

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

E·XFI

Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	24576
Total RAM Bits	147456
Number of I/O	177
Number of Gates	1000000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 85°C (TA)
Package / Case	256-LBGA
Supplier Device Package	256-FPBGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/m1agl1000v5-fg256i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Product Grade	Programming Cycles	Program RetentionMaximum Storage(biased/unbiased)Temperature T _{STG} (°C)		Maximum Operating Junction Temperature T _J (°C) ²	
Commercial	500	20 years	110	100	
Industrial	500	20 years	110	100	

Table 2-3 • Flash Programming Limits – Retention, Storage, and Operating Temperature¹

Notes:

1. This is a stress rating only; functional operation at any condition other than those indicated is not implied.

2. These limits apply for program/data retention only. Refer to Table 2-1 on page 2-1 and Table 2-2 on page 2-2 for device operating conditions and absolute limits.

Table 2-4 • Overshoot and Undershoot Limits¹

VCCI	Average VCCI–GND Overshoot or Undershoot Duration as a Percentage of Clock Cycle ²	Maximum Overshoot/ Undershoot ²
2.7 V or less	10%	1.4 V
F	5%	1.49 V
3 V	10%	1.1 V
F	5%	1.19 V
3.3 V	10%	0.79 V
F	5%	0.88 V
3.6 V	10%	0.45 V
F	5%	0.54 V

Notes:

1. Based on reliability requirements at junction temperature at 85°C.

2. The duration is allowed at one out of six clock cycles. If the overshoot/undershoot occurs at one out of two cycles, the maximum overshoot/undershoot has to be reduced by 0.15 V.

3. This table does not provide PCI overshoot/undershoot limits.

I/O Power-Up and Supply Voltage Thresholds for Power-On Reset (Commercial and Industrial)

Sophisticated power-up management circuitry is designed into every IGLOO device. These circuits ensure easy transition from the powered-off state to the powered-up state of the device. The many different supplies can power up in any sequence with minimized current spikes or surges. In addition, the I/O will be in a known state through the power-up sequence. The basic principle is shown in Figure 2-1 on page 2-4 and Figure 2-2 on page 2-5.

There are five regions to consider during power-up.

IGLOO I/Os are activated only if ALL of the following three conditions are met:

- 1. VCC and VCCI are above the minimum specified trip points (Figure 2-1 on page 2-4 and Figure 2-2 on page 2-5).
- 2. VCCI > VCC 0.75 V (typical)
- 3. Chip is in the operating mode.

VCCI Trip Point:

Ramping up (V5 devices): 0.6 V < trip_point_up < 1.2 V Ramping down (V5 Devices): 0.5 V < trip_point_down < 1.1 V Ramping up (V2 devices): 0.75 V < trip_point_up < 1.05 V Ramping down (V2 devices): 0.65 V < trip_point_down < 0.95 V

VCC Trip Point:

Ramping up (V5 devices): 0.6 V < trip_point_up < 1.1 V Ramping down (V5 devices): 0.5 V < trip_point_down < 1.0 V

Table 2-65 • Minimum and Maximum DC Input and Output Levels for LVCMOS 3.3 V Wide Range Applicable to Standard I/O Banks

3.3 V LVCMO	S Wide Range	V	IL	V	/IH	VOL	VOH	IOL	IOH	IOSL	IOSH	IIL ²	IIH ³
Drive Strength	Equivalent Software Default Drive Strength Option ¹	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	μΑ	μΑ	Max. mA ⁴	Max. mA ⁴	μ Α ⁵	μ Α ⁵
100 µA	2 mA	-0.3	0.8	2	3.6	0.2	VDD - 0.2	100	100	25	27	10	10
100 µA	4 mA	-0.3	0.8	2	3.6	0.2	VDD - 0.2	100	100	25	27	10	10
100 µA	6 mA	-0.3	0.8	2	3.6	0.2	VDD – 0.2	100	100	51	54	10	10
100 µA	8 mA	-0.3	0.8	2	3.6	0.2	VDD - 0.2	100	100	51	54	10	10

Notes:

1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ± 100 μA. Drive strengths displayed in software are supported for normal range only. For a detailed I/V curve, refer to the IBIS models.

2. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.

3. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges

4. Currents are measured at 100°C junction temperature and maximum voltage.

5. Currents are measured at 85°C junction temperature.

6. Software default selection highlighted in gray.

Table 2-66 • 3.3 V LVCMOS Wide Range AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	C _{LOAD} (pF)
0	3.3	1.4	5

Note: *Measuring point = Vtrip. See Table 2-29 on page 2-28 for a complete table of trip points.

