


Welcome to E-XFL.COM

#### Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

#### **Applications of Embedded - FPGAs**

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

#### Details

**Ξ·X**F

| Details                        |                                                                              |
|--------------------------------|------------------------------------------------------------------------------|
| Product Status                 | Active                                                                       |
| Number of LABs/CLBs            | -                                                                            |
| Number of Logic Elements/Cells | 6144                                                                         |
| Total RAM Bits                 | 36864                                                                        |
| Number of I/O                  | 97                                                                           |
| Number of Gates                | 250000                                                                       |
| Voltage - Supply               | 1.14V ~ 1.575V                                                               |
| Mounting Type                  | Surface Mount                                                                |
| Operating Temperature          | -40°C ~ 85°C (TA)                                                            |
| Package / Case                 | 144-LBGA                                                                     |
| Supplier Device Package        | 144-FPBGA (13x13)                                                            |
| Purchase URL                   | https://www.e-xfl.com/product-detail/microchip-technology/m1agl250v2-fgg144i |
|                                |                                                                              |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

| Product Grade | Programming Cycles | Program Retention<br>(biased/unbiased) | Maximum Storage<br>Temperature T <sub>STG</sub> (°C) <sup>2</sup> | Maximum Operating Junction<br>Temperature T <sub>J</sub> (°C) <sup>2</sup> |
|---------------|--------------------|----------------------------------------|-------------------------------------------------------------------|----------------------------------------------------------------------------|
| Commercial    | 500                | 20 years                               | 110                                                               | 100                                                                        |
| Industrial    | 500                | 20 years                               | 110                                                               | 100                                                                        |

Table 2-3 • Flash Programming Limits – Retention, Storage, and Operating Temperature<sup>1</sup>

Notes:

1. This is a stress rating only; functional operation at any condition other than those indicated is not implied.

2. These limits apply for program/data retention only. Refer to Table 2-1 on page 2-1 and Table 2-2 on page 2-2 for device operating conditions and absolute limits.

#### Table 2-4 • Overshoot and Undershoot Limits<sup>1</sup>

| VCCI          | Average VCCI–GND Overshoot or Undershoot Duration<br>as a Percentage of Clock Cycle <sup>2</sup> | Maximum Overshoot/<br>Undershoot <sup>2</sup> |
|---------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------|
| 2.7 V or less | 10%                                                                                              | 1.4 V                                         |
| F             | 5%                                                                                               | 1.49 V                                        |
| 3 V           | 10%                                                                                              | 1.1 V                                         |
| F             | 5%                                                                                               | 1.19 V                                        |
| 3.3 V         | 10%                                                                                              | 0.79 V                                        |
| F             | 5%                                                                                               | 0.88 V                                        |
| 3.6 V         | 10%                                                                                              | 0.45 V                                        |
| F             | 5%                                                                                               | 0.54 V                                        |

Notes:

1. Based on reliability requirements at junction temperature at 85°C.

2. The duration is allowed at one out of six clock cycles. If the overshoot/undershoot occurs at one out of two cycles, the maximum overshoot/undershoot has to be reduced by 0.15 V.

3. This table does not provide PCI overshoot/undershoot limits.

# I/O Power-Up and Supply Voltage Thresholds for Power-On Reset (Commercial and Industrial)

Sophisticated power-up management circuitry is designed into every IGLOO device. These circuits ensure easy transition from the powered-off state to the powered-up state of the device. The many different supplies can power up in any sequence with minimized current spikes or surges. In addition, the I/O will be in a known state through the power-up sequence. The basic principle is shown in Figure 2-1 on page 2-4 and Figure 2-2 on page 2-5.

There are five regions to consider during power-up.

IGLOO I/Os are activated only if ALL of the following three conditions are met:

- 1. VCC and VCCI are above the minimum specified trip points (Figure 2-1 on page 2-4 and Figure 2-2 on page 2-5).
- 2. VCCI > VCC 0.75 V (typical)
- 3. Chip is in the operating mode.

#### VCCI Trip Point:

Ramping up (V5 devices): 0.6 V < trip\_point\_up < 1.2 V Ramping down (V5 Devices): 0.5 V < trip\_point\_down < 1.1 V Ramping up (V2 devices): 0.75 V < trip\_point\_up < 1.05 V Ramping down (V2 devices): 0.65 V < trip\_point\_down < 0.95 V

#### VCC Trip Point:

Ramping up (V5 devices): 0.6 V < trip\_point\_up < 1.1 V Ramping down (V5 devices): 0.5 V < trip\_point\_down < 1.0 V

## Table 2-21 • Different Components Contributing to Dynamic Power Consumption in IGLOO Devices For IGLOO V2 Devices, 1.2 V DC Core Supply Voltage

|           |                                                                      | Device Specific Dynamic Power<br>(μW/MHz) |           |            |             |             |             |           |        |  |  |  |  |
|-----------|----------------------------------------------------------------------|-------------------------------------------|-----------|------------|-------------|-------------|-------------|-----------|--------|--|--|--|--|
| Parameter | Definition                                                           | AGL1000                                   | AGL600    | AGL400     | AGL250      | AGL125      | AGL060      | AGL030    | AGL015 |  |  |  |  |
| PAC1      | Clock contribution of a<br>Global Rib                                | 4.978                                     | 3.982     | 3.892      | 2.854       | 2.845       | 1.751       | 0.000     | 0.000  |  |  |  |  |
| PAC2      | Clock contribution of a<br>Global Spine                              | 2.773                                     | 2.248     | 1.765      | 1.740       | 1.122       | 1.261       | 2.229     | 2.229  |  |  |  |  |
| PAC3      | Clock contribution of a<br>VersaTile row                             | 0.883                                     | 0.924     | 0.881      | 0.949       | 0.939       | 0.962       | 0.942     | 0.942  |  |  |  |  |
| PAC4      | Clock contribution of a<br>VersaTile used as a<br>sequential module  | 0.096                                     | 0.095     | 0.096      | 0.095       | 0.095       | 0.096       | 0.094     | 0.094  |  |  |  |  |
| PAC5      | First contribution of a<br>VersaTile used as a<br>sequential module  |                                           |           |            | 0.04        | 45          |             |           |        |  |  |  |  |
| PAC6      | Second contribution of a<br>VersaTile used as a<br>sequential module |                                           |           |            | 0.18        | 86          |             |           |        |  |  |  |  |
| PAC7      | Contribution of a VersaTile<br>used as a combinatorial<br>module     | 0.158                                     | 0.149     | 0.158      | 0.157       | 0.160       | 0.170       | 0.160     | 0.155  |  |  |  |  |
| PAC8      | Average contribution of a routing net                                | 0.756                                     | 0.729     | 0.753      | 0.817       | 0.678       | 0.692       | 0.738     | 0.721  |  |  |  |  |
| PAC9      | Contribution of an I/O input pin (standard-dependent)                |                                           | See Table | 2-13 on pa | ge 2-10 thr | rough Table | e 2-15 on p | age 2-11. |        |  |  |  |  |
| PAC10     | Contribution of an I/O output pin (standard-dependent)               |                                           | See Table | 2-16 on pa | ge 2-11 thr | ough Table  | e 2-18 on p | age 2-12. |        |  |  |  |  |
| PAC11     | Average contribution of a<br>RAM block during a read<br>operation    |                                           |           |            | 25.0        | 00          |             |           |        |  |  |  |  |
| PAC12     | Average contribution of a<br>RAM block during a write<br>operation   |                                           |           |            | 30.0        | 00          |             |           |        |  |  |  |  |
| PAC13     | Dynamic PLL contribution                                             |                                           |           |            | 2.1         | 0           |             |           |        |  |  |  |  |

Note: For a different output load, drive strength, or slew rate, Microsemi recommends using the Microsemi power spreadsheet calculator or SmartPower tool in Libero SoC.

