to the FPGA core; when the device exits Flash*Freeze mode, all activity resumes and data is retained.

The availability of low power modes, combined with reprogrammability, a single-chip and single-voltage solution, and availability of small-footprint, high pin-count packages, make IGLOO devices the best fit for portable electronics.

Flash*Freeze Technology

The IGLOO device has an ultra-low power static mode, called Flash*Freeze mode, which retains all SRAM and register information and can still quickly return to normal operation. Flash*Freeze technology enables the user to quickly (within 1 µs) enter and exit Flash*Freeze mode by activating the Flash*Freeze pin while all power supplies are kept at their original values. In addition, I/Os and global I/Os can still be driven and can be toggling without impact on power consumption, clocks can still be driven or can be toggling without impact on power consumption, and the device retains all core registers, SRAM information, and states. I/O states are tristated during Flash*Freeze mode or can be set to a certain state using weak pull-up or pull-down I/O attribute configuration. No power is consumed by the I/O banks, clocks, JTAG pins, or PLL, and the device consumes as little as 5 µW in this mode.

Flash*Freeze technology allows the user to switch to active mode on demand, thus simplifying the power management of the device.

The Flash*Freeze pin (active low) can be routed internally to the core to allow the user's logic to decide when it is safe to transition to this mode. It is also possible to use the Flash*Freeze pin as a regular I/O if Flash*Freeze mode usage is not planned, which is advantageous because of the inherent low power static (as low as 12 μ W) and dynamic capabilities of the IGLOO device. Refer to Figure 1-3 for an illustration of entering/exiting Flash*Freeze mode.

Figure 1-3 • IGLOO Flash*Freeze Mode

VersaTiles

The IGLOO core consists of VersaTiles, which have been enhanced beyond the ProASIC^{PLUS®} core tiles. The IGLOO VersaTile supports the following:

- All 3-input logic functions—LUT-3 equivalent
- Latch with clear or set
- D-flip-flop with clear or set
- Enable D-flip-flop with clear or set

Refer to Figure 1-4 for VersaTile configurations.

- Wide input frequency range ($f_{IN CCC}$) = 1.5 MHz up to 250 MHz
- Output frequency range (f_{OUT CCC}) = 0.75 MHz up to 250 MHz
- 2 programmable delay types for clock skew minimization
- Clock frequency synthesis (for PLL only)

Additional CCC specifications:

- Internal phase shift = 0°, 90°, 180°, and 270°. Output phase shift depends on the output divider configuration (for PLL only).
- Output duty cycle = $50\% \pm 1.5\%$ or better (for PLL only)
- Low output jitter: worst case < 2.5% × clock period peak-to-peak period jitter when single global network used (for PLL only)
- Maximum acquisition time is 300 µs (for PLL only)
- Exceptional tolerance to input period jitter—allowable input jitter is up to 1.5 ns (for PLL only)
- Four precise phases; maximum misalignment between adjacent phases of 40 ps × 250 MHz / f_{OUT_CCC} (for PLL only)

Global Clocking

IGLOO devices have extensive support for multiple clocking domains. In addition to the CCC and PLL support described above, there is a comprehensive global clock distribution network.

Each VersaTile input and output port has access to nine VersaNets: six chip (main) and three quadrant global networks. The VersaNets can be driven by the CCC or directly accessed from the core via multiplexers (MUXes). The VersaNets can be used to distribute low-skew clock signals or for rapid distribution of high-fanout nets.

I/Os with Advanced I/O Standards

The IGLOO family of FPGAs features a flexible I/O structure, supporting a range of voltages (1.2 V, 1.5 V, 1.8 V, 2.5 V, 3.0 V wide range, and 3.3 V). IGLOO FPGAs support many different I/O standards—single-ended and differential.

The I/Os are organized into banks, with two or four banks per device. The configuration of these banks determines the I/O standards supported (Table 1-1).