DC Parameter	Description	Min.	Тур.	Max.	Units
VCCI	Supply Voltage	2.375	2.5	2.625	V
VOL	Output Low Voltage	0.9	1.075	1.25	V
VOH	Output High Voltage	1.25	1.425	1.6	V
IOL ¹	Output Lower Current	0.65	0.91	1.16	mA
IOH ¹	Output High Current	0.65	0.91	1.16	mA
VI	Input Voltage	0		2.925	V
IIH ²	Input High Leakage Current			10	μA
IIL ²	Input Low Leakage Current			10	μA
VODIFF	Differential Output Voltage	250	350	450	mV
VOCM	Output Common-Mode Voltage	1.125	1.25	1.375	V
VICM	Input Common-Mode Voltage	0.05	1.25	2.35	V
VIDIFF ⁴	Input Differential Voltage	100	350		mV

Table 2-147 • Minimum and Maximum DC Input and Output Levels

Notes:

1. IOL/IOH is defined by VODIFF/(resistor network)

2. Currents are measured at 85°C junction temperature.

Table 2-148 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)
1.075	1.325	Cross point

Note: **Measuring point = Vtrip. See Table 2-29 on page 2-28 for a complete table of trip points.*

Timing Characteristics

1.5 V DC Core Voltage

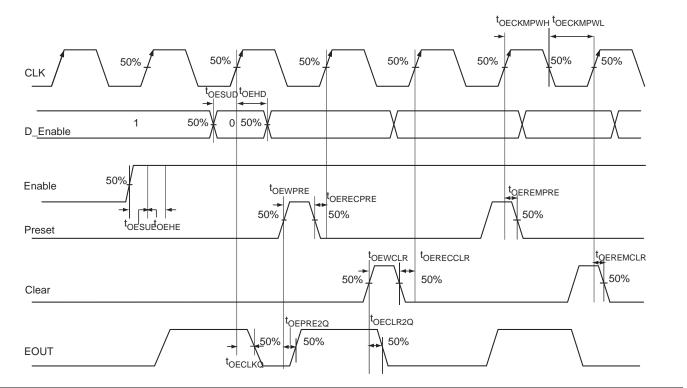
Table 2-149 • LVDS – Applies to 1.5 V DC Core Voltage

Commercial-Case Conditions: $T_J = 70^{\circ}$ C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V Applicable to Standard Banks

Speed Grade	^t dout	t _{DP}	t _{DIN}	t _{PY}	Units
Std.	0.97	1.67	0.19	1.31	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 and Table 2-7 on page 2-7 for derating values.

1.2 V DC Core Voltage


Table 2-150 • LVDS – Applies to 1.5 V DC Core Voltage

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 2.3 V Applicable to Standard Banks

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	Units
Std.	1.55	2.19	0.25	1.52	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 and Table 2-7 on page 2-7 for derating values.

Output Enable Register

Figure 2-20 • Output Enable Register Timing Diagram

Timing Characteristics

1.5 V DC Core Voltage

Table 2-161 • Output Enable Register Propagation DelaysCommercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V

Parameter	Description	Std.	Units
t _{OECLKQ}	Clock-to-Q of the Output Enable Register	0.75	ns
tOESUD	Data Setup Time for the Output Enable Register	0.51	ns
t _{OEHD}	Data Hold Time for the Output Enable Register	0.00	ns
tOESUE	Enable Setup Time for the Output Enable Register	0.73	ns
t _{OEHE}	Enable Hold Time for the Output Enable Register	0.00	ns
t _{OECLR2Q}	Asynchronous Clear-to-Q of the Output Enable Register	1.13	ns
t _{OEPRE2Q}	Asynchronous Preset-to-Q of the Output Enable Register	1.13	ns
t _{OEREMCLR}	Asynchronous Clear Removal Time for the Output Enable Register	0.00	ns
t _{OERECCLR}	Asynchronous Clear Recovery Time for the Output Enable Register	0.24	ns
t _{OEREMPRE}	Asynchronous Preset Removal Time for the Output Enable Register	0.00	ns
t _{OERECPRE}	Asynchronous Preset Recovery Time for the Output Enable Register	0.24	ns
t _{OEWCLR}	Asynchronous Clear Minimum Pulse Width for the Output Enable Register	0.19	ns
t _{OEWPRE}	Asynchronous Preset Minimum Pulse Width for the Output Enable Register	0.19	ns
t _{OECKMPWH}	Clock Minimum Pulse Width High for the Output Enable Register	0.31	ns
t _{OECKMPWL}	Clock Minimum Pulse Width Low for the Output Enable Register	0.28	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

Timing Characteristics

1.5 V DC Core Voltage

Table 2-169 • Combinatorial Cell Propagation Delays Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V

Combinatorial Cell	Equation	Parameter	Std.	Units
INV	Y =!A	t _{PD}	0.80	ns
AND2	$Y=A\cdotB$	t _{PD}	0.84	ns
NAND2	Y =!(A · B)	t _{PD}	0.90	ns
OR2	Y = A + B	t _{PD}	1.19	ns
NOR2	Y = !(A + B)	t _{PD}	1.10	ns
XOR2	Y = A ⊕ B	t _{PD}	1.37	ns
MAJ3	Y = MAJ(A, B, C)	t _{PD}	1.33	ns
XOR3	$Y = A \oplus B \oplus C$	t _{PD}	1.79	ns
MUX2	Y = A !S + B S	t _{PD}	1.48	ns
AND3	$Y = A \cdot B \cdot C$	t _{PD}	1.21	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

1.2 V DC Core Voltage

Table 2-170 • Combinatorial Cell Propagation Delays Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V