## Table 2-22 • Different Components Contributing to the Static Power Consumption in IGLOO Device For IGLOO V2 Devices, 1.2 V DC Core Supply Voltage

|           |                                                  |         | Device Specific Static Power (mW) |            |             |             |             |           |        |  |  |  |  |  |
|-----------|--------------------------------------------------|---------|-----------------------------------|------------|-------------|-------------|-------------|-----------|--------|--|--|--|--|--|
| Parameter | Definition                                       | AGL1000 | AGL600                            | AGL400     | AGL250      | AGL125      | AGL060      | AGL030    | AGL015 |  |  |  |  |  |
| PDC1      | Array static power in Active mode                |         |                                   | See        | Table 2-12  | 2 on page 2 | -9.         |           |        |  |  |  |  |  |
| PDC2      | Array static power in Static<br>(Idle) mode      |         |                                   | See        | Table 2-11  | on page 2   | -8.         |           |        |  |  |  |  |  |
| PDC3      | Array static power in<br>Flash*Freeze mode       |         |                                   | See        | e Table 2-9 | on page 2-  | -7.         |           |        |  |  |  |  |  |
| PDC4      | Static PLL contribution                          |         |                                   |            | 0.9         | 90          |             |           |        |  |  |  |  |  |
| PDC5      | Bank quiescent power<br>(VCCI-Dependent)         |         |                                   | See        | Table 2-12  | 2 on page 2 | -9.         |           |        |  |  |  |  |  |
| PDC6      | I/O input pin static power (standard-dependent)  |         | See Table                         | 2-13 on pa | ge 2-10 thr | rough Table | e 2-15 on p | age 2-11. |        |  |  |  |  |  |
| PDC7      | I/O output pin static power (standard-dependent) |         | See Table                         | 2-16 on pa | ge 2-11 thr | ough Table  | e 2-18 on p | age 2-12. |        |  |  |  |  |  |

Note: For a different output load, drive strength, or slew rate, Microsemi recommends using the Microsemi power spreadsheet calculator or SmartPower tool in Libero SoC.

## Table 2-44 • I/O Short Currents IOSH/IOSL Applicable to Standard I/O Banks

|                            | Drive Strength | IOSL (mA)*                   | IOSH (mA)*                   |
|----------------------------|----------------|------------------------------|------------------------------|
| 3.3 V LVTTL / 3.3 V LVCMOS | 2 mA           | 25                           | 27                           |
|                            | 4 mA           | 25                           | 27                           |
|                            | 6 mA           | 51                           | 54                           |
|                            | 8 mA           | 51                           | 54                           |
| 3.3 V LVCMOS Wide Range    | 100 μA         | Same as regular 3.3 V LVCMOS | Same as regular 3.3 V LVCMOS |
| 2.5 V LVCMOS               | 2 mA           | 16                           | 18                           |
|                            | 4 mA           | 16                           | 18                           |
|                            | 6 mA           | 32                           | 37                           |
|                            | 8 mA           | 32                           | 37                           |
| 1.8 V LVCMOS               | 2 mA           | 9                            | 11                           |
|                            | 4 mA           | 17                           | 22                           |
| 1.5 V LVCMOS               | 2 mA           | 13                           | 16                           |
| 1.2 V LVCMOS               | 1 mA           | 20                           | 26                           |
| 1.2 V LVCMOS Wide Range    | 100 μA         | 20                           | 26                           |

*Note:*  $^{*}T_{J} = 100^{\circ}C$ 

The length of time an I/O can withstand  $I_{OSH}/I_{OSL}$  events depends on the junction temperature. The reliability data below is based on a 3.3 V, 12 mA I/O setting, which is the worst case for this type of analysis.

For example, at 100°C, the short current condition would have to be sustained for more than six months to cause a reliability concern. The I/O design does not contain any short circuit protection, but such protection would only be needed in extremely prolonged stress conditions.

Table 2-45 • Duration of Short Circuit Event before Failure

| Temperature | Time before Failure |
|-------------|---------------------|
| -40°C       | > 20 years          |
| –20°C       | > 20 years          |
| 0°C         | > 20 years          |
| 25°C        | > 20 years          |
| 70°C        | 5 years             |
| 85°C        | 2 years             |
| 100°C       | 6 months            |

Table 2-46 • I/O Input Rise Time, Fall Time, and Related I/O Reliability1

| Input Buffer                  | Input Rise/Fall Time (min.) | Input Rise/Fall Time (max.) | Reliability      |
|-------------------------------|-----------------------------|-----------------------------|------------------|
| LVTTL/LVCMOS                  | No requirement              | 10 ns *                     | 20 years (100°C) |
| LVDS/B-LVDS/M-LVDS/<br>LVPECL | No requirement              | 10 ns *                     | 10 years (100°C) |

Note: The maximum input rise/fall time is related to the noise induced into the input buffer trace. If the noise is low, then the rise time and fall time of input buffers can be increased beyond the maximum value. The longer the rise/fall times, the more susceptible the input signal is to the board noise. Microsemi recommends signal integrity evaluation/characterization of the system to ensure that there is no excessive noise coupling into input signals.

#### Applies to 1.2 V DC Core Voltage

 Table 2-57 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew – Applies to 1.2 V DC Core Voltage

 Commercial-Case Conditions: T<sub>J</sub> = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 3.0 V

 Applicable to Advanced I/O Banks

| Drive Strength | Speed Grade | t <sub>DOUT</sub> | t <sub>DP</sub> | t <sub>DIN</sub> | t <sub>PY</sub> | t <sub>EOUT</sub> | t <sub>ZL</sub> | t <sub>ZH</sub> | t <sub>LZ</sub> | t <sub>HZ</sub> | t <sub>ZLS</sub> | t <sub>ZHS</sub> | Units |
|----------------|-------------|-------------------|-----------------|------------------|-----------------|-------------------|-----------------|-----------------|-----------------|-----------------|------------------|------------------|-------|
| 2 mA           | Std.        | 1.55              | 5.12            | 0.26             | 0.98            | 1.10              | 5.20            | 4.46            | 2.81            | 3.02            | 10.99            | 10.25            | ns    |
| 4 mA           | Std.        | 1.55              | 5.12            | 0.26             | 0.98            | 1.10              | 5.20            | 4.46            | 2.81            | 3.02            | 10.99            | 10.25            | ns    |
| 6 mA           | Std.        | 1.55              | 4.38            | 0.26             | 0.98            | 1.10              | 4.45            | 3.93            | 3.07            | 3.48            | 10.23            | 9.72             | ns    |
| 8 mA           | Std.        | 1.55              | 4.38            | 0.26             | 0.98            | 1.10              | 4.45            | 3.93            | 3.07            | 3.48            | 10.23            | 9.72             | ns    |
| 12 mA          | Std.        | 1.55              | 3.85            | 0.26             | 0.98            | 1.10              | 3.91            | 3.53            | 3.24            | 3.77            | 9.69             | 9.32             | ns    |
| 16 mA          | Std.        | 1.55              | 3.69            | 0.26             | 0.98            | 1.10              | 3.75            | 3.44            | 3.28            | 3.84            | 9.54             | 9.23             | ns    |
| 24 mA          | Std.        | 1.55              | 3.61            | 0.26             | 0.98            | 1.10              | 3.67            | 3.46            | 3.33            | 4.13            | 9.45             | 9.24             | ns    |

Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.