		I/O Standards Supported						
I/O Bank Type	Device and Bank Location	LVTTL/ LVCMOS	PCI/PCI-X	LVPECL, LVDS, B-LVDS, M-LVDS				
Advanced	East and west banks of AGL250 and larger devices	\checkmark	\checkmark	\checkmark				
Standard Plus	North and south banks of AGL250 and larger devices All banks of AGL060 and AGL125K	\checkmark	\checkmark	Not supported				
Standard	All banks of AGL015 and AGL030	\checkmark	Not supported	Not supported				

Table 1-1 • I/O Standards Supported

Each I/O module contains several input, output, and enable registers. These registers allow the implementation of the following:

- Single-Data-Rate applications
- Double-Data-Rate applications—DDR LVDS, B-LVDS, and M-LVDS I/Os for point-to-point communications

IGLOO banks for the AGL250 device and above support LVPECL, LVDS, B-LVDS, and M-LVDS. B-LVDS and M-LVDS can support up to 20 loads.

Hot-swap (also called hot-plug, or hot-insertion) is the operation of hot-insertion or hot-removal of a card in a poweredup system.

Cold-sparing (also called cold-swap) refers to the ability of a device to leave system data undisturbed when the system is powered up, while the component itself is powered down, or when power supplies are floating.

Figure 1-5 • I/O States During Programming Window

- 6. Click OK to return to the FlashPoint Programming File Generator window.
- Note: I/O States During programming are saved to the ADB and resulting programming files after completing programming file generation.

Figure 2-2 • V2 Devices – I/O State as a Function of VCCI and VCC Voltage Levels

Thermal Characteristics

Introduction

The temperature variable in the Designer software refers to the junction temperature, not the ambient temperature. This is an important distinction because dynamic and static power consumption cause the chip junction to be higher than the ambient temperature.

EQ 1 can be used to calculate junction temperature.

 T_J = Junction Temperature = ΔT + T_A

where:

 T_A = Ambient Temperature

 ΔT = Temperature gradient between junction (silicon) and ambient ΔT = θ_{ia} * P

 θ_{ia} = Junction-to-ambient of the package. θ_{ia} numbers are located in Table 2-5 on page 2-6.

P = Power dissipation

Figure 2-6 • Tristate Output Buffer Timing Model and Delays (example)

Timing Characteristics

Applies to 1.5 V DC Core Voltage

Table 2-51 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew – Applies to 1.5 V DC Core Voltage Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V Applicable to Advanced I/O Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{ZHS}	Units
2 mA	Std.	0.97	4.47	0.18	0.85	0.66	4.56	3.89	2.24	2.19	8.15	7.48	ns
4 mA	Std.	0.97	4.47	0.18	0.85	0.66	4.56	3.89	2.24	2.19	8.15	7.48	ns
6 mA	Std.	0.97	3.74	0.18	0.85	0.66	3.82	3.37	2.49	2.63	7.42	6.96	ns
8 mA	Std.	0.97	3.74	0.18	0.85	0.66	3.82	3.37	2.49	2.63	7.42	6.96	ns
12 mA	Std.	0.97	3.23	0.18	0.85	0.66	3.30	2.98	2.66	2.91	6.89	6.57	ns
16 mA	Std.	0.97	3.08	0.18	0.85	0.66	3.14	2.89	2.70	2.99	6.74	6.48	ns
24 mA	Std.	0.97	3.00	0.18	0.85	0.66	3.06	2.91	2.74	3.27	6.66	6.50	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

Table 2-52 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew – Applies to 1.5 V DC Core Voltage