Combinatorial Cell	Equation	Parameter	Std.	Units
INV	Y = !A	t _{PD}	1.34	ns
AND2	$Y = A \cdot B$	t _{PD}	1.43	ns
NAND2	$Y = !(A \cdot B)$	t _{PD}	1.59	ns
OR2	Y = A + B	t _{PD}	2.30	ns
NOR2	Y = !(A + B)	t _{PD}	2.07	ns
XOR2	Y = A ⊕ B	t _{PD}	2.46	ns
MAJ3	Y = MAJ(A, B, C)	t _{PD}	2.46	ns
XOR3	$Y = A \oplus B \oplus C$	t _{PD}	3.12	ns
MUX2	Y = A !S + B S	t _{PD}	2.83	ns
AND3	$Y = A \cdot B \cdot C$	t _{PD}	2.28	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.

Global Resource Characteristics

AGL250 Clock Tree Topology

Clock delays are device-specific. Figure 2-29 is an example of a global tree used for clock routing. The global tree presented in Figure 2-29 is driven by a CCC located on the west side of the AGL250 device. It is used to drive all D-flip-flops in the device.

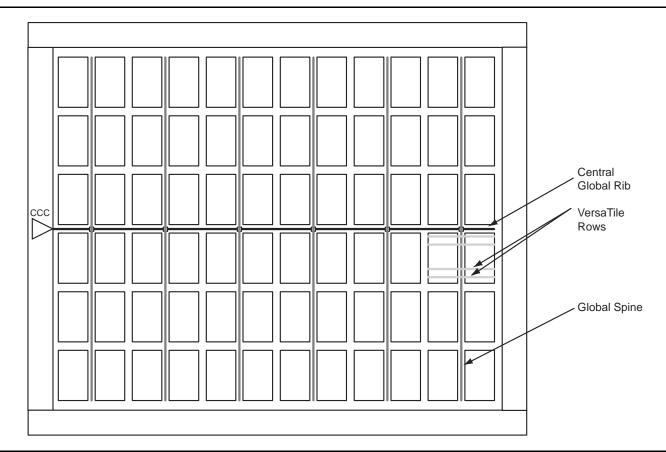


Figure 2-29 • Example of Global Tree Use in an AGL250 Device for Clock Routing

Table 2-175 • AGL060 Global Resource

Commercial-Case Conditions: T_J = 70°C, VCC = 1.425 V

		Si	Std.	
Parameter	Description	Min. ¹	Max. ²	Units
t _{RCKL}	Input Low Delay for Global Clock	1.33	1.55	ns
t _{RCKH}	Input High Delay for Global Clock	1.35	1.62	ns
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock	1.18		ns
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock	1.15		ns
t _{RCKSW}	Maximum Skew for Global Clock		0.27	ns

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

Table 2-176 • AGL125 Global Resource

Commercial-Case Conditions: T_J = 70°C, VCC = 1.425 V

		Std.		
Parameter	Description	Min. ¹	Max. ²	Units
t _{RCKL}	Input Low Delay for Global Clock	1.36	1.71	ns
t _{RCKH}	Input High Delay for Global Clock	1.39	1.82	ns
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock	1.18		ns
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock	1.15		ns
t _{RCKSW}	Maximum Skew for Global Clock		0.43	ns

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

The Flash*Freeze pin can be used with any single-ended I/O standard supported by the I/O bank in which the pin is located, and input signal levels compatible with the I/O standard selected. The FF pin should be treated as a sensitive asynchronous signal. When defining pin placement and board layout, simultaneously switching outputs (SSOs) and their effects on sensitive asynchronous pins must be considered.

Unused FF or I/O pins are tristated with weak pull-up. This default configuration applies to both Flash*Freeze mode and normal operation mode. No user intervention is required.

Table 3-1 shows the Flash*Freeze pin location on the available packages for IGLOO a devices. The Flash*Freeze pin location is independent of device, allowing migration to larger or smaller IGLOO devices while maintaining the same pin location on the board. Refer to the "Flash*Freeze Technology and Low Power Modes" chapter of the *IGLOO FPGA Fabric User Guide* for more information on I/O states during Flash*Freeze mode.

Table 3-1 • Flash*Freeze Pin Location in IGLOO Family Packages (device-independent)

IGLOO Packages	Flash*Freeze Pin
CS81/UC81	H2
CS121	J5
CS196	P3
CS281	W2
QN48	14
QN68	18
QN132	B12
VQ100	27
FG144	L3
FG256	Т3
FG484	W6

