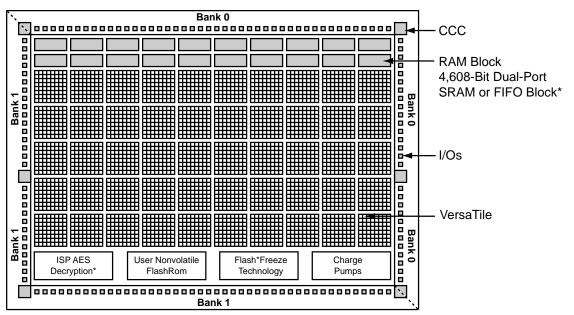


Welcome to **E-XFL.COM**

Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs


The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	6144
Total RAM Bits	36864
Number of I/O	68
Number of Gates	250000
Voltage - Supply	1.14V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 85°C (TA)
Package / Case	100-TQFP
Supplier Device Package	100-VQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/m1agl250v2-vqg100i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

VersaTiles are connected with any of the four levels of routing hierarchy. Flash switches are distributed throughout the device to provide nonvolatile, reconfigurable interconnect programming. Maximum core utilization is possible for virtually any design.

Note: *Not supported by AGL015 and AGL030 devices

Figure 1-1 • IGLOO Device Architecture Overview with Two I/O Banks (AGL015, AGL030, AGL060, and AGL125)

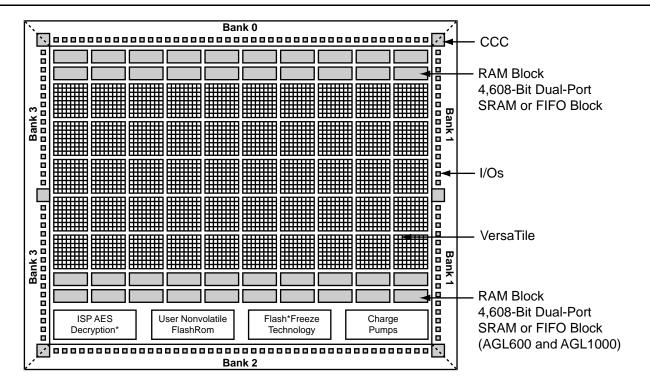


Figure 1-2 • IGLOO Device Architecture Overview with Four I/O Banks (AGL250, AGL600, AGL400, and AGL1000)

Revision 27 1-4

Table 2-100 • 1.8 V LVCMOS High Slew – Applies to 1.5 V DC Core Voltage

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.7 V

Applicable to Advanced I/O Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{ZHS}	Units
2 mA	Std.	0.97	3.25	0.18	1.01	0.66	3.21	3.25	2.33	1.61	6.80	6.85	ns
4 mA	Std.	0.97	2.62	0.18	1.01	0.66	2.68	2.51	2.66	2.46	6.27	6.11	ns
6 mA	Std.	0.97	2.31	0.18	1.01	0.66	2.36	2.15	2.90	2.87	5.95	5.75	ns
8 mA	Std.	0.97	2.25	0.18	1.01	0.66	2.30	2.08	2.95	2.98	5.89	5.68	ns
12 mA	Std.	0.97	2.24	0.18	1.01	0.66	2.29	2.00	3.02	3.40	5.88	5.60	ns
16 mA	Std.	0.97	2.24	0.18	1.01	0.66	2.29	2.00	3.02	3.40	5.88	5.60	ns

Notes:

- 1. Software default selection highlighted in gray.
- 2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

Table 2-101 • 1.8 V LVCMOS Low Slew – Applies to 1.5 V DC Core Voltage

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.7 V

Applicable to Standard Plus Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{ZHS}	Units
2 mA	Std.	0.97	5.78	0.18	1.01	0.66	5.90	5.32	1.95	1.47	9.49	8.91	ns
4 mA	Std.	0.97	4.75	0.18	1.01	0.66	4.85	4.54	2.25	2.21	8.44	8.13	ns
6 mA	Std.	0.97	4.07	0.18	1.01	0.66	4.15	3.98	2.46	2.58	7.75	7.57	ns
8 mA	Std.	0.97	4.07	0.18	1.01	0.66	4.15	3.98	2.46	2.58	7.75	7.57	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

