

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Ξ·XF

Details	
Product Status	Active
Number of LABs/CLBs	
Number of Logic Elements/Cells	6144
Total RAM Bits	36864
Number of I/O	97
Number of Gates	250000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 85°C (TA)
Package / Case	144-LBGA
Supplier Device Package	144-FPBGA (13x13)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/m1agl250v5-fgg144i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Flash Advantages

Low Power

Flash-based IGLOO devices exhibit power characteristics similar to those of an ASIC, making them an ideal choice for power-sensitive applications. IGLOO devices have only a very limited power-on current surge and no high-current transition period, both of which occur on many FPGAs.

IGLOO devices also have low dynamic power consumption to further maximize power savings; power is even further reduced by the use of a 1.2 V core voltage.

Low dynamic power consumption, combined with low static power consumption and Flash*Freeze technology, gives the IGLOO device the lowest total system power offered by any FPGA.

Security

Nonvolatile, flash-based IGLOO devices do not require a boot PROM, so there is no vulnerable external bitstream that can be easily copied. IGLOO devices incorporate FlashLock, which provides a unique combination of reprogrammability and design security without external overhead, advantages that only an FPGA with nonvolatile flash programming can offer.

IGLOO devices utilize a 128-bit flash-based lock and a separate AES key to provide the highest level of protection in the FPGA industry for intellectual property and configuration data. In addition, all FlashROM data in IGLOO devices can be encrypted prior to loading, using the industry-leading AES-128 (FIPS192) bit block cipher encryption standard. AES was adopted by the National Institute of Standards and Technology (NIST) in 2000 and replaces the 1977 DES standard. IGLOO devices have a built-in AES decryption engine and a flash-based AES key that make them the most comprehensive programmable logic device security solution available today. IGLOO devices with AES-based security provide a high level of protection for remote field updates over public networks such as the Internet, and are designed to ensure that valuable IP remains out of the hands of system overbuilders, system cloners, and IP thieves.

Security, built into the FPGA fabric, is an inherent component of the IGLOO family. The flash cells are located beneath seven metal layers, and many device design and layout techniques have been used to make invasive attacks extremely difficult. The IGLOO family, with FlashLock and AES security, is unique in being highly resistant to both invasive and noninvasive attacks. Your valuable IP is protected with industry-standard security, making remote ISP possible. An IGLOO device provides the best available security for programmable logic designs.

Single Chip

Flash-based FPGAs store their configuration information in on-chip flash cells. Once programmed, the configuration data is an inherent part of the FPGA structure, and no external configuration data needs to be loaded at system powerup (unlike SRAM-based FPGAs). Therefore, flash-based IGLOO FPGAs do not require system configuration components such as EEPROMs or microcontrollers to load device configuration data. This reduces bill-of-materials costs and PCB area, and increases security and system reliability.

Instant On

Flash-based IGLOO devices support Level 0 of the Instant On classification standard. This feature helps in system component initialization, execution of critical tasks before the processor wakes up, setup and configuration of memory blocks, clock generation, and bus activity management. The Instant On feature of flash-based IGLOO devices greatly simplifies total system design and reduces total system cost, often eliminating the need for CPLDs and clock generation, and unlike SRAM-based FPGAs, the device will not have to be reloaded when system power is restored. This enables the reduction or complete removal of the configuration PROM, expensive voltage monitor, brownout detection, and clock generator devices from the PCB design. Flash-based IGLOO devices simplify total system design and reduce cost and design risk while increasing system reliability and improving system initialization time.

IGLOO flash FPGAs allow the user to quickly enter and exit Flash*Freeze mode. This is done almost instantly (within 1 µs) and the device retains configuration and data in registers and RAM. Unlike SRAM-based FPGAs the device does not need to reload configuration and design state from external memory components; instead it retains all necessary information to resume operation immediately.

Reduced Cost of Ownership

Advantages to the designer extend beyond low unit cost, performance, and ease of use. Unlike SRAM-based FPGAs, Flash-based IGLOO devices allow all functionality to be Instant On; no external boot PROM is required. On-board security mechanisms prevent access to all the programming information and enable secure remote updates of the FPGA logic. Designers can perform secure remote in-system reprogramming to support future design iterations and

Table 2-15 • Summary of I/O Input Buffer Power (per pin) – Default I/O Software Settings Applicable to Standard I/O Banks

	VCCI (V)	Static Power PDC6 (mW) ¹	Dynamic Power PAC9 (μW/MHz) ²
Single-Ended			•
3.3 V LVTTL / 3.3 V LVCMOS	3.3	_	17.24
3.3 V LVCMOS Wide Range ³	3.3	_	17.24
2.5 V LVCMOS	2.5	_	5.64
1.8 V LVCMOS	1.8	_	2.63
1.5 V LVCMOS (JESD8-11)	1.5	_	1.97
1.2 V LVCMOS ⁴	1.2	_	0.57
1.2 V LVCMOS Wide Range ⁴	1.2	_	0.57

Notes:

1. PDC6 is the static power (where applicable) measured on VCCI.

2. PAC9 is the total dynamic power measured on VCCI.

3. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD-8B specification.