IGLOO Low Power Flash FPGAs

	CS121		CS121		CS121		
Pin Number	AGL060 Function	Pin Number	AGL060 Function	Pin Number	AGL060 Function		
A1	GNDQ	D4	IO10RSB0	G7	VCC		
A2	IO01RSB0	D5	IO11RSB0	G8	GDC0/IO46RSB0		
A3	GAA1/IO03RSB0	D6	IO18RSB0	G9	GDA1/IO49RSB0		
A4	GAC1/IO07RSB0	D7	IO32RSB0	G10	GDB0/IO48RSB0		
A5	IO15RSB0	D8	IO31RSB0	G11	GCA0/IO40RSB0		
A6	IO13RSB0	D9	GCA2/IO41RSB0	H1	IO75RSB1		
A7	IO17RSB0	D10	IO30RSB0	H2	IO76RSB1		
A8	GBB1/IO22RSB0	D11	IO33RSB0	H3	GFC2/IO78RSB1		
A9	GBA1/IO24RSB0	E1	IO87RSB1	H4	GFA2/IO80RSB1		
A10	GNDQ	E2	GFC0/IO85RSB1	H5	IO77RSB1		
A11	VMV0	E3	IO92RSB1	H6	GEC2/IO66RSB1		
B1	GAA2/IO95RSB1	E4	IO94RSB1	H7	IO54RSB1		
B2	IO00RSB0	E5	VCC	H8	GDC2/IO53RSB1		
B3	GAA0/IO02RSB0	E6	VCCIB0	H9	VJTAG		
B4	GAC0/IO06RSB0	E7	GND	H10	TRST		
B5	IO08RSB0	E8	GCC0/IO36RSB0	H11	IO44RSB0		
B6	IO12RSB0	E9	IO34RSB0	J1	GEC1/IO74RSB1		
B7	IO16RSB0	E10	GCB1/IO37RSB0	J2	GEC0/IO73RSB1		
B8	GBC1/IO20RSB0	E11	GCC1/IO35RSB0	J3	GEB1/IO72RSB1		
B9	GBB0/IO21RSB0	F1*	VCOMPLF	J4	GEA0/IO69RSB1		
B10	GBB2/IO27RSB0	F2	GFB0/IO83RSB1	J5	FF/GEB2/IO67RSB		
B11	GBA2/IO25RSB0	F3	GFA0/IO82RSB1	J6	IO62RSB1		
C1	IO89RSB1	F4	GFC1/IO86RSB1	J7	GDA2/IO51RSB1		
C2	GAC2/IO91RSB1	F5	VCCIB1	J8	GDB2/IO52RSB1		
C3	GAB1/IO05RSB0	F6	VCC	J9	TDI		
C4	GAB0/IO04RSB0	F7	VCCIB0	J10	TDO		
C5	IO09RSB0	F8	GCB2/IO42RSB0	J11	GDC1/IO45RSB0		
C6	IO14RSB0	F9	GCC2/IO43RSB0	K1	GEB0/IO71RSB1		
C7	GBA0/IO23RSB0	F10	GCB0/IO38RSB0	K2	GEA1/IO70RSB1		
C8	GBC0/IO19RSB0	F11	GCA1/IO39RSB0	K3	GEA2/IO68RSB1		
C9	IO26RSB0	G1*	VCCPLF	K4	IO64RSB1		
C10	IO28RSB0	G2	GFB2/IO79RSB1	K5	IO60RSB1		
C11	GBC2/IO29RSB0	G3	GFA1/IO81RSB1	K6	IO59RSB1		
D1	IO88RSB1	G4	GFB1/IO84RSB1	K7	IO56RSB1		
D2	IO90RSB1	G5	GND	K8	ТСК		
D3	GAB2/IO93RSB1	G6	VCCIB1	К9	TMS		

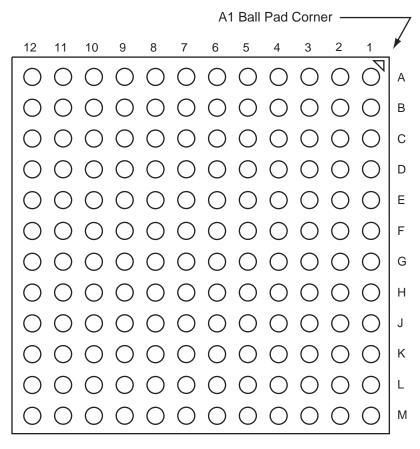
Note: *Pin numbers F1 and G1 must be connected to ground because a PLL is not supported for AGL060-CS/G121.

Package Pin Assignments

	CS281	CS281		
Pin Number	AGL1000 Function	Pin Number	AGL1000 Function	
R15	IO122RSB2	V10	IO145RSB2	
R16	GDA1/IO113PPB1	V11	IO144RSB2	
R18	GDB0/IO112NPB1	V12	IO134RSB2	
R19	GDC0/IO111NPB1	V13	IO133RSB2	
T1	IO197PPB3	V14	GND	
T2	GEC0/IO190NPB3	V15	IO119RSB2	
T4	GEB0/IO189NPB3	V16	GDA2/IO114RSB	
T5	IO181RSB2	V17	TDI	
T6	IO172RSB2	V18	VCCIB2	
T7	IO171RSB2	V19	TDO	
T8	IO156RSB2	W1	GND	
Т9	IO159RSB2	W2	FF/GEB2/IO186RS	
T10	GND	W3	IO183RSB2	
T11	IO139RSB2	W4	IO176RSB2	
T12	IO138RSB2	W5	IO170RSB2	
T13	IO129RSB2	W6	IO162RSB2	
T14	IO123RSB2	W7	IO157RSB2	
T15	GDC2/IO116RSB2	W8	IO152RSB2	
T16	TMS	W9	IO149RSB2	
T18	VJTAG	W10	VCCIB2	
T19	GDB1/IO112PPB1	W11	IO140RSB2	
U1	IO193PDB3	W12	IO135RSB2	
U2	GEA1/IO188PPB3	W13	IO130RSB2	
U6	IO167RSB2	W14	IO125RSB2	
U14	IO128RSB2	W15	IO120RSB2	
U18	TRST	W16	IO118RSB2	
U19	GDA0/IO113NPB1	W17	GDB2/IO115RSB	
V1	IO193NDB3	W18	ТСК	
V2	VCCIB3	W19	GND	
V3	GEC2/IO185RSB2			
V4	IO182RSB2			
V5	IO175RSB2			
V6	GND			
V7	IO161RSB2			
V8	IO143RSB2			