Table 2-102 • 1.8 V LVCMOS High Slew – Applies to 1.5 V DC Core Voltage

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.7 V

Applicable to Standard Plus Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{ZHS}	Units
2 mA	Std.	0.97	2.76	0.18	1.01	0.66	2.79	2.76	1.94	1.51	6.39	6.35	ns
4 mA	Std.	0.97	2.25	0.18	1.01	0.66	2.30	2.09	2.24	2.29	5.89	5.69	ns
6 mA	Std.	0.97	1.97	0.18	1.01	0.66	2.02	1.76	2.46	2.66	5.61	5.36	ns
8 mA	Std.	0.97	1.97	0.18	1.01	0.66	2.02	1.76	2.46	2.66	5.61	5.36	ns

Notes:

- 1. Software default selection highlighted in gray.
- 2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

Table 2-103 • 1.8 V LVCMOS Low Slew – Applies to 1.5 V DC Core Voltage

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.7 V

Applicable to Standard Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	Units
2 mA	Std.	0.97	5.63	0.18	0.98	0.66	5.74	5.30	1.68	1.24	ns
4 mA	Std.	0.97	4.69	0.18	0.98	0.66	4.79	4.52	1.97	1.98	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

Revision 27 2-63

Table 2-123 • 1.5 V LVCMOS Low Slew – Applies to 1.2 V DC Core Voltage

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.4 V

Applicable to Standard Plus Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{ZHS}	Units
2 mA	Std.	1.55	6.43	0.26	1.27	1.10	6.54	5.95	2.82	2.83	12.32	11.74	ns
4 mA	Std.	1.55	5.59	0.26	1.27	1.10	5.68	5.27	3.07	3.27	11.47	11.05	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.

Table 2-124 • 1.5 V LVCMOS High Slew – Applies to 1.2 V DC Core Voltage Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.4 V Applicable to Standard Plus Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{ZHS}	Units
2 mA	Std.	1.55	3.02	0.26	1.27	1.10	3.07	2.81	2.82	2.92	8.85	8.59	ns
4 mA	Std.	1.55	2.68	0.26	1.27	1.10	2.72	2.39	3.07	3.37	8.50	8.18	ns

Notes:

- 1. Software default selection highlighted in gray.
- 2. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.

Table 2-125 • 1.5 V LVCMOS Low Slew – Applies to 1.2 V DC Core Voltage

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.4 V

Applicable to Standard Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	Units
2 mA	Std.	1.55	6.35	0.26	1.22	1.10	6.46	5.93	2.40	2.46	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.

Table 2-126 • 1.5 V LVCMOS High Slew – Applies to 1.2 V DC Core Voltage

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 1.4 V

Applicable to Standard Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	Units
2 mA	Std.	1.55	2.92	0.26	1.22	1.10	2.96	2.60	2.40	2.56	ns

Notes:

- 1. Software default selection highlighted in gray.
- 2. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.

2-70 Revision 27

1.2 V LVCMOS (JESD8-12A)

Low-Voltage CMOS for 1.2 V complies with the LVCMOS standard JESD8-12A for general purpose 1.2 V applications. It uses a 1.2 V input buffer and a push-pull output buffer. Furthermore, all LVCMOS 1.2 V software macros comply with LVCMOS 1.2 V wide range as specified in the JESD8-12A specification.

Table 2-127 • Minimum and Maximum DC Input and Output Levels
Applicable to Advanced I/O Banks

1.2 V LVCMOS		VIL	VIH		VOL	VOH	IOL	ЮН	IOSH	IOSL	IIL ¹	IIH ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μ Α ⁴	μ Α ⁴
2 mA	-0.3	0.35 * VCCI	0.65 * VCCI	1.26	0.25 * VCCI	0.75 * VCCI	2	2	20	26	10	10

Notes:

- 1. IIL is the input leakage current per I/O pin over recommended operation conditions where -0.3 V < VIN < VIL.
- 2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges
- 3. Currents are measured at 100°C junction temperature and maximum voltage.
- 4. Currents are measured at 85°C junction temperature.
- 5. Software default selection highlighted in gray.

Table 2-128 • Minimum and Maximum DC Input and Output Levels
Applicable to Standard Plus I/O Banks

1.2 V LVCMOS		VIL	VIH		VOL	VOH	I _{OL}	ЮН	IOSH	IOSL	IIL ¹	IIH ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μ Α ⁴	μ Α ⁴
2 mA	-0.3	0.35 * VCCI	0.65 * VCCI	1.26	0.25 * VCCI	0.75 * VCCI	2	2	20	26	10	10

Notes:

- 1. IIL is the input leakage current per I/O pin over recommended operation conditions where -0.3 V < VIN < VIL.
- 2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges
- 3. Currents are measured at 100°C junction temperature and maximum voltage.
- 4. Currents are measured at 85°C junction temperature.
- 5. Software default selection highlighted in gray.