# Table 2-58 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew – Applies to 1.2 V DC Core VoltageCommercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 3.0 VApplicable to Advanced I/O Banks

| Drive Strength | Speed Grade | t <sub>DOUT</sub> | t <sub>DP</sub> | t <sub>DIN</sub> | t <sub>PY</sub> | t <sub>EOUT</sub> | t <sub>ZL</sub> | t <sub>ZH</sub> | t <sub>LZ</sub> | t <sub>HZ</sub> | t <sub>ZLS</sub> | t <sub>ZHS</sub> | Units |
|----------------|-------------|-------------------|-----------------|------------------|-----------------|-------------------|-----------------|-----------------|-----------------|-----------------|------------------|------------------|-------|
| 2 mA           | Std.        | 1.55              | 3.33            | 0.26             | 0.98            | 1.10              | 3.38            | 2.75            | 2.82            | 3.18            | 9.17             | 8.54             | ns    |
| 4 mA           | Std.        | 1.55              | 3.33            | 0.26             | 0.98            | 1.10              | 3.38            | 2.75            | 2.82            | 3.18            | 9.17             | 8.54             | ns    |
| 6 mA           | Std.        | 1.55              | 2.91            | 0.26             | 0.98            | 1.10              | 2.95            | 2.37            | 3.07            | 3.64            | 8.73             | 8.15             | ns    |
| 8 mA           | Std.        | 1.55              | 2.91            | 0.26             | 0.98            | 1.10              | 2.95            | 2.37            | 3.07            | 3.64            | 8.73             | 8.15             | ns    |
| 12 mA          | Std.        | 1.55              | 2.67            | 0.26             | 0.98            | 1.10              | 2.71            | 2.18            | 3.25            | 3.93            | 8.50             | 7.97             | ns    |
| 16 mA          | Std.        | 1.55              | 2.63            | 0.26             | 0.98            | 1.10              | 2.67            | 2.14            | 3.28            | 4.01            | 8.45             | 7.93             | ns    |
| 24 mA          | Std.        | 1.55              | 2.65            | 0.26             | 0.98            | 1.10              | 2.69            | 2.10            | 3.33            | 4.31            | 8.47             | 7.89             | ns    |

Notes:

1. Software default selection highlighted in gray.

2. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.

Table 2-59 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew – Applies to 1.2 V DC Core VoltageCommercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 3.0 VApplicable to Standard Plus Banks

| Drive Strength | Speed Grade | t <sub>DOUT</sub> | t <sub>DP</sub> | t <sub>DIN</sub> | t <sub>PY</sub> | t <sub>EOUT</sub> | t <sub>ZL</sub> | t <sub>ZH</sub> | t <sub>LZ</sub> | t <sub>HZ</sub> | t <sub>ZLS</sub> | t <sub>ZHS</sub> | Units |
|----------------|-------------|-------------------|-----------------|------------------|-----------------|-------------------|-----------------|-----------------|-----------------|-----------------|------------------|------------------|-------|
| 2 mA           | Std.        | 1.55              | 4.56            | 0.26             | 0.97            | 1.10              | 4.63            | 3.98            | 2.54            | 2.83            | 10.42            | 9.76             | ns    |
| 4 mA           | Std.        | 1.55              | 4.56            | 0.26             | 0.97            | 1.10              | 4.63            | 3.98            | 2.54            | 2.83            | 10.42            | 9.76             | ns    |
| 6 mA           | Std.        | 1.55              | 3.84            | 0.26             | 0.97            | 1.10              | 3.90            | 3.50            | 2.77            | 3.24            | 9.69             | 9.29             | ns    |
| 8 mA           | Std.        | 1.55              | 3.84            | 0.26             | 0.97            | 1.10              | 3.90            | 3.50            | 2.77            | 3.24            | 9.69             | 9.29             | ns    |
| 12 mA          | Std.        | 1.55              | 3.35            | 0.26             | 0.97            | 1.10              | 3.40            | 3.13            | 2.93            | 3.51            | 9.19             | 8.91             | ns    |
| 16 mA          | Std.        | 1.55              | 3.35            | 0.26             | 0.97            | 1.10              | 3.40            | 3.13            | 2.93            | 3.51            | 9.19             | 8.91             | ns    |

Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.

# Table 2-86 •2.5 V LVCMOS High Slew – Applies to 1.5 V DC Core Voltage<br/>Commercial-Case Conditions: T<sub>J</sub> = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V<br/>Applicable to Standard Plus Banks

| Drive Strength | Speed Grade | t <sub>DOUT</sub> | t <sub>DP</sub> | t <sub>DIN</sub> | t <sub>PY</sub> | t <sub>EOUT</sub> | t <sub>ZL</sub> | t <sub>ZH</sub> | t <sub>LZ</sub> | t <sub>HZ</sub> | t <sub>ZLS</sub> | t <sub>ZHS</sub> | Units |
|----------------|-------------|-------------------|-----------------|------------------|-----------------|-------------------|-----------------|-----------------|-----------------|-----------------|------------------|------------------|-------|
| 2 mA           | Std.        | 0.97              | 2.36            | 0.18             | 1.08            | 0.66              | 2.41            | 2.21            | 1.96            | 1.92            | 6.01             | 5.81             | ns    |
| 4 mA           | Std.        | 0.97              | 2.36            | 0.18             | 1.08            | 0.66              | 2.41            | 2.21            | 1.96            | 1.92            | 6.01             | 5.81             | ns    |
| 6 mA           | Std.        | 0.97              | 1.97            | 0.18             | 1.08            | 0.66              | 2.01            | 1.75            | 2.21            | 2.40            | 5.61             | 5.34             | ns    |
| 8 mA           | Std.        | 0.97              | 1.97            | 0.18             | 1.08            | 0.66              | 2.01            | 1.75            | 2.21            | 2.40            | 5.61             | 5.34             | ns    |
| 12 mA          | Std.        | 0.97              | 1.75            | 0.18             | 1.08            | 0.66              | 1.79            | 1.52            | 2.38            | 2.70            | 5.39             | 5.11             | ns    |

Notes:

1. Software default selection highlighted in gray.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

#### Table 2-87 • 2.5 V LVCMOS Low Slew – Applies to 1.5 V DC Core Voltage

Commercial-Case Conditions: T<sub>J</sub> = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V Applicable to Standard Banks

| Drive Strength | Speed Grade | t <sub>DOUT</sub> | t <sub>DP</sub> | t <sub>DIN</sub> | t <sub>PY</sub> | t <sub>EOUT</sub> | t <sub>ZL</sub> | t <sub>ZH</sub> | t <sub>LZ</sub> | t <sub>HZ</sub> | Units |
|----------------|-------------|-------------------|-----------------|------------------|-----------------|-------------------|-----------------|-----------------|-----------------|-----------------|-------|
| 2 mA           | Std.        | 0.97              | 4.27            | 0.18             | 1.04            | 0.66              | 4.36            | 4.06            | 1.71            | 1.62            | ns    |
| 4 mA           | Std.        | 0.97              | 4.27            | 0.18             | 1.04            | 0.66              | 4.36            | 4.06            | 1.71            | 1.62            | ns    |
| 6 mA           | Std.        | 0.97              | 3.54            | 0.18             | 1.04            | 0.66              | 3.61            | 3.48            | 1.95            | 2.08            | ns    |
| 8 mA           | Std.        | 0.97              | 3.54            | 0.18             | 1.04            | 0.66              | 3.61            | 3.48            | 1.95            | 2.08            | ns    |

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

#### Table 2-88 • 2.5 V LVCMOS High Slew – Applies to 1.5 V DC Core Voltage

Commercial-Case Conditions:  $T_J = 70^{\circ}$ C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V Applicable to Standard Banks

| Drive Strength | Speed Grade | t <sub>DOUT</sub> | t <sub>DP</sub> | t <sub>DIN</sub> | t <sub>PY</sub> | t <sub>EOUT</sub> | t <sub>ZL</sub> | t <sub>ZH</sub> | t <sub>LZ</sub> | t <sub>HZ</sub> | Units |
|----------------|-------------|-------------------|-----------------|------------------|-----------------|-------------------|-----------------|-----------------|-----------------|-----------------|-------|
| 2 mA           | Std.        | 0.97              | 2.24            | 0.18             | 1.04            | 0.66              | 2.29            | 2.09            | 1.71            | 1.68            | ns    |
| 4 mA           | Std.        | 0.97              | 2.24            | 0.18             | 1.04            | 0.66              | 2.29            | 2.09            | 1.71            | 1.68            | ns    |
| 6 mA           | Std.        | 0.97              | 1.88            | 0.18             | 1.04            | 0.66              | 1.92            | 1.63            | 1.95            | 2.15            | ns    |
| 8 mA           | Std.        | 0.97              | 1.88            | 0.18             | 1.04            | 0.66              | 1.92            | 1.63            | 1.95            | 2.15            | ns    |

Notes:

1. Software default selection highlighted in gray.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

#### Table 2-119 • 1.5 V LVCMOS Low Slew – Applies to 1.5 V DC Core Voltage Commercial-Case Conditions: T<sub>J</sub> = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.4 V Applicable to Standard Banks

| Drive Strength | Speed Grade | t <sub>DOUT</sub> | t <sub>DP</sub> | t <sub>DIN</sub> | t <sub>PY</sub> | t <sub>EOUT</sub> | t <sub>ZL</sub> | t <sub>ZH</sub> | t <sub>LZ</sub> | t <sub>HZ</sub> | Units |
|----------------|-------------|-------------------|-----------------|------------------|-----------------|-------------------|-----------------|-----------------|-----------------|-----------------|-------|
| 2 mA           | Std.        | 0.97              | 5.88            | 0.18             | 1.14            | 0.66              | 6.00            | 5.45            | 2.00            | 1.94            | ns    |

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

#### Table 2-120 • 1.5 V LVCMOS High Slew – Applies to 1.5 V DC Core Voltage

#### Commercial-Case Conditions: $T_J = 70^{\circ}$ C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.4 V Applicable to Standard Banks

| Drive Strength | Speed Grade | t <sub>DOUT</sub> | t <sub>DP</sub> | t <sub>DIN</sub> | t <sub>PY</sub> | t <sub>EOUT</sub> | t <sub>ZL</sub> | t <sub>ZH</sub> | t <sub>LZ</sub> | t <sub>HZ</sub> | Units |
|----------------|-------------|-------------------|-----------------|------------------|-----------------|-------------------|-----------------|-----------------|-----------------|-----------------|-------|
| 2 mA           | Std.        | 0.97              | 2.51            | 0.18             | 1.14            | 0.66              | 2.56            | 2.21            | 1.99            | 2.03            | ns    |

Notes:

1. Software default selection highlighted in gray.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

#### 1.2 V DC Core Voltage

#### Table 2-121 • 1.5 V LVCMOS Low Slew – Applies to 1.2 V DC Core Voltage

#### Commercial-Case Conditions: $T_J = 70^{\circ}$ C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.4 V Applicable to Advanced I/O Banks

| Drive Strength | Speed Grade | t <sub>DOUT</sub> | t <sub>DP</sub> | t <sub>DIN</sub> | t <sub>PY</sub> | t <sub>EOUT</sub> | t <sub>ZL</sub> | t <sub>ZH</sub> | t <sub>LZ</sub> | t <sub>HZ</sub> | t <sub>ZLS</sub> | t <sub>ZHS</sub> | Units |
|----------------|-------------|-------------------|-----------------|------------------|-----------------|-------------------|-----------------|-----------------|-----------------|-----------------|------------------|------------------|-------|
| 2 mA           | Std.        | 1.55              | 7.17            | 0.26             | 1.27            | 1.10              | 7.29            | 6.60            | 3.33            | 3.03            | 13.07            | 12.39            | ns    |
| 4 mA           | Std.        | 1.55              | 6.27            | 0.26             | 1.27            | 1.10              | 6.37            | 5.86            | 3.61            | 3.51            | 12.16            | 11.64            | ns    |
| 6 mA           | Std.        | 1.55              | 5.94            | 0.26             | 1.27            | 1.10              | 6.04            | 5.70            | 3.67            | 3.64            | 11.82            | 11.48            | ns    |
| 8 mA           | Std.        | 1.55              | 5.86            | 0.26             | 1.27            | 1.10              | 5.96            | 5.71            | 2.83            | 4.11            | 11.74            | 11.50            | ns    |
| 12 mA          | Std.        | 1.55              | 5.86            | 0.26             | 1.27            | 1.10              | 5.96            | 5.71            | 2.83            | 4.11            | 11.74            | 11.50            | ns    |

Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.

#### Table 2-122 • 1.5 V LVCMOS High Slew – Applies to 1.2 V DC Core Voltage

#### Commercial-Case Conditions: $T_J = 70^{\circ}$ C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.4 V Applicable to Advanced I/O Banks

| Drive Strength | Speed Grade | t <sub>DOUT</sub> | t <sub>DP</sub> | t <sub>DIN</sub> | t <sub>PY</sub> | t <sub>EOUT</sub> | t <sub>ZL</sub> | t <sub>ZH</sub> | t <sub>LZ</sub> | t <sub>HZ</sub> | t <sub>ZLS</sub> | t <sub>ZHS</sub> | Units |
|----------------|-------------|-------------------|-----------------|------------------|-----------------|-------------------|-----------------|-----------------|-----------------|-----------------|------------------|------------------|-------|
| 2 mA           | Std.        | 1.55              | 3.44            | 0.26             | 1.27            | 1.10              | 3.49            | 3.35            | 3.32            | 3.12            | 9.28             | 9.14             | ns    |
| 4 mA           | Std.        | 1.55              | 3.06            | 0.26             | 1.27            | 1.10              | 3.10            | 2.89            | 3.60            | 3.61            | 8.89             | 8.67             | ns    |
| 6 mA           | Std.        | 1.55              | 2.98            | 0.26             | 1.27            | 1.10              | 3.02            | 2.80            | 3.66            | 3.74            | 8.81             | 8.58             | ns    |
| 8 mA           | Std.        | 1.55              | 2.96            | 0.26             | 1.27            | 1.10              | 3.00            | 2.70            | 3.75            | 4.23            | 8.78             | 8.48             | ns    |
| 12 mA          | Std.        | 1.55              | 2.96            | 0.26             | 1.27            | 1.10              | 3.00            | 2.70            | 3.75            | 4.23            | 8.78             | 8.48             | ns    |

Notes:

1. Software default selection highlighted in gray.

2. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.

| DC Parameter        | Description                 | Min.  | Тур.  | Max.  | Units |
|---------------------|-----------------------------|-------|-------|-------|-------|
| VCCI                | Supply Voltage              | 2.375 | 2.5   | 2.625 | V     |
| VOL                 | Output Low Voltage          | 0.9   | 1.075 | 1.25  | V     |
| VOH                 | Output High Voltage         | 1.25  | 1.425 | 1.6   | V     |
| IOL <sup>1</sup>    | Output Lower Current        | 0.65  | 0.91  | 1.16  | mA    |
| IOH <sup>1</sup>    | Output High Current         | 0.65  | 0.91  | 1.16  | mA    |
| VI                  | Input Voltage               | 0     |       | 2.925 | V     |
| IIH <sup>2</sup>    | Input High Leakage Current  |       |       | 10    | μA    |
| IIL <sup>2</sup>    | Input Low Leakage Current   |       |       | 10    | μA    |
| VODIFF              | Differential Output Voltage | 250   | 350   | 450   | mV    |
| VOCM                | Output Common-Mode Voltage  | 1.125 | 1.25  | 1.375 | V     |
| VICM                | Input Common-Mode Voltage   | 0.05  | 1.25  | 2.35  | V     |
| VIDIFF <sup>4</sup> | Input Differential Voltage  | 100   | 350   |       | mV    |

#### Table 2-147 • Minimum and Maximum DC Input and Output Levels

Notes:

1. IOL/IOH is defined by VODIFF/(resistor network)

2. Currents are measured at 85°C junction temperature.

#### Table 2-148 • AC Waveforms, Measuring Points, and Capacitive Loads

| Input Low (V) | Input High (V) | Measuring Point* (V) |
|---------------|----------------|----------------------|
| 1.075         | 1.325          | Cross point          |

*Note:* \**Measuring point = Vtrip. See Table 2-29 on page 2-28 for a complete table of trip points.* 

#### **Timing Characteristics**

#### 1.5 V DC Core Voltage

#### Table 2-149 • LVDS – Applies to 1.5 V DC Core Voltage

#### Commercial-Case Conditions: $T_J = 70^{\circ}$ C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.3 V Applicable to Standard Banks

| Speed Grade | <sup>t</sup> dout | t <sub>DP</sub> | t <sub>DIN</sub> | t <sub>PY</sub> | Units |
|-------------|-------------------|-----------------|------------------|-----------------|-------|
| Std.        | 0.97              | 1.67            | 0.19             | 1.31            | ns    |

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 and Table 2-7 on page 2-7 for derating values.