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V Applicable to Advanced I/O Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
2 mA	Std.	0.97	2.73	0.18	0.85	0.66	2.79	2.22	2.25	2.32	6.38	5.82	ns
4 mA	Std.	0.97	2.73	0.18	0.85	0.66	2.79	2.22	2.25	2.32	6.38	5.82	ns
6 mA	Std.	0.97	2.32	0.18	0.85	0.66	2.37	1.85	2.50	2.76	5.96	5.45	ns
8 mA	Std.	0.97	2.32	0.18	0.85	0.66	2.37	1.85	2.50	2.76	5.96	5.45	ns
12 mA	Std.	0.97	2.09	0.18	0.85	0.66	2.14	1.68	2.67	3.05	5.73	5.27	ns
16 mA	Std.	0.97	2.05	0.18	0.85	0.66	2.10	1.64	2.70	3.12	5.69	5.24	ns
24 mA	Std.	0.97	2.07	0.18	0.85	0.66	2.12	1.60	2.75	3.41	5.71	5.20	ns

Notes:

1. Software default selection highlighted in gray.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

Table 2-53 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew – Applies to 1.5 V DC Core Voltage Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V Applicable to Standard Plus Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{ZHS}	Units
2 mA	Std.	0.97	3.94	0.18	0.85	0.66	4.02	3.46	1.98	2.03	7.62	7.05	ns
4 mA	Std.	0.97	3.94	0.18	0.85	0.66	4.02	3.46	1.98	2.03	7.62	7.05	ns
6 mA	Std.	0.97	3.24	0.18	0.85	0.66	3.31	2.99	2.21	2.42	6.90	6.59	ns
8 mA	Std.	0.97	3.24	0.18	0.85	0.66	3.31	2.99	2.21	2.42	6.90	6.59	ns
12 mA	Std.	0.97	2.76	0.18	0.85	0.66	2.82	2.63	2.36	2.68	6.42	6.22	ns
16 mA	Std.	0.97	2.76	0.18	0.85	0.66	2.82	2.63	2.36	2.68	6.42	6.22	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

3.3 V LVCMC	3.3 V LVCMOS Wide Range		VIL		VIH		VOH	IOL	IOH	IOSL	IOSH	IIL ²	IIH ³
Drive Strength	Equivalent Software Default Drive Strength Option ¹	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	μΑ	μΑ	Max. mA ⁴	Max. mA ⁴	μA ⁵	μA ⁵
100 µA	2 mA	-0.3	0.8	2	3.6	0.2	VDD - 0.2	100	100	25	27	10	10
100 µA	4 mA	-0.3	0.8	2	3.6	0.2	VDD - 0.2	100	100	25	27	10	10
100 µA	6 mA	-0.3	0.8	2	3.6	0.2	VDD - 0.2	100	100	51	54	10	10
100 µA	8 mA	-0.3	0.8	2	3.6	0.2	VDD - 0.2	100	100	51	54	10	10
100 µA	12 mA	-0.3	0.8	2	3.6	0.2	VDD - 0.2	100	100	103	109	10	10
100 µA	16 mA	-0.3	0.8	2	3.6	0.2	VDD - 0.2	100	100	103	109	10	10

Table 2-64 • Minimum and Maximum DC Input and Output Levels for LVCMOS 3.3 V Wide Range Applicable to Standard Plus I/O Banks

Notes:

1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ± 100 μA. Drive strengths displayed in software are supported for normal range only. For a detailed I/V curve, refer to the IBIS models.

2. IIL is the input leakage current per I/O pin over recommended operation conditions where -0.3 V < VIN < VIL.

3. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges

4. Currents are measured at 100°C junction temperature and maximum voltage.

5. Currents are measured at 85°C junction temperature.

6. Software default selection highlighted in gray.

3.3 V PCI, 3.3 V PCI-X

Peripheral Component Interface for 3.3 V standard specifies support for 33 MHz and 66 MHz PCI Bus applications.