V9

IO146RSB2


Package Pin Assignments

QN48				
Pin Number	AGL030 Function			
1	IO82RSB1			
2	GEC0/IO73RSB1			
3	GEA0/IO72RSB1			
4	GEB0/IO71RSB1			
5	GND			
6	VCCIB1			
7	IO68RSB1			
8	IO67RSB1			
9	IO66RSB1			
10	IO65RSB1			
11	IO64RSB1			
12	IO62RSB1			
13	IO61RSB1			
14	FF/IO60RSB1			
15	IO57RSB1			
16	IO55RSB1			
17	IO53RSB1			
18	VCC			
19	VCCIB1			
20	IO46RSB1			
21	IO42RSB1			
22	ТСК			
23	TDI			
24	TMS			
25	VPUMP			
26	TDO			
27	TRST			
28	VJTAG			
29	IO38RSB0			
30	GDB0/IO34RSB0			
31	GDA0/IO33RSB0			
32	GDC0/IO32RSB0			
33	VCCIB0			
34	GND			
35	VCC			
36	IO25RSB0			

QN48				
Pin Number	AGL030 Function			
37	IO24RSB0			
38	IO22RSB0			
39	IO20RSB0			
40	IO18RSB0			
41	IO16RSB0			
42	IO14RSB0			
43	IO10RSB0			
44	IO08RSB0			
45	IO06RSB0			
46	IO04RSB0			
47	IO02RSB0			
48	IO00RSB0			

FG144

Note: This is the bottom view of the package.

Note

For more information on package drawings, see PD3068: Package Mechanical Drawings.

IGLOO Low Power Flash FPGAs

FG144		FG144		FG144		
Pin Number	AGL250 Function	Pin Number	AGL250 Function	Pin Number	AGL250 Function	
A1	GNDQ	D1	IO112NDB3	G1	GFA1/IO108PPB3	
A2	VMV0	D2	IO112PDB3	G2	GND	
A3	GAB0/IO02RSB0	D3	IO116VDB3	G3	VCCPLF	
A4	GAB1/IO03RSB0	D4	GAA2/IO118UPB3	G4	GFA0/IO108NPB3	
A5	IO16RSB0	D5	GAC0/IO04RSB0	G5	GND	
A6	GND	D6	GAC1/IO05RSB0	G6	GND	
A7	IO29RSB0	D7	GBC0/IO35RSB0	G7	GND	
A8	VCC	D8	GBC1/IO36RSB0	G8	GDC1/IO58UPB1	
A9	IO33RSB0	D9	GBB2/IO42PDB1	G9	IO53NDB1	
A10	GBA0/IO39RSB0	D10	IO42NDB1	G10	GCC2/IO53PDB1	
A11	GBA1/IO40RSB0	D11	IO43NPB1	G11	IO52NDB1	
A12	GNDQ	D12	GCB1/IO49PPB1	G12	GCB2/IO52PDB1	
B1	GAB2/IO117UDB3	E1	VCC	H1	VCC	
B2	GND	E2	GFC0/IO110NDB3	H2	GFB2/IO106PDB3	
B3	GAA0/IO00RSB0	E3	GFC1/IO110PDB3	H3	GFC2/IO105PSB3	
B4	GAA1/IO01RSB0	E4	VCCIB3	H4	GEC1/IO100PDB3	
B5	IO14RSB0	E5	IO118VPB3	H5	VCC	
B6	IO19RSB0	E6	VCCIB0	H6	IO79RSB2	
B7	IO22RSB0	E7	VCCIB0	H7	IO65RSB2	
B8	IO30RSB0	E8	GCC1/IO48PDB1	H8	GDB2/IO62RSB2	
B9	GBB0/IO37RSB0	E9	VCCIB1	H9	GDC0/IO58VPB1	
B10	GBB1/IO38RSB0	E10	VCC	H10	VCCIB1	
B11	GND	E11	GCA0/IO50NDB1	H11	IO54PSB1	
B12	VMV1	E12	IO51NDB1	H12	VCC	
C1	IO117VDB3	F1	GFB0/IO109NPB3	J1	GEB1/IO99PDB3	
C2	GFA2/IO107PPB3	F2	VCOMPLF	J2	IO106NDB3	
C3	GAC2/IO116UDB3	F3	GFB1/IO109PPB3	J3	VCCIB3	
C4	VCC	F4	IO107NPB3	J4	GEC0/IO100NDB3	
C5	IO12RSB0	F5	GND	J5	IO88RSB2	
C6	IO17RSB0	F6	GND	J6	IO81RSB2	
C7	IO24RSB0	F7	GND	J7	VCC	
C8	IO31RSB0	F8	GCC0/IO48NDB1	J8	ТСК	
C9	IO34RSB0	F9	GCB0/IO49NPB1	J9	GDA2/IO61RSB2	
C10	GBA2/IO41PDB1	F10	GND	J10	TDO	
C11	IO41NDB1	F11	GCA1/IO50PDB1	J11	GDA1/IO60UDB1	
C12	GBC2/IO43PPB1	F12	GCA2/IO51PDB1	J12	GDB1/IO59UDB1	