Table 2-129 • Minimum and Maximum DC Input and Output Levels Applicable to Standard I/O Banks

1.2 V LVCMOS	VIL		VIH		VOL	VOH	IOL	ЮН	IOSH	IOSL	IIL ¹	IIH ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μ Α ⁴	μ Α ⁴
1 mA	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.25 * VCCI	0.75 * VCCI	1	1	20	26	10	10

Notes:

- 1. IIL is the input leakage current per I/O pin over recommended operation conditions where -0.3 V < VIN < VIL.
- 2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges
- 3. Currents are measured at 100°C junction temperature and maximum voltage.
- 4. Currents are measured at 85°C junction temperature.
- 5. Software default selection highlighted in gray.

Revision 27 2-71

B-LVDS/M-LVDS

Bus LVDS (B-LVDS) and Multipoint LVDS (M-LVDS) specifications extend the existing LVDS standard to high-performance multipoint bus applications. Multidrop and multipoint bus configurations may contain any combination of drivers, receivers, and transceivers. Microsemi LVDS drivers provide the higher drive current required by B-LVDS and M-LVDS to accommodate the loading. The drivers require series terminations for better signal quality and to control voltage swing. Termination is also required at both ends of the bus since the driver can be located anywhere on the bus. These configurations can be implemented using the TRIBUF_LVDS and BIBUF_LVDS macros along with appropriate terminations. Multipoint designs using Microsemi LVDS macros can achieve up to 200 MHz with a maximum of 20 loads. A sample application is given in Figure 2-14. The input and output buffer delays are available in the LVDS section in Table 2-149 on page 2-81 and Table 2-150 on page 2-81.

Example: For a bus consisting of 20 equidistant loads, the following terminations provide the required differential voltage, in worst-case Industrial operating conditions, at the farthest receiver: $R_S = 60~\Omega$ and $R_T = 70~\Omega$, given $Z_0 = 50~\Omega$ (2") and $Z_{stub} = 50~\Omega$ (~1.5").

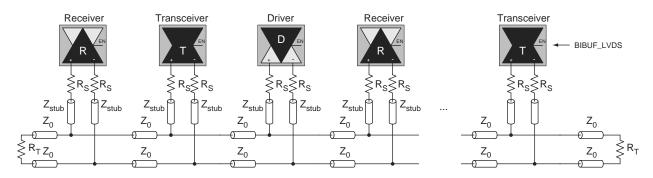


Figure 2-14 • B-LVDS/M-LVDS Multipoint Application Using LVDS I/O Buffers

LVPECL

Low-Voltage Positive Emitter-Coupled Logic (LVPECL) is another differential I/O standard. It requires that one data bit be carried through two signal lines. Like LVDS, two pins are needed. It also requires external resistor termination.

The full implementation of the LVDS transmitter and receiver is shown in an example in Figure 2-15. The building blocks of the LVPECL transmitter-receiver are one transmitter macro, one receiver macro, three board resistors at the transmitter end, and one resistor at the receiver end. The values for the three driver resistors are different from those used in the LVDS implementation because the output standard specifications are different.

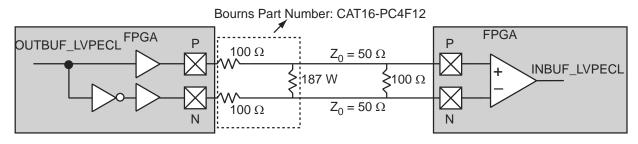


Figure 2-15 • LVPECL Circuit Diagram and Board-Level Implementation

2-78 Revision 27

Global Tree Timing Characteristics

Global clock delays include the central rib delay, the spine delay, and the row delay. Delays do not include I/O input buffer clock delays, as these are I/O standard–dependent, and the clock may be driven and conditioned internally by the CCC module. For more details on clock conditioning capabilities, refer to the "Clock Conditioning Circuits" section on page 2-115. Table 2-173 to Table 2-188 on page 2-114 present minimum and maximum global clock delays within each device. Minimum and maximum delays are measured with minimum and maximum loading.