#### 1.2 V DC Core Voltage

#### Table 2-150 • LVDS – Applies to 1.5 V DC Core Voltage

Commercial-Case Conditions: T<sub>J</sub> = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 2.3 V Applicable to Standard Banks

| Speed Grade | t <sub>DOUT</sub> | t <sub>DP</sub> | t <sub>DIN</sub> | t <sub>PY</sub> | Units |
|-------------|-------------------|-----------------|------------------|-----------------|-------|
| Std.        | 1.55              | 2.19            | 0.25             | 1.52            | ns    |

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 and Table 2-7 on page 2-7 for derating values.

#### Table 2-177 • AGL250 Global Resource

Commercial-Case Conditions: T<sub>J</sub> = 70°C, VCC = 1.425 V

|                      |                                           | Std.                  |                       |
|----------------------|-------------------------------------------|-----------------------|-----------------------|
| Parameter            | Description                               | Min. <sup>1</sup> Max | κ. <sup>2</sup> Units |
| t <sub>RCKL</sub>    | Input Low Delay for Global Clock          | 1.39 1.7              | 3 ns                  |
| t <sub>RCKH</sub>    | Input High Delay for Global Clock         | 1.41 1.8              | 4 ns                  |
| t <sub>RCKMPWH</sub> | Minimum Pulse Width High for Global Clock | 1.18                  | ns                    |
| t <sub>RCKMPWL</sub> | Minimum Pulse Width Low for Global Clock  | 1.15                  | ns                    |
| t <sub>RCKSW</sub>   | Maximum Skew for Global Clock             | 0.4                   | 3 ns                  |

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

#### Table 2-178 • AGL400 Global Resource

#### Commercial-Case Conditions: T<sub>J</sub> = 70°C, VCC = 1.425 V

|                      |                                           | S                 | td.               |       |
|----------------------|-------------------------------------------|-------------------|-------------------|-------|
| Parameter            | Description                               | Min. <sup>1</sup> | Max. <sup>2</sup> | Units |
| t <sub>RCKL</sub>    | Input Low Delay for Global Clock          | 1.45              | 1.79              | ns    |
| t <sub>RCKH</sub>    | Input High Delay for Global Clock         | 1.48              | 1.91              | ns    |
| t <sub>RCKMPWH</sub> | Minimum Pulse Width High for Global Clock | 1.18              |                   | ns    |
| t <sub>RCKMPWL</sub> | Minimum Pulse Width Low for Global Clock  | 1.15              |                   | ns    |
| t <sub>RCKSW</sub>   | Maximum Skew for Global Clock             |                   | 0.43              | ns    |

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

3. For specific junction temperature and voltage-supply levels, refer to Table 2-6 on page 2-7 for derating values.

## **Clock Conditioning Circuits**

#### **CCC Electrical Specifications**

#### **Timing Characteristics**

#### Table 2-189 • IGLOO CCC/PLL Specification

For IGLOO V2 or V5 Devices, 1.5 V DC Core Supply Voltage

| Parameter                                                          | Min.           | Тур.                                          | Max.            | Units |  |
|--------------------------------------------------------------------|----------------|-----------------------------------------------|-----------------|-------|--|
| Clock Conditioning Circuitry Input Frequency fIN_CCC               | 1.5            |                                               | 250             | MHz   |  |
| Clock Conditioning Circuitry Output Frequency f <sub>OUT_CCC</sub> | 0.75           |                                               | 250             | MHz   |  |
| Delay Increments in Programmable Delay Blocks <sup>1, 2</sup>      |                | 360 <sup>3</sup>                              |                 | ps    |  |
| Number of Programmable Values in Each Programmable Delay Block     |                |                                               | 32              |       |  |
| Serial Clock (SCLK) for Dynamic PLL <sup>4, 5</sup>                |                |                                               | 100             | ns    |  |
| Input Cycle-to-Cycle Jitter (peak magnitude)                       |                |                                               | 1               | ns    |  |
| Acquisition Time                                                   |                |                                               |                 |       |  |
| LockControl = 0                                                    |                |                                               | 300             | μs    |  |
| LockControl = 1                                                    |                |                                               | 6.0             | ms    |  |
| Tracking Jitter <sup>6</sup>                                       |                |                                               |                 |       |  |
| LockControl = 0                                                    |                |                                               | 2.5             | ns    |  |
| LockControl = 1                                                    |                |                                               | 1.5             | ns    |  |
| Output Duty Cycle                                                  | 48.5           |                                               | 51.5            | %     |  |
| Delay Range in Block: Programmable Delay 1 <sup>1, 2</sup>         | 1.25           |                                               | 15.65           | ns    |  |
| Delay Range in Block: Programmable Delay 2 <sup>1, 2</sup>         | 0.469          |                                               | 15.65           | ns    |  |
| Delay Range in Block: Fixed Delay <sup>1, 2</sup>                  |                | 3.5                                           |                 | ns    |  |
| CCC Output Peak-to-Peak Period Jitter F <sub>CCC_OUT</sub>         |                | Maximum Peak-to-Peak Jitter Data <sup>7</sup> |                 |       |  |
|                                                                    | $SSO \geq 4^8$ | $SSO \geq 8^8$                                | $SSO \geq 16^8$ |       |  |
| 0.75 MHz to 50 MHz                                                 | 0.60%          | 0.80%                                         | 1.20%           |       |  |
| 50 MHz to 160 MHz                                                  | 4.00%          | 6.00%                                         | 12.00%          |       |  |

Notes:

1. This delay is a function of voltage and temperature. See Table 2-6 on page 2-7 and Table 2-7 on page 2-7 for deratings.

2.  $T_J = 25^{\circ}C, V_{CC} = 1.5 V$ 

3. When the CCC/PLL core is generated by Microsemi core generator software, not all delay values of the specified delay increments are available. Refer to the Libero SoC Online Help associated with the core for more information.

4. The AGL030 device does not support a PLL.

5. Maximum value obtained for a Std. speed grade device in Worst-Case Commercial Conditions. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

6. Tracking jitter is defined as the variation in clock edge position of PLL outputs with reference to the PLL input clock edge. Tracking jitter does not measure the variation in PLL output period, which is covered by the period jitter parameter.

7. Measurements done with LVTTL 3.3 V, 8 mA I/O drive strength, and high slew Rate. VCC/VCCPLL = 1.14 V, VQ/PQ/TQ type of packages, 20 pF load.

8. Simultaneously Switching Outputs (SSOs) are outputs that are synchronous to a single clock domain and have clock-to-out times that are within ±200 ps of each other. Switching I/Os are placed outside of the PLL bank. Refer to the "Simultaneously Switching Outputs (SSOs) and Printed Circuit Board Layout" section in the IGLOO FPGA Fabric User Guide.