4. Applicable for IGLOO V2 devices only.

Table 2-16 • Summary of I/O Output Buffer Power (per pin) – Default I/O Software Settings¹ Applicable to Advanced I/O Banks

	C _{LOAD} (pF)	VCCI (V)	Static Power PDC7 (mW) ²	Dynamic Power PAC10 (μW/MHz) ³
Single-Ended		•		
3.3 V LVTTL / 3.3 V LVCMOS	5	3.3	-	136.95
3.3 V LVCMOS Wide Range ⁴	5	3.3	-	136.95
2.5 V LVCMOS	5	2.5	_	76.84
1.8 V LVCMOS	5	1.8	-	49.31
1.5 V LVCMOS (JESD8-11)	5	1.5	-	33.36
1.2 V LVCMOS ⁵	5	1.2	-	16.24
1.2 V LVCMOS Wide Range ⁵	5	1.2	_	16.24
3.3 V PCI	10	3.3	-	194.05
3.3 V PCI-X	10	3.3	_	194.05
Differential	-			
LVDS	_	2.5	7.74	156.22
LVPECL	-	3.3	19.54	339.35

Notes:

1. Dynamic power consumption is given for standard load and software default drive strength and output slew.

2. PDC7 is the static power (where applicable) measured on VCCI.

3. PAC10 is the total dynamic power measured on VCCI.

4. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD-8B specification.

5. Applicable for IGLOO V2 devices only.

Table 2-17 • Summary of I/O Output Buffer Power (per pin) – Default I/O Software Settings¹ Applicable to Standard Plus I/O Banks

	C _{LOAD} (pF)	VCCI (V)	Static Power PDC7 (mW) ²	Dynamic Power PAC10 (µW/MHz) ³
Single-Ended				
3.3 V LVTTL / 3.3 V LVCMOS	5	3.3	-	122.16
3.3 V LVCMOS Wide Range ⁴	5	3.3	-	122.16
2.5 V LVCMOS	5	2.5	-	68.37
1.8 V LVCMOS	5	1.8	-	34.53
1.5 V LVCMOS (JESD8-11)	5	1.5	-	23.66
1.2 V LVCMOS ⁵	5	1.2	-	14.90
1.2 V LVCMOS Wide Range ⁵	5	1.2	-	14.90
3.3 V PCI	10	3.3	-	181.06
3.3 V PCI-X	10	3.3	-	181.06

Notes:

1. Dynamic power consumption is given for standard load and software default drive strength and output slew.

2. P_{DC7} is the static power (where applicable) measured on VCCI.

3. P_{AC10} is the total dynamic power measured on VCCI.

4. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD-8B specification.

5. Applicable for IGLOO V2 devices only.

Table 2-18 • Summary of I/O Output Buffer Power (per pin) – Default I/O Software Settings¹ Applicable to Standard I/O Banks

	C _{LOAD} (pF)	VCCI (V)	Static Power PDC7 (mW) ²	Dynamic Power PAC10 (µW/MHz) ³
Single-Ended				
3.3 V LVTTL / 3.3 V LVCMOS	5	3.3	-	104.38
3.3 V LVCMOS Wide Range ⁴	5	3.3	-	104.38
2.5 V LVCMOS	5	2.5	-	59.86
1.8 V LVCMOS	5	1.8	-	31.26
1.5 V LVCMOS (JESD8-11)	5	1.5	-	21.96
1.2 V LVCMOS ⁵	5	1.2	-	13.49
1.2 V LVCMOS Wide Range ⁵	5	1.2	-	13.49

Notes:

1. Dynamic power consumption is given for standard load and software default drive strength and output slew.

2. PDC7 is the static power (where applicable) measured on VCCI.

3. PAC10 is the total dynamic power measured on VCCI.

4. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD-8B specification.