 Table 2-141 • Minimum and Maximum DC Input and Output Levels

 Applicable to Advanced and Standard Plus I/Os

3.3 V PCI/PCI-X	VIL		VIH		VOL	VOH	IOL	IOH	IOSH	IOSL	IIL	IIH
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ¹	Max. mA ¹	μA ²	μA ²
Per PCI specification	Per PCI curves									10	10	

Notes:

1. Currents are measured at 100°C junction temperature and maximum voltage.

2. Currents are measured at 85°C junction temperature.

AC loadings are defined per the PCI/PCI-X specifications for the datapath; Microsemi loadings for enable path characterization are described in Figure 2-12.

Figure 2-12 • AC Loading

AC loadings are defined per PCI/PCI-X specifications for the datapath; Microsemi loading for tristate is described in Table 2-142.

Table 2-142 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	C _{LOAD} (pF)
0	3.3	0.285 * VCCI for t _{DP(R)} 0.615 * VCCI for t _{DP(F)}	10

Note: *Measuring point = Vtrip. See Table 2-29 on page 2-28 for a complete table of trip points.

Timing Characteristics

1.5 V DC Core Voltage

Table 2-143 • 3.3 V PCI/PCI-X

Commercial-Case Conditions: $T_J = 70^{\circ}$ C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V Applicable to Advanced I/O Banks

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{ZHS}	Units
Std.	0.97	2.32	0.19	0.70	0.66	2.37	1.78	2.67	3.05	5.96	5.38	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

Table 2-144 • 3.3 V PCI/PCI-X

Commercial-Case Conditions: $T_J = 70^{\circ}$ C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V Applicable to Standard Plus I/O Banks

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{ZHS}	Units
Std.	0.97	1.97	0.19	0.70	0.66	2.01	1.50	2.36	2.79	5.61	5.10	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

Figure 2-26 • Timing Model and Waveforms

Figure 2-34 • RAM Write, Output Retained. Applicable to Both RAM4K9 and RAM512x18.

Figure 2-35 • RAM Write, Output as Write Data (WMODE = 1). Applicable to RAM4K9 only.

FG144

Note: This is the bottom view of the package.

Note

For more information on package drawings, see PD3068: Package Mechanical Drawings.

Microsemi

FG144								
Pin Number	AGL600 Function							
K1	GEB0/IO145NDB3							
K2	GEA1/IO144PDB3							
K3	GEA0/IO144NDB3							
K4	GEA2/IO143RSB2							
K5	IO119RSB2							
K6	IO111RSB2							
K7	GND							
K8	IO94RSB2							
K9	GDC2/IO91RSB2							
K10	GND							
K11	GDA0/IO88NDB1							
K12	GDB0/IO87NDB1							
L1	GND							
L2	VMV3							
L3	FF/GEB2/IO142RSB2							
L4	IO136RSB2							
L5	VCCIB2							
L6	IO115RSB2							
L7	IO103RSB2							
L8	IO97RSB2							
L9	TMS							
L10	VJTAG							
L11	VMV2							
L12	TRST							
M1	GNDQ							
M2	GEC2/IO141RSB2							
M3	IO138RSB2							
M4	IO123RSB2							
M5	IO126RSB2							
M6	IO134RSB2							
M7	IO108RSB2							
M8	IO99RSB2							
M9	TDI							
M10	VCCIB2							
M11	VPUMP							
M12	GNDQ							