#### **Timing Characteristics**

#### 1.5 V DC Core Voltage

#### Table 2-191 • RAM4K9

#### Commercial-Case Conditions: T<sub>J</sub> = 70°C, Worst-Case VCC = 1.425 V

| Parameter             | Description                                                                                                          | Std. | Units |
|-----------------------|----------------------------------------------------------------------------------------------------------------------|------|-------|
| t <sub>AS</sub>       | Address setup time                                                                                                   | 0.83 | ns    |
| t <sub>AH</sub>       | Address hold time 0.                                                                                                 |      | ns    |
| t <sub>ENS</sub>      | REN, WEN setup time                                                                                                  | 0.81 | ns    |
| t <sub>ENH</sub>      | REN, WEN hold time                                                                                                   | 0.16 | ns    |
| t <sub>BKS</sub>      | BLK setup time                                                                                                       | 1.65 | ns    |
| t <sub>BKH</sub>      | BLK hold time                                                                                                        | 0.16 | ns    |
| t <sub>DS</sub>       | Input data (DIN) setup time                                                                                          | 0.71 | ns    |
| t <sub>DH</sub>       | Input data (DIN) hold time                                                                                           | 0.36 | ns    |
| t <sub>CKQ1</sub>     | Clock High to new data valid on DOUT (output retained, WMODE = 0)                                                    | 3.53 | ns    |
|                       | Clock High to new data valid on DOUT (flow-through, WMODE = 1)                                                       | 3.06 | ns    |
| t <sub>CKQ2</sub>     | Clock High to new data valid on DOUT (pipelined)                                                                     | 1.81 | ns    |
| t <sub>C2CWWL</sub> 1 | Address collision clk-to-clk delay for reliable write after write on same address – Applicable to Closing (<br>Edge  |      | ns    |
| t <sub>C2CRWL</sub> 1 | Address collision clk-to-clk delay for reliable read access after write on same address – Applicable to Opening Edge |      | ns    |
| t <sub>C2CWRH</sub> 1 | Address collision clk-to-clk delay for reliable write access after read on same address – Applicable to Opening Edge |      | ns    |
| t <sub>RSTBQ</sub>    | RESET Low to data out Low on DOUT (flow-through)                                                                     | 2.06 | ns    |
|                       | RESET Low to data out Low on DOUT (pipelined)                                                                        | 2.06 | ns    |
| t <sub>REMRSTB</sub>  | RESET removal                                                                                                        | 0.61 | ns    |
| t <sub>RECRSTB</sub>  | RESET recovery                                                                                                       | 3.21 | ns    |
| t <sub>MPWRSTB</sub>  | RESET minimum pulse width                                                                                            | 0.68 | ns    |
| t <sub>CYC</sub>      | Clock cycle time                                                                                                     | 6.24 | ns    |
| F <sub>MAX</sub>      | Maximum frequency                                                                                                    | 160  | MHz   |

Notes:

1. For more information, refer to the application note Simultaneous Read-Write Operations in Dual-Port SRAM for Flash-Based cSoCs and FPGAs.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

Note that to operate at all VJTAG voltages, 500  $\Omega$  to 1 k $\Omega$  will satisfy the requirements.

## **Special Function Pins**

#### NC

#### No Connect

This pin is not connected to circuitry within the device. These pins can be driven to any voltage or can be left floating with no effect on the operation of the device.

#### DC Do Not Connect

This pin should not be connected to any signals on the PCB. These pins should be left unconnected.

### Packaging

Semiconductor technology is constantly shrinking in size while growing in capability and functional integration. To enable next-generation silicon technologies, semiconductor packages have also evolved to provide improved performance and flexibility.

Microsemi consistently delivers packages that provide the necessary mechanical and environmental protection to ensure consistent reliability and performance. Microsemi IC packaging technology efficiently supports high-density FPGAs with large-pin-count Ball Grid Arrays (BGAs), but is also flexible enough to accommodate stringent form factor requirements for Chip Scale Packaging (CSP). In addition, Microsemi offers a variety of packages designed to meet your most demanding application and economic requirements for today's embedded and mobile systems.

### **Related Documents**

#### **User Guides**

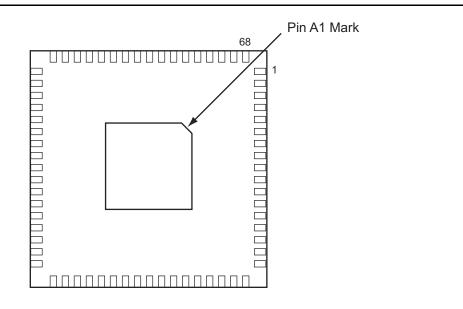
IGLOO FPGA Fabric User Guide http://www.microsemi.com/soc/documents/IGLOO\_UG.pdf

#### **Packaging Documents**

The following documents provide packaging information and device selection for low power flash devices.

#### **Product Catalog**

http://www.microsemi.com/soc/documents/ProdCat\_PIB.pdf


Lists devices currently recommended for new designs and the packages available for each member of the family. Use this document or the datasheet tables to determine the best package for your design, and which package drawing to use.

#### Package Mechanical Drawings

http://www.microsemi.com/soc/documents/PckgMechDrwngs.pdf

This document contains the package mechanical drawings for all packages currently or previously supplied by Microsemi. Use the bookmarks to navigate to the package mechanical drawings.

Additional packaging materials are available on the Microsemi SoC Products Group website at http://www.microsemi.com/soc/products/solutions/package/docs.aspx.



Notes:

- 1. This is the bottom view of the package.
- 2. The die attach paddle center of the package is tied to ground (GND).

#### Note

For more information on package drawings, see PD3068: Package Mechanical Drawings.

## Microsemi

Package Pin Assignments

| QN132      |                 |  |
|------------|-----------------|--|
| Pin Number | AGL030 Function |  |
| C17        | IO47RSB1        |  |
| C18        | NC              |  |
| C19        | ТСК             |  |
| C20        | NC              |  |
| C21        | VPUMP           |  |
| C22        | VJTAG           |  |
| C23        | NC              |  |
| C24        | NC              |  |
| C25        | NC              |  |
| C26        | GDB0/IO34RSB0   |  |
| C27        | NC              |  |
| C28        | VCCIB0          |  |
| C29        | IO28RSB0        |  |
| C30        | IO25RSB0        |  |
| C31        | IO24RSB0        |  |
| C32        | IO21RSB0        |  |
| C33        | NC              |  |
| C34        | NC              |  |
| C35        | VCCIB0          |  |
| C36        | IO13RSB0        |  |
| C37        | IO10RSB0        |  |
| C38        | IO07RSB0        |  |
| C39        | IO03RSB0        |  |
| C40        | IO00RSB0        |  |
| D1         | GND             |  |
| D2         | GND             |  |
| D3         | GND             |  |
| D4         | GND             |  |

## Microsemi

Package Pin Assignments

| VQ100      |                 |            | VQ100           |            | VQ100           |  |  |
|------------|-----------------|------------|-----------------|------------|-----------------|--|--|
| Pin Number | AGL030 Function | Pin Number | AGL030 Function | Pin Number | AGL030 Function |  |  |
| 1          | GND             | 37         | VCC             | 73         | IO27RSB0        |  |  |
| 2          | IO82RSB1        | 38         | GND             | 74         | IO26RSB0        |  |  |
| 3          | IO81RSB1        | 39         | VCCIB1          | 75         | IO25RSB0        |  |  |
| 4          | IO80RSB1        | 40         | IO49RSB1        | 76         | IO24RSB0        |  |  |
| 5          | IO79RSB1        | 41         | IO47RSB1        | 77         | IO23RSB0        |  |  |
| 6          | IO78RSB1        | 42         | IO46RSB1        | 78         | IO22RSB0        |  |  |
| 7          | IO77RSB1        | 43         | IO45RSB1        | 79         | IO21RSB0        |  |  |
| 8          | IO76RSB1        | 44         | IO44RSB1        | 80         | IO20RSB0        |  |  |
| 9          | GND             | 45         | IO43RSB1        | 81         | IO19RSB0        |  |  |
| 10         | IO75RSB1        | 46         | IO42RSB1        | 82         | IO18RSB0        |  |  |
| 11         | IO74RSB1        | 47         | ТСК             | 83         | IO17RSB0        |  |  |
| 12         | GEC0/IO73RSB1   | 48         | TDI             | 84         | IO16RSB0        |  |  |
| 13         | GEA0/IO72RSB1   | 49         | TMS             | 85         | IO15RSB0        |  |  |
| 14         | GEB0/IO71RSB1   | 50         | NC              | 86         | IO14RSB0        |  |  |
| 15         | IO70RSB1        | 51         | GND             | 87         | VCCIB0          |  |  |
| 16         | IO69RSB1        | 52         | VPUMP           | 88         | GND             |  |  |
| 17         | VCC             | 53         | NC              | 89         | VCC             |  |  |
| 18         | VCCIB1          | 54         | TDO             | 90         | IO12RSB0        |  |  |
| 19         | IO68RSB1        | 55         | TRST            | 91         | IO10RSB0        |  |  |
| 20         | IO67RSB1        | 56         | VJTAG           | 92         | IO08RSB0        |  |  |
| 21         | IO66RSB1        | 57         | IO41RSB0        | 93         | IO07RSB0        |  |  |
| 22         | IO65RSB1        | 58         | IO40RSB0        | 94         | IO06RSB0        |  |  |
| 23         | IO64RSB1        | 59         | IO39RSB0        | 95         | IO05RSB0        |  |  |
| 24         | IO63RSB1        | 60         | IO38RSB0        | 96         | IO04RSB0        |  |  |
| 25         | IO62RSB1        | 61         | IO37RSB0        | 97         | IO03RSB0        |  |  |
| 26         | IO61RSB1        | 62         | IO36RSB0        | 98         | IO02RSB0        |  |  |
| 27         | FF/IO60RSB1     | 63         | GDB0/IO34RSB0   | 99         | IO01RSB0        |  |  |
| 28         | IO59RSB1        | 64         | GDA0/IO33RSB0   | 100        | IO00RSB0        |  |  |
| 29         | IO58RSB1        | 65         | GDC0/IO32RSB0   | L          |                 |  |  |
| 30         | IO57RSB1        | 66         | VCCIB0          |            |                 |  |  |
| 31         | IO56RSB1        | 67         | GND             |            |                 |  |  |
| 32         | IO55RSB1        | 68         | VCC             |            |                 |  |  |
| 33         | IO54RSB1        | 69         | IO31RSB0        |            |                 |  |  |
| 34         | IO53RSB1        | 70         | IO30RSB0        |            |                 |  |  |
| 35         | IO52RSB1        | 71         | IO29RSB0        |            |                 |  |  |
| 36         | IO51RSB1        | 72         | IO28RSB0        |            |                 |  |  |