5. Applicable for IGLOO V2 devices only.

Power Consumption of Various Internal Resources

 Table 2-19 • Different Components Contributing to Dynamic Power Consumption in IGLOO Devices

 For IGLOO V2 or V5 Devices, 1.5 V DC Core Supply Voltage

		Device Specific Dynamic Power (µW/MHz)											
Parameter	Definition	AGL1000	AGL600	AGL400	AGL250	AGL125	AGL060	AGL030	AGL015				
PAC1	Clock contribution of a Global Rib	7.778	6.221	6.082	4.460	4.446	2.736	0.000	0.000				
PAC2	Clock contribution of a Global Spine	4.334	3.512	2.759	2.718	1.753	1.971	3.483	3.483				
PAC3	Clock contribution of a VersaTile row	1.379	1.445	1.377	1.483	1.467	1.503	1.472	1.472				
PAC4	Clock contribution of a VersaTile used as a sequential module	0.151	0.149	0.151	0.149	0.149	0.151	0.146	0.146				
PAC5	First contribution of a VersaTile used as a sequential module	0.057											
PAC6	Second contribution of a VersaTile used as a sequential module	0.207											
PAC7	Contribution of a VersaTile used as a combinatorial module	0.276	0.262	0.279	0.277	0.280	0.300	0.281	0.273				
PAC8	Average contribution of a routing net	1.161	1.147	1.193	1.273	1.076	1.088	1.134	1.153				
PAC9	Contribution of an I/O input pin (standard-dependent)		See Table	2-13 on pa	age 2-10 th	rough Table	e 2-15 on p	age 2-11.					
PAC10	Contribution of an I/O output pin (standard-dependent)		See Table	2-16 on pa	age 2-11 th	rough Table	e 2-18 on p	age 2-12.					
PAC11	Average contribution of a RAM block during a read operation				25.	00							
PAC12	Average contribution of a RAM block during a write operation				30.	00							
PAC13	Dynamic PLL contribution				2.7	70							

Note: For a different output load, drive strength, or slew rate, Microsemi recommends using the Microsemi power spreadsheet calculator or SmartPower tool in Libero SoC.

Table 2-20 • Different Components Contributing to the Static Power Consumption in IGLOO Devices For IGLOO V2 or V5 Devices, 1.5 V DC Core Supply Voltage

		Device-Specific Static Power (mW)											
Parameter	Definition	AGL1000	AGL600	AGL400	AGL250	AGL125	AGL060	AGL030	AGL015				
PDC1	Array static power in Active mode			See	Table 2-12	2 on page 2	2-9.						
PDC2	Array static power in Static (Idle) mode		See Table 2-11 on page 2-8.										
PDC3	Array static power in Flash*Freeze mode		See Table 2-9 on page 2-7.										
PDC4	Static PLL contribution				1.8	34							
PDC5	Bank quiescent power (V _{CCI} -dependent)			See	Table 2-12	2 on page 2	2-9.						
PDC6	I/O input pin static power (standard-dependent)		See Table 2-13 on page 2-10 through Table 2-15 on page 2-11.										
PDC7	I/O output pin static power (standard-dependent)		See Table	2-16 on pa	ige 2-11 thr	ough Table	e 2-18 on p	age 2-12.					

Note: *For a different output load, drive strength, or slew rate, Microsemi recommends using the Microsemi power spreadsheet calculator or SmartPower tool in Libero SoC.

Summary of I/O Timing Characteristics – Default I/O Software Settings

Table 2-29 • Summary of AC Measuring Points

Standard	Measuring Trip Point (Vtrip)
3.3 V LVTTL / 3.3 V LVCMOS	1.4 V
3.3 V VCMOS Wide Range	1.4 V
2.5 V LVCMOS	1.2 V
1.8 V LVCMOS	0.90 V
1.5 V LVCMOS	0.75 V
1.2 V LVCMOS	0.60 V
1.2 V LVCMOS Wide Range	0.60 V
3.3 V PCI	0.285 * VCCI (RR)
	0.615 * VCCI (FF)
3.3 V PCI-X	0.285 * VCCI (RR)
	0.615 * VCCI (FF)

Table 2-30 • I/O AC Parameter Definitions

Parameter	Parameter Definition
t _{DP}	Data to Pad delay through the Output Buffer
t _{PY}	Pad to Data delay through the Input Buffer
t _{DOUT}	Data to Output Buffer delay through the I/O interface
t _{EOUT}	Enable to Output Buffer Tristate Control delay through the I/O interface
t _{DIN}	Input Buffer to Data delay through the I/O interface
t _{HZ}	Enable to Pad delay through the Output Buffer—High to Z
t _{ZH}	Enable to Pad delay through the Output Buffer—Z to High
t _{LZ}	Enable to Pad delay through the Output Buffer—Low to Z
t _{ZL}	Enable to Pad delay through the Output Buffer—Z to Low
t _{ZHS}	Enable to Pad delay through the Output Buffer with delayed enable—Z to High
t _{ZLS}	Enable to Pad delay through the Output Buffer with delayed enable—Z to Low