Pin NumberAGL400 FunctionAA15NCAA16NCAA17NCAA18NCAA19NCAA20NCAA21VCCIB1AA22GNDAB1GND	_
AA16NCAA17NCAA18NCAA19NCAA20NCAA21VCCIB1AA22GNDAB1GND	
AA17NCAA18NCAA19NCAA20NCAA21VCCIB1AA22GNDAB1GND	
AA18NCAA19NCAA20NCAA21VCCIB1AA22GNDAB1GND	
AA19NCAA20NCAA21VCCIB1AA22GNDAB1GND	
AA20 NC AA21 VCCIB1 AA22 GND AB1 GND	
AA21 VCCIB1 AA22 GND AB1 GND	
AA22 GND AB1 GND	
AB1 GND	
AB2 GND	
AB3 VCCIB2	
AB4 NC	
AB5 NC	
AB6 IO121RSB2	
AB7 IO119RSB2	
AB8 IO114RSB2	
AB9 IO109RSB2	
AB10 NC	
AB11 NC	
AB12 IO104RSB2	
AB13 IO103RSB2	
AB14 NC	
AB15 NC	
AB16 IO91RSB2	
AB17 IO90RSB2	
AB18 NC	
AB19 NC	
AB20 VCCIB2	
AB21 GND	
AB22 GND	
B1 GND	
B2 VCCIB3	
B3 NC	
B4 NC	
B5 NC	
B6 NC	

FG484			
Pin Number	AGL600 Function		
N17	IO80NPB1		
N18	IO74NPB1		
N19	IO72NDB1		
N20	NC		
N21	IO79NPB1		
N22	NC		
P1	NC		
P2	IO153PDB3		
P3	IO153NDB3		
P4	IO159NDB3		
P5	IO156NPB3		
P6	IO151PPB3		
P7	IO158PPB3		
P8	VCCIB3		
P9	GND		
P10	VCC		
P11	VCC		
P12	VCC		
P13	VCC		
P14	GND		
P15	VCCIB1		
P16	GDB0/IO87NPB1		
P17	IO85NDB1		
P18	IO85PDB1		
P19	IO84PDB1		
P20	NC		
P21	IO81PDB1		
P22	NC		
R1	NC		
R2	NC		
R3	VCC		
R4	IO150PDB3		
R5	IO151NPB3		
R6	IO147NPB3		
R7	GEC0/IO146NPB3		

FG484				
Pin Number	AGL1000 Function			
A1	GND			
A2	GND			
A3	VCCIB0			
A4	IO07RSB0			
A5	IO09RSB0			
A6	IO13RSB0			
A7	IO18RSB0			
A8	IO20RSB0			
A9	IO26RSB0			
A10	IO32RSB0			
A11	IO40RSB0			
A12	IO41RSB0			
A13	IO53RSB0			
A14	IO59RSB0			
A15	IO64RSB0			
A16	IO65RSB0			
A17	IO67RSB0			
A18	IO69RSB0			
A19	NC			
A20	VCCIB0			
A21	GND			
A22	GND			
AA1	GND			
AA2	VCCIB3			
AA3	NC			
AA4	IO181RSB2			
AA5	IO178RSB2			
AA6	IO175RSB2			
AA7	IO169RSB2			
AA8	IO166RSB2			
AA9	IO160RSB2			
AA10	IO152RSB2			
AA11	IO146RSB2			
AA12	IO139RSB2			
AA13	IO133RSB2			
AA14	NC			