### Microsemi

IGLOO Low Power Flash FPGAs

| FG144      |                 | FG144      |                 | FG144      |                 |  |
|------------|-----------------|------------|-----------------|------------|-----------------|--|
| Pin Number | AGL400 Function | Pin Number | AGL400 Function | Pin Number | AGL400 Function |  |
| A1         | GNDQ            | D1         | IO149NDB3       | G1         | GFA1/IO145PPB3  |  |
| A2         | VMV0            | D2         | IO149PDB3       | G2         | GND             |  |
| A3         | GAB0/IO02RSB0   | D3         | IO153VDB3       | G3         | VCCPLF          |  |
| A4         | GAB1/IO03RSB0   | D4         | GAA2/IO155UPB3  | G4         | GFA0/IO145NPB   |  |
| A5         | IO16RSB0        | D5         | GAC0/IO04RSB0   | G5         | GND             |  |
| A6         | GND             | D6         | GAC1/IO05RSB0   | G6         | GND             |  |
| A7         | IO30RSB0        | D7         | GBC0/IO54RSB0   | G7         | GND             |  |
| A8         | VCC             | D8         | GBC1/IO55RSB0   | G8         | GDC1/IO77UPB1   |  |
| A9         | IO34RSB0        | D9         | GBB2/IO61PDB1   | G9         | IO72NDB1        |  |
| A10        | GBA0/IO58RSB0   | D10        | IO61NDB1        | G10        | GCC2/IO72PDB1   |  |
| A11        | GBA1/IO59RSB0   | D11        | IO62NPB1        | G11        | IO71NDB1        |  |
| A12        | GNDQ            | D12        | GCB1/IO68PPB1   | G12        | GCB2/IO71PDB1   |  |
| B1         | GAB2/IO154UDB3  | E1         | VCC             | H1         | VCC             |  |
| B2         | GND             | E2         | GFC0/IO147NDB3  | H2         | GFB2/IO143PDB   |  |
| B3         | GAA0/IO00RSB0   | E3         | GFC1/IO147PDB3  | H3         | GFC2/IO142PSB   |  |
| B4         | GAA1/IO01RSB0   | E4         | VCCIB3          | H4         | GEC1/IO137PDB   |  |
| B5         | IO14RSB0        | E5         | IO155VPB3       | H5         | VCC             |  |
| B6         | IO19RSB0        | E6         | VCCIB0          | H6         | IO75PDB1        |  |
| B7         | IO23RSB0        | E7         | VCCIB0          | H7         | IO75NDB1        |  |
| B8         | IO31RSB0        | E8         | GCC1/IO67PDB1   | H8         | GDB2/IO81RSB2   |  |
| B9         | GBB0/IO56RSB0   | E9         | VCCIB1          | H9         | GDC0/IO77VPB1   |  |
| B10        | GBB1/IO57RSB0   | E10        | VCC             | H10        | VCCIB1          |  |
| B11        | GND             | E11        | GCA0/IO69NDB1   | H11        | IO73PSB1        |  |
| B12        | VMV1            | E12        | IO70NDB1        | H12        | VCC             |  |
| C1         | IO154VDB3       | F1         | GFB0/IO146NPB3  | J1         | GEB1/IO136PDB   |  |
| C2         | GFA2/IO144PPB3  | F2         | VCOMPLF         | J2         | IO143NDB3       |  |
| C3         | GAC2/IO153UDB3  | F3         | GFB1/IO146PPB3  | J3         | VCCIB3          |  |
| C4         | VCC             | F4         | IO144NPB3       | J4         | GEC0/IO137NDB   |  |
| C5         | IO12RSB0        | F5         | GND             | J5         | IO125RSB2       |  |
| C6         | IO17RSB0        | F6         | GND             | J6         | IO116RSB2       |  |
| C7         | IO25RSB0        | F7         | GND             | J7         | VCC             |  |
| C8         | IO32RSB0        | F8         | GCC0/IO67NDB1   | J8         | TCK             |  |
| C9         | IO53RSB0        | F9         | GCB0/IO68NPB1   | J9         | GDA2/IO80RSB2   |  |
| C10        | GBA2/IO60PDB1   | F10        | GND             | J10        | TDO             |  |
| C11        | IO60NDB1        | F11        | GCA1/IO69PDB1   | J11        | GDA1/IO79UDB1   |  |
| C12        | GBC2/IO62PPB1   | F12        | GCA2/IO70PDB1   | J12        | GDB1/IO78UDB    |  |