Timing Characteristics

1.5 V DC Core Voltage

Table 2-173 • AGL015 Global Resource

Commercial-Case Conditions: T_{.I} = 70°C, VCC = 1.425 V

		S	td.	
Parameter	Description	Min. ¹	Max. ²	Units
t _{RCKL}	Input Low Delay for Global Clock	1.21	1.42	ns
t _{RCKH}	Input High Delay for Global Clock	1.23	1.49	ns
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock	1.18		ns
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock	1.15		ns
t _{RCKSW}	Maximum Skew for Global Clock		0.27	ns

Notes:

- Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).
- Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).
- 3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

Table 2-174 • AGL030 Global Resource Commercial-Case Conditions: T_J = 70°C, VCC = 1.425 V

			S	td.	
Parameter	Description	ŀ	Min. ¹	Max. ²	Units
t _{RCKL}	Input Low Delay for Global Clock		1.21	1.42	ns
t _{RCKH}	Input High Delay for Global Clock		1.23	1.49	ns
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock		1.18		ns
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock		1.15		ns
t _{RCKSW}	Maximum Skew for Global Clock			0.27	ns

Notes:

- 1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).
- Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).
- 3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

2-102 Revision 27

Table 2-175 • AGL060 Global Resource

Commercial-Case Conditions: T_J = 70°C, VCC = 1.425 V

			Std.		
Parameter	Description	-	Min. ¹	Max. ²	Units
t _{RCKL}	Input Low Delay for Global Clock		1.33	1.55	ns
t _{RCKH}	Input High Delay for Global Clock		1.35	1.62	ns
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock		1.18		ns
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock		1.15		ns
t _{RCKSW}	Maximum Skew for Global Clock			0.27	ns

Notes:

- 1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).
- 2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).
- 3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

Table 2-176 • AGL125 Global Resource

Commercial-Case Conditions: T_J = 70°C, VCC = 1.425 V

			Std.		
Parameter	Description	•	Min. ¹	Max. ²	Units
t _{RCKL}	Input Low Delay for Global Clock		1.36	1.71	ns
t _{RCKH}	Input High Delay for Global Clock		1.39	1.82	ns
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock		1.18		ns
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock		1.15		ns
t _{RCKSW}	Maximum Skew for Global Clock			0.43	ns

Notes:

- 1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).
- 2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).
- 3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

Revision 27 2-103

QN48			
Pin Number	AGL030 Function		
1	IO82RSB1		
2	GEC0/IO73RSB1		
3	GEA0/IO72RSB1		
4	GEB0/IO71RSB1		
5	GND		
6	VCCIB1		
7	IO68RSB1		
8	IO67RSB1		
9	IO66RSB1		
10	IO65RSB1		
11	IO64RSB1		
12	IO62RSB1		
13	IO61RSB1		
14	FF/IO60RSB1		
15	IO57RSB1		
16	IO55RSB1		
17	IO53RSB1		
18	VCC		
19	VCCIB1		
20	IO46RSB1		
21	IO42RSB1		
22	TCK		
23	TDI		
24	TMS		
25	VPUMP		
26	TDO		
27	TRST		
28	VJTAG		
29	IO38RSB0		
30	GDB0/IO34RSB0		
31	GDA0/IO33RSB0		
32	GDC0/IO32RSB0		
33	VCCIB0		
34	GND		
35	VCC		
36	IO25RSB0		

QN48			
Pin Number	AGL030 Function		
37	IO24RSB0		
38	IO22RSB0		
39	IO20RSB0		
40	IO18RSB0		
41	IO16RSB0		
42	IO14RSB0		
43	IO10RSB0		
44	IO08RSB0		
45	IO06RSB0		
46	IO04RSB0		
47	IO02RSB0		
48	IO00RSB0		

4-24 Revision 27

QN132			
Pin Number	AGL125 Function		
C17	IO83RSB1		
C18	VCCIB1		
C19	TCK		
C20	VMV1		
C21	VPUMP		
C22	VJTAG		
C23	VCCIB0		
C24	NC		
C25	NC		
C26	GCA1/IO55RSB0		
C27	GCC0/IO52RSB0		
C28	VCCIB0		
C29	IO42RSB0		
C30	GNDQ		
C31	GBA1/IO40RSB0		
C32	GBB0/IO37RSB0		
C33	VCC		
C34	IO24RSB0		
C35	IO19RSB0		
C36	IO16RSB0		
C37	IO10RSB0		
C38	VCCIB0		
C39	GAB1/IO03RSB0		
C40	VMV0		
D1	GND		
D2	GND		
D3	GND		
D4	GND		