Datasheet Information

Revision	Changes	Page
Revision 21 (continued)	Pin description table for AGL125 CS121 was removed as it was incorrectly added to the datasheet in revision 19 (SAR 38217).	-
Revision 20 (March 2012)	Notes indicating that AGL015 is not recommended for new designs have been added. The "Devices Not Recommended For New Designs" section is new (SAR 35015).	I to IV
	Notes indicating that device/package support is TBD for AGL250-QN132 and AGL060-FG144 have been reinserted (SAR 33689).	I to IV
	Values for the power data for PAC1, PAC2, PAC3, PAC4, PAC7, and PAC8 were revised in Table 2-19 • Different Components Contributing to Dynamic Power Consumption in IGLOO Devices and Table 2-21 • Different Components Contributing to Dynamic Power Consumption in IGLOO Devices to match the SmartPower tool in Libero software version 9.0 SP1 and Power Calculator spreadsheet v7a released on 08/10/2010 (SAR 33768).	2-15
	The reference to guidelines for global spines and VersaTile rows, given in the "Global Clock Contribution—PCLOCK" section, was corrected to the "Spine Architecture" section of the Global Resources chapter in the <i>IGLOO FPGA Fabric User Guide</i> (SAR 34730).	
	Figure 2-4 • Input Buffer Timing Model and Delays (example) has been modified for the DIN waveform; the Rise and Fall time label has been changed to t _{DIN} (SAR 37104).	2-21
	 Added missing characteristics for 3.3 V LVCMOS, 3.3 V LVCMOS Wide range, 1.2 V LVCMOS, and 1.2 V LVCMOS Wide range to the following tables: Table 2-38, Table 2-39, Table 2-40, Table 2-42, Table 2-43, and Table 2-44 (SARs 33854 and 36891) Table 2-63, Table 2-64, and Table 2-65 (SAR 33854) Table 2-127, Table 2-128, Table 2-129, Table 2-137, Table 2-138, and Table 2-139 (SAR 36891). 	2-40, 2-47 to 2-49, 2-74, 2-77, and
	AC Loading figures in the "Single-Ended I/O Characteristics" section were updated to match Table 2-50 · AC Waveforms, Measuring Points, and Capacitive Loads (SAR 34878).	
	Added values for minimum pulse width and removed the FRMAX row from Table 2-173 through Table 2-188 in the "Global Tree Timing Characteristics" section. Use the software to determine the FRMAX for the device you are using (SAR 29271).	
Revision 19 (September 2011)	CS121 was added to the product tables in the "IGLOO Low Power Flash FPGAs" section for AGL125 (SAR 22737). CS81 was added for AGL250 (SAR 22737).	I
	Notes indicating that device/package support is TBD for AGL250-QN132 and AGL060-FG144 have been removed (SAR 33689).	I to IV
	M1AGL400 was removed from the "I/Os Per Package1" table. This device was discontinued in April 2009 (SAR 32450).	II
	Dimensions for the QN48 package were added to Table 1 • IGLOO FPGAs Package Sizes Dimensions (SAR 30537).	II
	The Y security option and Licensed DPA Logo were added to the "IGLOO Ordering Information" section. The trademarked Licensed DPA Logo identifies that a product is covered by a DPA counter-measures license from Cryptography Research (SAR 32151).	
	The "In-System Programming (ISP) and Security" section and "Security" section were revised to clarify that although no existing security measures can give an absolute guarantee, Microsemi FPGAs implement the best security available in the industry (SAR 32865).	

Datasheet Information

Revision / Version	Changes	Page
Revision 14 (Feb 2009) Product Brief v1.4	The "Advanced I/O" section was revised to include two bullets regarding wide range power supply voltage support.	Ι
	3.0 V wide range was added to the list of supported voltages in the "I/Os with Advanced I/O Standards" section. The "Wide Range I/O Support" section is new.	1-8
Revision 13 (Jan 2009) Packaging v1.8	The "CS121" pin table was revised to add a note regarding pins F1 and G1.	4-7
Revision 12 (Dec 2008)	QN48 and QN68 were added to the AGL030 for the following tables:	N/A
Product Brief v1.3	"IGLOO Devices" Product Family Table "IGLOO Ordering Information" "Temperature Grade Offerings"	
	QN132 is fully supported by AGL125 so footnote 3 was removed.	
Packaging v1.7	The "QN48" pin diagram and pin table are new.	4-24
	The "QN68" pin table for AGL030 is new.	4-26
Revision 12 (Dec 2008)	The AGL600 Function for pin K15 in the "FG484" table was changed to VCCIB1.	4-78
Revision 11 (Oct 2008) Product Brief v1.2	This document was updated to include AGL400 device information. The following sections were updated:	N/A
	"IGLOO Devices" Product Family Table "IGLOO Ordering Information" "Temperature Grade Offerings"	
	Figure 1-2 • IGLOO Device Architecture Overview with Four I/O Banks (AGL250, AGL600, AGL400, and AGL1000)	
DC and Switching Characteristics Advance v0.5	The tables in the "Quiescent Supply Current" section were updated with values for AGL400. In addition, the title was updated to include: (VCC = VJTAG = VPP = 0 V).	2-7
	The tables in the "Power Consumption of Various Internal Resources" section were updated with values for AGL400.	2-13
	Table 2-178 • AGL400 Global Resource is new.	2-109
Packaging v1.6	The "CS196" table for the AGL400 device is new.	4-14
	The "FG144" table for the AGL400 device is new.	4-47
	The "FG256" table for the AGL400 device is new.	4-54
	The "FG484" table for the AGL400 device is new.	4-64
Revision 10 (Aug 2008)	3.0 V LVCMOS wide range support data was added to Table 2-2 • Recommended Operating Conditions 1.	2-2
DC and Switching Characteristics Advance v0.4	3.3 V LVCMOS wide range support data was added to Table 2-25 • Summary of Maximum and Minimum DC Input and Output Levels Applicable to Commercial and Industrial Conditions—Software Default Settings to Table 2-27 • Summary of Maximum and Minimum DC Input and Output Levels Applicable to Commercial and Industrial Conditions—Software Default Settings.	2-24 to 2-26
	3.3 V LVCMOS wide range support data was added to Table 2-28 • Summary of Maximum and Minimum DC Input Levels.	2-27
	3.3 V LVCMOS wide range support text was added to Table 2-49 · Minimum and Maximum DC Input and Output Levels for LVCMOS 3.3 V Wide Range.	2-39