| Pin NumberAGL400 FunctionAA15NCAA16NCAA17NCAA17NCAA18NCAA19NCAA20NCAA21VCCIB1AA22GNDAA23VCCIB2AB1GNDAB2GNDAB3VCCIB2AB4NCAB5NCAB6IO121RSB2AB7IO119RSB2AB10NCAB10NCAB10NC                                                                                                                                                                                                                                                                                                 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AA16         NC           AA17         NC           AA18         NC           AA19         NC           AA19         NC           AA20         NC           AA21         VCCIB1           AA22         GND           AB1         GND           AB2         GND           AB3         VCCIB2           AB4         NC           AB5         NC           AB6         IO121RSB2           AB7         IO119RSB2           AB9         IO109RSB2           AB10         NC |
| AA17         NC           AA18         NC           AA19         NC           AA19         NC           AA20         NC           AA21         VCCIB1           AA22         GND           AB1         GND           AB2         GND           AB3         VCCIB2           AB4         NC           AB5         NC           AB6         IO121RSB2           AB7         IO119RSB2           AB9         IO109RSB2           AB10         NC                           |
| AA18         NC           AA19         NC           AA20         NC           AA21         VCCIB1           AA22         GND           AB1         GND           AB2         GND           AB3         VCCIB2           AB4         NC           AB5         NC           AB6         IO121RSB2           AB7         IO119RSB2           AB9         IO109RSB2           AB10         NC                                                                               |
| AA19         NC           AA20         NC           AA21         VCCIB1           AA22         GND           AA22         GND           AB1         GND           AB2         GND           AB3         VCCIB2           AB4         NC           AB5         NC           AB6         IO121RSB2           AB7         IO119RSB2           AB9         IO109RSB2           AB10         NC                                                                              |
| AA20         NC           AA21         VCCIB1           AA22         GND           AB1         GND           AB2         GND           AB3         VCCIB2           AB4         NC           AB5         NC           AB6         IO121RSB2           AB8         IO119RSB2           AB9         IO109RSB2           AB10         NC                                                                                                                                   |
| AA21VCCIB1AA22GNDAB1GNDAB2GNDAB3VCCIB2AB4NCAB5NCAB6IO121RSB2AB7IO119RSB2AB9IO109RSB2AB10NC                                                                                                                                                                                                                                                                                                                                                                              |
| AA22         GND           AB1         GND           AB2         GND           AB2         GND           AB3         VCCIB2           AB4         NC           AB5         NC           AB6         IO121RSB2           AB7         IO119RSB2           AB8         IO114RSB2           AB9         IO109RSB2                                                                                                                                                           |
| AB1GNDAB2GNDAB3VCCIB2AB4NCAB5NCAB6IO121RSB2AB7IO119RSB2AB8IO114RSB2AB9IO109RSB2AB10NC                                                                                                                                                                                                                                                                                                                                                                                   |
| AB2GNDAB3VCCIB2AB4NCAB5NCAB6IO121RSB2AB7IO119RSB2AB8IO114RSB2AB9IO109RSB2AB10NC                                                                                                                                                                                                                                                                                                                                                                                         |
| AB3VCCIB2AB4NCAB5NCAB6IO121RSB2AB7IO119RSB2AB8IO114RSB2AB9IO109RSB2AB10NC                                                                                                                                                                                                                                                                                                                                                                                               |
| AB4NCAB5NCAB6IO121RSB2AB7IO119RSB2AB8IO114RSB2AB9IO109RSB2AB10NC                                                                                                                                                                                                                                                                                                                                                                                                        |
| AB5NCAB6IO121RSB2AB7IO119RSB2AB8IO114RSB2AB9IO109RSB2AB10NC                                                                                                                                                                                                                                                                                                                                                                                                             |
| AB6IO121RSB2AB7IO119RSB2AB8IO114RSB2AB9IO109RSB2AB10NC                                                                                                                                                                                                                                                                                                                                                                                                                  |
| AB7IO119RSB2AB8IO114RSB2AB9IO109RSB2AB10NC                                                                                                                                                                                                                                                                                                                                                                                                                              |
| AB8 IO114RSB2<br>AB9 IO109RSB2<br>AB10 NC                                                                                                                                                                                                                                                                                                                                                                                                                               |
| AB9 IO109RSB2<br>AB10 NC                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| AB10 NC                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| AB11 NC                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| AB12 IO104RSB2                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| AB13 IO103RSB2                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| AB14 NC                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| AB15 NC                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| AB16 IO91RSB2                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| AB17 IO90RSB2                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| AB18 NC                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| AB19 NC                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| AB20 VCCIB2                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| AB21 GND                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| AB22 GND                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| B1 GND                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| B2 VCCIB3                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| B3 NC                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| B4 NC                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| B5 NC                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| B6 NC                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

| FG484      |                 |  |  |
|------------|-----------------|--|--|
| Pin Number | AGL600 Function |  |  |
| M3         | IO158NPB3       |  |  |
| M4         | GFA2/IO161PPB3  |  |  |
| M5         | GFA1/IO162PDB3  |  |  |
| M6         | VCCPLF          |  |  |
| M7         | IO160NDB3       |  |  |
| M8         | GFB2/IO160PDB3  |  |  |
| M9         | VCC             |  |  |
| M10        | GND             |  |  |
| M11        | GND             |  |  |
| M12        | GND             |  |  |
| M13        | GND             |  |  |
| M14        | VCC             |  |  |
| M15        | GCB2/IO73PPB1   |  |  |
| M16        | GCA1/IO71PPB1   |  |  |
| M17        | GCC2/IO74PPB1   |  |  |
| M18        | IO80PPB1        |  |  |
| M19        | GCA2/IO72PDB1   |  |  |
| M20        | IO79PPB1        |  |  |
| M21        | IO78PPB1        |  |  |
| M22        | NC              |  |  |
| N1         | IO154NDB3       |  |  |
| N2         | IO154PDB3       |  |  |
| N3         | NC              |  |  |
| N4         | GFC2/IO159PDB3  |  |  |
| N5         | IO161NPB3       |  |  |
| N6         | IO156PPB3       |  |  |
| N7         | IO129RSB2       |  |  |
| N8         | VCCIB3          |  |  |
| N9         | VCC             |  |  |
| N10        | GND             |  |  |
| N11        | GND             |  |  |
| N12        | GND             |  |  |
| N13        | GND             |  |  |
| N14        | VCC             |  |  |
| N15        | VCCIB1          |  |  |
| N16        | IO73NPB1        |  |  |

| FG484             |                  |  |  |
|-------------------|------------------|--|--|
| Pin Number        | AGL1000 Function |  |  |
| N17               | IO100NPB1        |  |  |
| N18               | IO102NDB1        |  |  |
| N19               | IO102PDB1        |  |  |
| N20               | NC               |  |  |
| N21               | IO101NPB1        |  |  |
| N22               | IO103PDB1        |  |  |
| P1                | NC               |  |  |
| P2                | IO199PDB3        |  |  |
| P3                | IO199NDB3        |  |  |
| P4                | IO202NDB3        |  |  |
| P5                | IO202PDB3        |  |  |
| P6                | IO196PPB3        |  |  |
| P7                | IO193PPB3        |  |  |
| P8                | VCCIB3           |  |  |
| P9                | GND              |  |  |
| P10               | VCC              |  |  |
| P11               | VCC              |  |  |
| P12               | VCC              |  |  |
| P13               | VCC              |  |  |
| P14               | GND              |  |  |
| P15               | VCCIB1           |  |  |
| P16               | GDB0/IO112NPB1   |  |  |
| P17               | IO106NDB1        |  |  |
| P18               | IO106PDB1        |  |  |
| P19               | IO107PDB1        |  |  |
| P20               | NC               |  |  |
| P21               | IO104PDB1        |  |  |
| P22               | IO103NDB1        |  |  |
| R1                | NC               |  |  |
| R2                | IO197PPB3        |  |  |
| R3                | VCC              |  |  |
| R4                | IO197NPB3        |  |  |
| R5                | IO196NPB3        |  |  |
| R6                | IO193NPB3        |  |  |
| R7 GEC0/IO190NPB3 |                  |  |  |
| R8                | VMV3             |  |  |

| FG484      |                  |  |  |
|------------|------------------|--|--|
| Pin Number | AGL1000 Function |  |  |
| U1         | IO195PDB3        |  |  |
| U2         | IO195NDB3        |  |  |
| U3         | IO194NPB3        |  |  |
| U4         | GEB1/IO189PDB3   |  |  |
| U5         | GEB0/IO189NDB3   |  |  |
| U6         | VMV2             |  |  |
| U7         | IO179RSB2        |  |  |
| U8         | IO171RSB2        |  |  |
| U9         | IO165RSB2        |  |  |
| U10        | IO159RSB2        |  |  |
| U11        | IO151RSB2        |  |  |
| U12        | IO137RSB2        |  |  |
| U13        | IO134RSB2        |  |  |
| U14        | IO128RSB2        |  |  |
| U15        | VMV1             |  |  |
| U16        | TCK              |  |  |
| U17        | VPUMP            |  |  |
| U18        | TRST             |  |  |
| U19        | GDA0/IO113NDB1   |  |  |
| U20        | NC               |  |  |
| U21        | IO108NDB1        |  |  |
| U22        | IO109PDB1        |  |  |
| V1         | NC               |  |  |
| V2         | NC               |  |  |
| V3         | GND              |  |  |
| V4         | GEA1/IO188PDB3   |  |  |
| V5         | GEA0/IO188NDB3   |  |  |
| V6         | IO184RSB2        |  |  |
| V7         | GEC2/IO185RSB2   |  |  |
| V8         | IO168RSB2        |  |  |
| V9         | IO163RSB2        |  |  |
| V10        | IO157RSB2        |  |  |
| V11        | IO149RSB2        |  |  |
| V12        | IO143RSB2        |  |  |
| V13        | IO138RSB2        |  |  |
| V14        | IO131RSB2        |  |  |