4-34 Revision 27

VQ100			
Pin Number	AGL030 Function		
1	GND		
2	IO82RSB1		
3	IO81RSB1		
4	IO80RSB1		
5	IO79RSB1		
6	IO78RSB1		
7	IO77RSB1		
8	IO76RSB1		
9	GND		
10	IO75RSB1		
11	IO74RSB1		
12	GEC0/IO73RSB1		
13	GEA0/IO72RSB1		
14	GEB0/IO71RSB1		
15	IO70RSB1		
16	IO69RSB1		
17	VCC		
18	VCCIB1		
19	IO68RSB1		
20	IO67RSB1		
21	IO66RSB1		
22	IO65RSB1		
23	IO64RSB1		
24	IO63RSB1		
25	IO62RSB1		
26	IO61RSB1		
27	FF/IO60RSB1		
28	IO59RSB1		
29	IO58RSB1		
30	IO57RSB1		
31	IO56RSB1		
32	IO55RSB1		
33	IO54RSB1		
34	IO53RSB1		
35	IO52RSB1		
36	IO51RSB1		

VQ100		
Pin Number	AGL030 Function	
37	VCC	
38	GND	
39	VCCIB1	
40	IO49RSB1	
41	IO49RSB1	
41	IO47RSB1	
43	IO44PSP4	
44	IO44RSB1	
45	IO43RSB1	
46	IO42RSB1	
47	TCK	
48	TDI	
49	TMS	
50	NC	
51	GND	
52	VPUMP	
53	NC	
54	TDO	
55	TRST	
56	VJTAG	
57	IO41RSB0	
58	IO40RSB0	
59	IO39RSB0	
60	IO38RSB0	
61	IO37RSB0	
62	IO36RSB0	
63	GDB0/IO34RSB0	
64	GDA0/IO33RSB0	
65	GDC0/IO32RSB0	
66	VCCIB0	
67	GND	
68	VCC	
69	IO31RSB0	
70	IO30RSB0	
71	IO29RSB0	
72	IO28RSB0	
·	•	

VQ100			
Pin Number	AGL030 Function		
73	IO27RSB0		
74	IO26RSB0		
75	IO25RSB0		
76	IO24RSB0		
77	IO23RSB0		
78	IO22RSB0		
79	IO21RSB0		
80	IO20RSB0		
81	IO19RSB0		
82	IO18RSB0		
83	IO17RSB0		
84	IO16RSB0		
85	IO15RSB0		
86	IO14RSB0		
87	VCCIB0		
88	GND		
89	VCC		
90	IO12RSB0		
91	IO10RSB0		
92	IO08RSB0		
93	IO07RSB0		
94	IO06RSB0		
95	IO05RSB0		
96	IO04RSB0		
97	IO03RSB0		
98	IO02RSB0		
99	IO01RSB0		
100	IO00RSB0		

4-38 Revision 27

IGLOO Low Power Flash FPGAs

FG144			
Pin Number	AGL125 Function		
A1	GNDQ		
A2	VMV0		
А3	GAB0/IO02RSB0		
A4	GAB1/IO03RSB0		
A5	IO11RSB0		
A6	GND		
A7	IO18RSB0		
A8	VCC		
A9	IO25RSB0		
A10	GBA0/IO39RSB0		
A11	GBA1/IO40RSB0		
A12	GNDQ		
B1	GAB2/IO69RSB1		
B2	GND		
В3	GAA0/IO00RSB0		
B4	GAA1/IO01RSB0		
B5	IO08RSB0		
В6	IO14RSB0		
B7	IO19RSB0		
B8	IO22RSB0		
В9	GBB0/IO37RSB0		
B10	GBB1/IO38RSB0		
B11	GND		
B12	VMV0		
C1	IO132RSB1		
C2	GFA2/IO120RSB1		
C3	GAC2/IO131RSB1		
C4	VCC		
C5	IO10RSB0		
C6	IO12RSB0		
C7	IO21RSB0		
C8	IO24RSB0		
C9	IO27RSB0		
C10	GBA2/IO41RSB0		
C11	IO42RSB0		
C12	GBC2/IO45RSB0		

FG144			
Pin Number	AGL125 Function		
D1	IO128RSB1		
D2	IO129RSB1		
D3	IO130RSB1		
D4	GAA2/IO67RSB1		
D5	GAC0/IO04RSB0		
D6	GAC1/IO05RSB0		
D7	GBC0/IO35RSB0		
D8	GBC1/IO36RSB0		
D9	GBB2/IO43RSB0		
D10	IO28RSB0		
D11	IO44RSB0		
D12	GCB1/IO53RSB0		
E1	VCC		
E2	GFC0/IO125RSB1		
E3	GFC1/IO126RSB1		
E4	VCCIB1		
E5	IO68RSB1		
E6	VCCIB0		
E7	VCCIB0		
E8	GCC1/IO51RSB0		
E9	VCCIB0		
E10	VCC		
E11	GCA0/IO56RSB0		
E12	IO46RSB0		
F1	GFB0/IO123RSB1		
F2	VCOMPLF		
F3	GFB1/IO124RSB1		
F4	IO127RSB1		
F5	GND		
F6	GND		
F7	GND		
F8	GCC0/IO52RSB0		
F9	GCB0/IO54RSB0		
F10	GND		
F11	GCA1/IO55RSB0		
F12	GCA2/IO57RSB0		