Microsemi

	FG256		FG256	FG256				
Pin Number	AGL400 Function	Pin Number	AGL400 Function	Pin Number	AGL400 Function			
A1	GND	C7	IO20RSB0	E13	GBC2/IO62PDB1			
A2	GAA0/IO00RSB0	C8	IO24RSB0	E14	IO65RSB1			
A3	GAA1/IO01RSB0	C9	IO33RSB0	E15	IO52RSB0			
A4	GAB0/IO02RSB0	C10	IO39RSB0	E16	IO66PDB1			
A5	IO16RSB0	C11	IO45RSB0	F1	IO150NDB3			
A6	IO17RSB0	C12	GBC0/IO54RSB0	F2	IO149NPB3			
A7	IO22RSB0	C13	IO48RSB0	F3	IO09RSB0			
A8	IO28RSB0	C14	VMV0	F4	IO152UDB3			
A9	IO34RSB0	C15	IO61NPB1	F5	VCCIB3			
A10	IO37RSB0	C16	IO63PDB1	F6	GND			
A11	IO41RSB0	D1	IO151VDB3	F7	VCC			
A12	IO43RSB0	D2	IO151UDB3	F8	VCC			
A13	GBB1/IO57RSB0	D3	GAC2/IO153UDB3	F9	VCC			
A14	GBA0/IO58RSB0	D4	IO06RSB0	F10	VCC			
A15	GBA1/IO59RSB0	D5	GNDQ	F11	GND			
A16	GND	D6	IO10RSB0	F12	VCCIB1			
B1	GAB2/IO154UDB3	D7	IO19RSB0	F13	IO62NDB1			
B2	GAA2/IO155UDB3	D8	IO26RSB0	F14	IO49RSB0			
B3	IO12RSB0	D9	IO30RSB0	F15	IO64PPB1			
B4	GAB1/IO03RSB0	D10	IO40RSB0	F16	IO66NDB1			
B5	IO13RSB0	D11	IO46RSB0	G1	IO148NDB3			
B6	IO14RSB0	D12	GNDQ	G2	IO148PDB3			
B7	IO21RSB0	D13	IO47RSB0	G3	IO149PPB3			
B8	IO27RSB0	D14	GBB2/IO61PPB1	G4	GFC1/IO147PPB3			
B9	IO32RSB0	D15	IO53RSB0	G5	VCCIB3			
B10	IO38RSB0	D16	IO63NDB1	G6	VCC			
B11	IO42RSB0	E1	IO150PDB3	G7	GND			
B12	GBC1/IO55RSB0	E2	IO08RSB0	G8	GND			
B13	GBB0/IO56RSB0	E3	IO153VDB3	G9	GND			
B14	IO44RSB0	E4	IO152VDB3	G10	GND			
B15	GBA2/IO60PDB1	E5	VMV0	G11	VCC			
B16	IO60NDB1	E6	VCCIB0	G12	VCCIB1			
C1	IO154VDB3	E7	VCCIB0	G13	GCC1/IO67PPB1			
C2	IO155VDB3	E8	IO25RSB0	G14	IO64NPB1			
C3	IO11RSB0	E9	IO31RSB0	G15	IO73PDB1			
C4	IO07RSB0	E10	VCCIB0	G16	IO73NDB1			
C5	GAC0/IO04RSB0	E11	VCCIB0	H1	GFB0/IO146NPB3			
C6	GAC1/IO05RSB0	E12	VMV1	H2	GFA0/IO145NDB3			