Datasheet Information

Revision / Version	Changes	Page
Advance v0.7 (continued)	The former Table 2-16 • Maximum I/O Frequency for Single-Ended and Differential I/Os in All Banks in IGLOO Devices (maximum drive strength and high slew selected) was removed.	N/A
	The "During Flash*Freeze Mode" section was updated to include information about the output of the I/O to the FPGA core.	2-57
	Table 2-31 • Flash*Freeze Pin Location in IGLOO Family Packages (device- independent) was updated to add UC81 and CS281. Flash*Freeze pins were assigned for CS81, CS121, and CS196.	2-61
	Figure 2-40 • Flash*Freeze Mode Type 2 – Timing Diagram was updated to modify the LSICC Signal.	2-55
	Information regarding calculation of the quiescent supply current was added to the "Quiescent Supply Current" section.	3-6
	Table3-8 • QuiescentSupplyCurrent(IDD)Characteristics,IGLOOFlash*FreezeMode [†] was updated.	3-6
	Table 3-9 • Quiescent Supply Current (I_{DD}) Characteristics, IGLOO Sleep Mode (VCC = 0 V) [†] was updated.	3-6
	Table 3-11 • Quiescent Supply Current (I _{DD}), No IGLOO Flash*Freeze Mode1 was updated.	3-7
	Table 3-115 Minimum and Maximum DC Input and Output Levels was updated.	3-58
	Table 3-156 • JTAG 1532 was updated and Table 3-155 • JTAG 1532 is new.	3-104
	The "121-Pin CSP" and "281-Pin CSP" packages are new.	4-5, 4-7
	The "81-Pin CSP" table for the AGL030 device was updated to change the G6 pin function to IO44RSB1 and the JG pin function to IO45RSB1.	4-4
	The "121-Pin CSP" table for the AGL060 device is new.	4-6
	The "256-Pin FBGA" table for the AGL1000 device is new.	4-34
	The "281-Pin CSP" table for the AGL 600 device is new.	4-8
	The "100-Pin VQFP" table for the AGL060 device is new.	4-18
	The "144-Pin FBGA" table for the AGL250 device is new.	4-24
	The "144-Pin FBGA" table for the AGL1000 device is new.	4-28
	The "484-Pin FBGA" table for the AGL600 device is new.	4-38
	The "484-Pin FBGA" table for the AGL1000 device is new.	4-43
Advance v0.6 (November 2007)	Table 1 • IGLOO Product Family, the "I/Os Per Package1" table, and the "IGLOO Ordering Information", and the Temperature Grade Offerings table were updated to add the UC81 package.	i, ii, iii, iv
	The "81-Pin μ CSP" table for the AGL030 device is new.	4-3
	The "81-Pin CSP" table for the AGL030 device is new.	4-1
Advance v0.5 (September 2007)	Table 1 • IGLOO Product Family was updated for AGL030 in the Package Pins section to change CS181 to CS81.	i

Revision / Version	Changes	Page
Advance v0.4 (September 2007)	Cortex-M1 device information was added to Table 1 • IGLOO Product Family, the "I/Os Per Package1" table, "IGLOO Ordering Information", and Temperature Grade Offerings.	i, ii, iii, iv
	The number of single-ended I/Os for the CS81 package for AGL030 was updated to 66 in the "I/Os Per Package1" table.	ii
	The "Power Conservation Techniques" section was updated to recommend that unused I/O signals be left floating.	2-51
Advance v0.3 (August 2007)	In Table 1 • IGLOO Product Family, the CS81 package was added for AGL030. The CS196 was replaced by the CS121 for AGL060. Table note 3 was moved to the specific packages to which it applies for AGL060: QN132 and FG144.	i
	The CS81 and CS121 packages were added to the "I/Os Per Package1" table. The number of single-ended I/Os was removed for the CS196 package in AGL060. Table note 6 was moved to the specific packages to which it applies for AGL060: QN132 and FG144.	ii
	The CS81 and CS121 packages were added to the Temperature Grade Offerings table. The temperature grade offerings were removed for the CS196 package in AGL060. Table note 3 was moved to the specific packages to which it applies for AGL060: QN132 and FG144.	iv
	The CS81 and CS121 packages were added to Table 2-31 • Flash*Freeze Pin Location in IGLOO Family Packages (device-independent).	2-61
Advance v0.2	The words "ambient temperature" were added to the temperature range in the "IGLOO Ordering Information", Temperature Grade Offerings, and "Speed Grade and Temperature Grade Matrix" sections.	iii, iv
	The T_J parameter in Table 3-2 • Recommended Operating Conditions was changed to T_A , ambient temperature, and table notes 4–6 were added.	3-2