50444	
	FG144
Pin Number	AGL125 Function
G1	GFA1/IO121RSB1
G2	GND
G3	VCCPLF
G4	GFA0/IO122RSB1
G5	GND
G6	GND
G7	GND
G8	GDC1/IO61RSB0
G9	IO48RSB0
G10	GCC2/IO59RSB0
G11	IO47RSB0
G12	GCB2/IO58RSB0
H1	VCC
H2	GFB2/IO119RSB1
H3	GFC2/IO118RSB1
H4	GEC1/IO112RSB1
H5	VCC
H6	IO50RSB0
H7	IO60RSB0
H8	GDB2/IO71RSB1
H9	GDC0/IO62RSB0
H10	VCCIB0
H11	IO49RSB0
H12	VCC
J1	GEB1/IO110RSB1
J2	IO115RSB1
J3	VCCIB1
J4	GEC0/IO111RSB1
J5	IO116RSB1
J6	IO117RSB1
J7	VCC
J8	TCK
J9	GDA2/IO70RSB1
J10	TDO
J11	GDA1/IO65RSB0
J12	GDB1/IO63RSB0

Revision 27 4-43

	FG144
Pin Number	AGL125 Function
K1	GEB0/IO109RSB1
K2	GEA1/IO108RSB1
K3	GEA0/IO107RSB1
K4	GEA2/IO106RSB1
K5	IO100RSB1
K6	IO98RSB1
K7	GND
K8	IO73RSB1
K9	GDC2/IO72RSB1
K10	GND
K11	GDA0/IO66RSB0
K12	GDB0/IO64RSB0
L1	GND
L2	VMV1
L3	FF/GEB2/IO105RSB1
L4	IO102RSB1
L5	VCCIB1
L6	IO95RSB1
L7	IO85RSB1
L8	IO74RSB1
L9	TMS
L10	VJTAG
L11	VMV1
L12	TRST
M1	GNDQ
M2	GEC2/IO104RSB1
M3	IO103RSB1
M4	IO101RSB1
M5	IO97RSB1
M6	IO94RSB1
M7	IO86RSB1
M8	IO75RSB1
M9	TDI
M10	VCCIB1
M11	VPUMP
M12	GNDQ

4-44 Revision 27

FG144		
Din Number	_	
Pin Number	AGL400 Function	
K1	GEB0/IO136NDB3	
K2	GEA1/IO135PDB3	
K3	GEA0/IO135NDB3	
K4	GEA2/IO134RSB2	
K5	IO127RSB2	
K6	IO121RSB2	
K7	GND	
K8	IO104RSB2	
K9	GDC2/IO82RSB2	
K10	GND	
K11	GDA0/IO79VDB1	
K12	GDB0/IO78VDB1	
L1	GND	
L2	VMV3	
L3	FF/GEB2/IO133RSB2	
L4	IO128RSB2	
L5	VCCIB2	
L6	IO119RSB2	
L7	IO114RSB2	
L8	IO110RSB2	
L9	TMS	
L10	VJTAG	
L11	VMV2	
L12	TRST	
M1	GNDQ	
M2	GEC2/IO132RSB2	
M3	IO129RSB2	
M4	IO126RSB2	
M5	IO124RSB2	
M6	IO122RSB2	
M7	IO117RSB2	
M8	IO115RSB2	
M9	TDI	
M10	VCCIB2	
M11	VPUMP	
M12	GNDQ	

4-48 Revision 27

G144 AGL600 Function
GEB0/IO145NDB3
GEA1/IO144PDB3
GEA0/IO144NDB3
GEA2/IO143RSB2
IO119RSB2
IO111RSB2
GND
IO94RSB2
GDC2/IO91RSB2
GND
GDA0/IO88NDB1
GDB0/IO87NDB1
GND
VMV3
GEB2/IO142RSB2
IO136RSB2
VCCIB2
IO115RSB2
IO103RSB2
IO97RSB2
TMS
VJTAG
VMV2
TRST
GNDQ
GEC2/IO141RSB2
IO138RSB2
IO123RSB2
IO126RSB2
IO134RSB2
IO108RSB2
IO99RSB2
TDI
VCCIB2
VPUMP
GNDQ