Microsemi

FG256		FG256		FG256		
Pin Number	AGL600 Function	Pin Number	AGL600 Function	Pin Number	AGL600 Function	
H3	GFB1/IO163PPB3	K9	GND	M15	GDC1/IO86PDB1	
H4	VCOMPLF	K10	GND	M16	IO84NDB1	
H5	GFC0/IO164NPB3	K11	VCC	N1	IO150NDB3	
H6	VCC	K12	VCCIB1	N2	IO147PPB3	
H7	GND	K13	IO73NPB1	N3	GEC1/IO146PPB3	
H8	GND	K14	IO80NPB1	N4	IO140RSB2	
H9	GND	K15	IO74NPB1	N5	GNDQ	
H10	GND	K16	IO72NDB1	N6	GEA2/IO143RSB2	
H11	VCC	L1	IO159NDB3	N7	IO126RSB2	
H12	GCC0/IO69NPB1	L2	IO156NPB3	N8	IO120RSB2	
H13	GCB1/IO70PPB1	L3	IO151PPB3	N9	IO108RSB2	
H14	GCA0/IO71NPB1	L4	IO158PSB3	N10	IO103RSB2	
H15	IO67NPB1	L5	VCCIB3	N11	IO99RSB2	
H16	GCB0/IO70NPB1	L6	GND	N12	GNDQ	
J1	GFA2/IO161PPB3	L7	VCC	N13	IO92RSB2	
J2	GFA1/IO162PDB3	L8	VCC	N14	VJTAG	
J3	VCCPLF	L9	VCC	N15	GDC0/IO86NDB1	
J4	IO160NDB3	L10	VCC	N16	GDA1/IO88PDB1	
J5	GFB2/IO160PDB3	L11	GND	P1	GEB1/IO145PDB3	
J6	VCC	L12	VCCIB1	P2	GEB0/IO145NDB3	
J7	GND	L13	GDB0/IO87NPB1	P3	VMV2	
J8	GND	L14	IO85NDB1	P4	IO138RSB2	
J9	GND	L15	IO85PDB1	P5	IO136RSB2	
J10	GND	L16	IO84PDB1	P6	IO131RSB2	
J11	VCC	M1	IO150PDB3	P7	IO124RSB2	
J12	GCB2/IO73PPB1	M2	IO151NPB3	P8	IO119RSB2	
J13	GCA1/IO71PPB1	M3	IO147NPB3	P9	IO107RSB2	
J14	GCC2/IO74PPB1	M4	GEC0/IO146NPB3	P10	IO104RSB2	
J15	IO80PPB1	M5	VMV3	P11	IO97RSB2	
J16	GCA2/IO72PDB1	M6	VCCIB2	P12	VMV1	
K1	GFC2/IO159PDB3	M7	VCCIB2	P13	TCK	
K2	IO161NPB3	M8	IO117RSB2	P14	VPUMP	
K3	IO156PPB3	M9	IO110RSB2	P15	TRST	
K4	IO129RSB2	M10	VCCIB2	P16	GDA0/IO88NDB1	
K5	VCCIB3	M11	VCCIB2	R1	GEA1/IO144PDB3	
K6	VCC	M12	VMV2	R2	GEA0/IO144NDB3	
K7	GND	M13	IO94RSB2	R3	IO139RSB2	
K8	GND	M14	GDB1/IO87PPB1	R4	GEC2/IO141RSB2	

FG484				
Pin Number	AGL400 Function			
R9	VCCIB2			
R10	VCCIB2			
R11	IO108RSB2			
R12	IO101RSB2			
R13	VCCIB2			
R14	VCCIB2			
R15	VMV2			
R16	IO83RSB2			
R17	GDB1/IO78UPB1			
R18	GDC1/IO77UDB1			
R19	IO75NDB1			
R20	VCC			
R21	NC			
R22	NC			
T1	NC			
T2	NC			
Т3	NC			
T4	IO140NDB3			
T5	IO138PPB3			
T6	GEC1/IO137PPB3			
T7	IO131RSB2			
Т8	GNDQ			
Т9	GEA2/IO134RSB2			
T10	IO117RSB2			
T11	IO111RSB2			
T12	IO99RSB2			
T13	IO94RSB2			
T14	IO87RSB2			
T15	GNDQ			
T16	IO93RSB2			
T17	VJTAG			
T18	GDC0/IO77VDB1			
T19	GDA1/IO79UDB1			
T20	NC			
T21	NC			
T22	NC			

FG484				
Pin Number	AGL400 Function			
Y7	NC			
Y8	VCC			
Y9	VCC			
Y10	NC			
Y11	NC			
Y12	NC			
Y13	NC			
Y14	VCC			
Y15	VCC			
Y16	NC			
Y17	NC			
Y18	GND			
Y19	NC			
Y20	NC			
Y21	NC			
Y22	VCCIB1			

FG484				
Pin Number	AGL600 Function			
H19	IO66PDB1			
H20	VCC			
H21	NC			
H22	NC			
J1	NC			
J2	NC			
J3	NC			
J4	IO166NDB3			
J5	IO168NPB3			
J6	IO167PPB3			
J7	IO169PDB3			
J8	VCCIB3			
J9	GND			
J10	VCC			
J11	VCC			
J12	VCC			
J13	VCC			
J14	GND			
J15	VCCIB1			
J16	IO62NDB1			
J17	IO64NPB1			
J18	IO65PPB1			
J19	IO66NDB1			
J20	NC			
J21	IO68PDB1			
J22	IO68NDB1			
K1	IO157PDB3			
K2	IO157NDB3			
K3	NC			
K4	IO165NDB3			
K5	IO165PDB3			
K6	IO168PPB3			
K7	GFC1/IO164PPB3			
K8	VCCIB3			
K9	VCC			
K10	GND			

FG484				
Pin Number	AGL1000 Function			
R9	VCCIB2			
R10	VCCIB2			
R11	IO147RSB2			
R12	IO136RSB2			
R13	VCCIB2			
R14	VCCIB2			
R15	VMV2			
R16	IO110NDB1			
R17	GDB1/IO112PPB1			
R18	GDC1/IO111PDB1			
R19	IO107NDB1			
R20	VCC			
R21	IO104NDB1			
R22	IO105PDB1			
T1	IO198PDB3			
T2	IO198NDB3			
Т3	NC			
T4	IO194PPB3			
T5	IO192PPB3			
Т6	GEC1/IO190PPB3			
T7	IO192NPB3			
Т8	GNDQ			
Т9	GEA2/IO187RSB2			
T10	IO161RSB2			
T11	IO155RSB2			
T12	IO141RSB2			
T13	IO129RSB2			
T14	IO124RSB2			
T15	GNDQ			
T16	IO110PDB1			
T17	VJTAG			
T18	GDC0/IO111NDB1			
T19	GDA1/IO113PDB1			
T20	NC			
T21	IO108PDB1			
T22	IO105NDB1			

IGLOO Low Power Flash FPGAs

Revision	Changes	Page
Revision 23 (December 2012)	The "IGLOO Ordering Information" section has been updated to mention "Y" as "Blank" mentioning "Device Does Not Include License to Implement IP Based on the Cryptography Research, Inc. (CRI) Patent Portfolio" (SAR 43173).	III
	The note in Table 2-189 · IGLOO CCC/PLL Specification and Table 2-190 · IGLOO CCC/PLL Specification referring the reader to SmartGen was revised to refer instead to the online help associated with the core (SAR 42564). Additionally, note regarding SSOs was added.	2-115, 2-116
	Live at Power-Up (LAPU) has been replaced with 'Instant On'.	NA
Revision 22 (September 2012)	The "Security" section was modified to clarify that Microsemi does not support read- back of programmed data.	1-2
	Libero Integrated Design Environment (IDE) was changed to Libero System-on-Chip (SoC) throughout the document (SAR 40271).	N/A
Revision 21 (May 2012)	Under AGL125, in the Package Pin list, CS121 was incorrectly added to the datasheet in revision 19 and has been removed (SAR 38217).	I to IV
	Corrected the inadvertent error for Max Values for LVPECL VIH and revised the same to '3.6' in Table 2-151 · Minimum and Maximum DC Input and Output Levels (SAR 37685).	2-82
	Figure 2-38 • FIFO Read and Figure 2-39 • FIFO Write have been added (SAR 34841).	2-127
	The following sentence was removed from the VMVx description in the "Pin Descriptions" section: "Within the package, the VMV plane is decoupled from the simultaneous switching noise originating from the output buffer VCCI domain" and replaced with "Within the package, the VMV plane biases the input stage of the I/Os in the I/O banks" (SAR 38317). The datasheet mentions that "VMV pins must be connected to the corresponding VCCI pins" for an ESD enhancement.	3-1