4-50 Revision 27

FG484	
Pin Number	AGL400 Function
K11	GND
K12	GND
K13	GND
K14	VCC
K15	VCCIB1
K16	GCC1/IO67PPB1
K17	IO64NPB1
K18	IO73PDB1
K19	IO73NDB1
K20	NC
K21	NC
K22	NC
L1	NC
L2	NC
L3	NC
L4	GFB0/IO146NPB3
L5	GFA0/IO145NDB3
L6	GFB1/IO146PPB3
L7	VCOMPLF
L8	GFC0/IO147NPB3
L9	VCC
L10	GND
L11	GND
L12	GND
L13	GND
L14	VCC
L15	GCC0/IO67NPB1
L16	GCB1/IO68PPB1
L17	GCA0/IO69NPB1
L18	NC
L19	GCB0/IO68NPB1
L20	NC
L21	NC
L22	NC
M1	NC
M2	NC

Revision 27 4-71

FG484	
Pin Number	AGL400 Function
V15	IO85RSB2
V16	GDB2/IO81RSB2
V17	TDI
V18	NC
V19	TDO
V20	GND
V21	NC
V22	NC
W1	NC
W2	NC
W3	NC
W4	GND
W5	IO126RSB2
W6	FF/GEB2/IO133RSB2
W7	IO124RSB2
W8	IO116RSB2
W9	IO113RSB2
W10	IO107RSB2
W11	IO105RSB2
W12	IO102RSB2
W13	IO97RSB2
W14	IO92RSB2
W15	GDC2/IO82RSB2
W16	IO86RSB2
W17	GDA2/IO80RSB2
W18	TMS
W19	GND
W20	NC
W21	NC
W22	NC
Y1	VCCIB3
Y2	NC
Y3	NC
Y4	NC
Y5	GND
Y6	NC

4-76 Revision 27

IGLOO Low Power Flash FPGAs

	FG484
Pin Number	AGL600 Function
A1	GND
A2	GND
A3	VCCIB0
A4	NC
A5	NC
A6	IO09RSB0
A7	IO15RSB0
A8	NC
A9	NC
A10	IO22RSB0
A11	IO23RSB0
A12	IO29RSB0
A13	IO35RSB0
A14	NC
A15	NC
A16	IO46RSB0
A17	IO48RSB0
A18	NC
A19	NC
A20	VCCIB0
A21	GND
A22	GND
AA1	GND
AA2	VCCIB3
AA3	NC
AA4	NC
AA5	NC
AA6	IO135RSB2
AA7	IO133RSB2
AA8	NC
AA9	NC
AA10	NC
AA11	NC
AA12	NC
AA13	NC
AA14	NC

FG484	
Pin Number	AGL600 Function
AA15	NC
AA16	IO101RSB2
AA17	NC
AA18	NC
AA19	NC
AA20	NC
AA21	VCCIB1
AA22	GND
AB1	GND
AB2	GND
AB3	VCCIB2
AB4	NC
AB5	NC
AB6	IO130RSB2
AB7	IO128RSB2
AB8	IO122RSB2
AB9	IO116RSB2
AB10	NC
AB11	NC
AB12	IO113RSB2
AB13	IO112RSB2
AB14	NC
AB15	NC
AB16	IO100RSB2
AB17	IO95RSB2
AB18	NC
AB19	NC
AB20	VCCIB2
AB21	GND
AB22	GND
B1	GND
B2	VCCIB3
В3	NC
B4	NC
B5	NC
В6	IO08RSB0

	==
	FG484
Pin Number	AGL600 Function
В7	IO12RSB0
B8	NC
B9	NC
B10	IO17RSB0
B11	NC
B12	NC
B13	IO36RSB0
B14	NC
B15	NC
B16	IO47RSB0
B17	IO49RSB0
B18	NC
B19	NC
B20	NC
B21	VCCIB1
B22	GND
C1	VCCIB3
C2	NC
C3	NC
C4	NC
C5	GND
C6	NC
C7	NC
C8	VCC
C9	VCC
C10	NC
C11	NC
C12	NC
C13	NC
C14	VCC
C15	VCC
C16	NC
C17	NC
C18	GND
C19	NC
C20	NC

Revision 27 4-78

FG484	
Pin Number	AGL1000 Function
A1	GND
A2	GND
A3	VCCIB0
A4	IO07RSB0
A5	IO09RSB0
A6	IO13RSB0
A7	IO18RSB0
A8	IO20RSB0
A9	IO26RSB0
A10	IO32RSB0
A11	IO40RSB0
A12	IO41RSB0
A13	IO53RSB0
A14	IO59RSB0
A15	IO64RSB0
A16	IO65RSB0
A17	IO67RSB0
A18	IO69RSB0
A19	NC
A20	VCCIB0
A21	GND
A22	GND
AA1	GND
AA2	VCCIB3
AA3	NC
AA4	IO181RSB2
AA5	IO178RSB2
AA6	IO175RSB2
AA7	IO169RSB2
AA8	IO166RSB2
AA9	IO160RSB2
AA10	IO152RSB2
AA11	IO146RSB2
AA12	IO139RSB2
AA13	IO133RSB2
AA14	NC

4-90 Revision 27

FG484	
Pin Number	AGL1000 Function
G5	IO222PDB3
G6	GAC2/IO223PDB3
G7	IO223NDB3
G8	GNDQ
G9	IO23RSB0
G10	IO29RSB0
G11	IO33RSB0
G12	IO46RSB0
G13	IO52RSB0
G14	IO60RSB0
G15	GNDQ
G16	IO80NDB1
G17	GBB2/IO79PDB1
G18	IO79NDB1
G19	IO82NPB1
G20	IO85PDB1
G21	IO85NDB1
G22	NC
H1	NC
H2	NC
H3	VCC
H4	IO217PDB3
H5	IO218PDB3
H6	IO221NDB3
H7	IO221PDB3
H8	VMV0
H9	VCCIB0
H10	VCCIB0
H11	IO38RSB0
H12	IO47RSB0
H13	VCCIB0
H14	VCCIB0
H15	VMV1
H16	GBC2/IO80PDB1
H17	IO83PPB1
H18	IO86PPB1

Revision 27 4-95

5 - Datasheet Information

List of Changes

The following tables list critical changes that were made in each revision of the IGLOO datasheet.

Revision	Changes	Page
Revision 27 (May 2016)	Added the deleted package FG144 from AGL125 device in "IGLOO Devices" (SAR 79355).	1-l
Revision 26 (March 2016)	 Updated "IGLOO Ordering Information" and "Temperature Grade Offerings" notes by: Replacing Commercial (0°C to +70°C Ambient Temperature) with Commercial (0°C to +85°C Junction Temperature) (SAR 48352). Replacing Industrial (-40°C to +85°C Ambient Temperature) with Industrial (-40°C to +100°C Junction Temperature) (SAR 48352). 	1-III and 1-IV
	Ambient temperature row removed in Table 2-2 (SAR 48352).	2-2
	Updated Table 2-2 note 2 from "To ensure targeted reliability standards are met across ambient and junction operating temperatures, Microsemi recommends that the user follow best design practices using Microsemi's timing and power simulation tools." to "Software Default Junction Temperature Range in the Libero SoC software is set to 0°C to +70°C for commercial, and -40°C to +85°C for industrial. To ensure targeted reliability standards are met across the full range of junction temperatures, Microsemi recommends using custom settings for temperature range before running timing and power analysis tools. For more information on custom settings, refer to the New Project Dialog Box in the Libero SoC Online Help." (SAR 77087).	2-2
	Updated Table 2-2 note 9 from "VMV pins must be connected to the corresponding VCCI pins. See the "Pin Descriptions" chapter of the IGLOO FPGA Fabric User Guide for further information." to "VMV and VCCI must be at the same voltage within a given I/O bank. VMV pins must be connected to the corresponding VCCI pins. See the "VMVx I/O Supply Voltage (quiet)" on page 3-1 for further information." (SAR 77087)	
	Added 2 mA drive strengths in tables same as 4 mA (SAR 57179).	NA
	Added reference of Package Mechanical Drawings document in all package pin assignment notes (76777).	NA
Revision 25 (June2015)	Removed package FG144 from AGL060 device in the following tables: "IGLOO Devices", "I/Os Per Package1" and "Temperature Grade Offerings" (SAR 68517)	I, II, and IV
	Removed Package Pin Assignment table of AGL060 device from FG144.(SAR 68517)	-
Revision 24 (March 2014)	Note added for the discontinuance of QN132 package to the following tables: "IGLOO Devices", "I/Os Per Package1", "IGLOO FPGAs Package Sizes Dimensions", and "Temperature Grade Offerings" and "QN132" section (SAR 55117, PDN 1306).	I, II, IV, and 4-28
	Removed packages CS81 and QN132 from AGL250 device in the following tables: "IGLOO Devices", "I/Os Per Package1", and "Temperature Grade Offerings" (SAR 49472).	I, II, and IV

Revision 27 5-1