Timing Characteristics

Applies to 1.5 V DC Core Voltage

Table 2-67 • 3.3 V LVCMOS Wide Range Low Slew – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.7 V
Applicable to Advanced Banks

Drive Strength	Equivalent Software Default Drive Strength Option ¹	Speed Grade	t _{dout}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{ZHS}	Units
100 µA	2 mA	Std.	0.97	6.61	0.18	1.19	0.66	6.63	5.63	3.15	2.98	10.22	9.23	ns
100 µA	4 mA	Std.	0.97	6.61	0.18	1.19	0.66	6.63	5.63	3.15	2.98	10.22	9.23	ns
100 µA	6 mA	Std.	0.97	5.49	0.18	1.19	0.66	5.51	4.84	3.54	3.66	9.10	8.44	ns
100 µA	8 mA	Std.	0.97	5.49	0.18	1.19	0.66	5.51	4.84	3.54	3.66	9.10	8.44	ns
100 µA	12 mA	Std.	0.97	4.69	0.18	1.19	0.66	4.71	4.25	3.80	4.10	8.31	7.85	ns
100 µA	16 mA	Std.	0.97	4.46	0.18	1.19	0.66	4.48	4.11	3.86	4.21	8.07	7.71	ns
100 µA	24 mA	Std.	0.97	4.34	0.18	1.19	0.66	4.36	4.14	3.93	4.64	7.95	7.74	ns

Notes:

1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ± 100 μA. Drive strengths displayed in software are supported for normal range only. For a detailed I/V curve, refer to the IBIS models.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

 Table 2-68 •
 3.3 V LVCMOS Wide Range High Slew – Applies to 1.5 V DC Core Voltage

 Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.7 V

 Applicable to Advanced Banks

Drive Strength	Equivalent Software Default Drive Strength Option ¹	Speed Grade	t _{dout}	t _{DP}	t _{DIN}	t _{PY}	t _{eout}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{ZHS}	Units
100 µA	2 mA	Std.	0.97	3.92	0.18	1.19	0.66	3.94	3.10	3.16	3.17	7.54	6.70	ns
100 µA	4 mA	Std.	0.97	3.92	0.18	1.19	0.66	3.94	3.10	3.16	3.17	7.54	6.70	ns
100 µA	6 mA	Std.	0.97	3.28	0.18	1.19	0.66	3.30	2.54	3.54	3.86	6.90	6.14	ns
100 µA	8 mA	Std.	0.97	3.28	0.18	1.19	0.66	3.30	2.54	3.54	3.86	6.90	6.14	ns
100 µA	12 mA	Std.	0.97	2.93	0.18	1.19	0.66	2.95	2.27	3.81	4.30	6.54	5.87	ns
100 µA	16 mA	Std.	0.97	2.87	0.18	1.19	0.66	2.89	2.22	3.86	4.41	6.49	5.82	ns
100 µA	24 mA	Std.	0.97	2.90	0.18	1.19	0.66	2.92	2.16	3.94	4.86	6.51	5.75	ns

Notes:

1. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

2. Software default selection highlighted in gray.

3. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ± 100 μA. Drive strengths displayed in software are supported for normal range only. For a detailed I/V curve, refer to the IBIS models.

Timing Characteristics

1.5 V DC Core Voltage

Table 2-115 • 1.5 V LVCMOS Low Slew – Applies to 1.5 V DC Core Voltage

Commercial-Case Conditions: $T_J = 70^{\circ}$ C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.4 V Applicable to Advanced I/O Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{ZHS}	Units
2 mA	Std.	0.97	6.62	0.18	1.17	0.66	6.75	6.06	2.79	2.31	10.35	9.66	ns
4 mA	Std.	0.97	5.75	0.18	1.17	0.66	5.86	5.34	3.06	2.78	9.46	8.93	ns
6 mA	Std.	0.97	5.43	0.18	1.17	0.66	5.54	5.19	3.12	2.90	9.13	8.78	ns
8 mA	Std.	0.97	5.35	0.18	1.17	0.66	5.46	5.20	2.63	3.36	9.06	8.79	ns
12 mA	Std.	0.97	5.35	0.18	1.17	0.66	5.46	5.20	2.63	3.36	9.06	8.79	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

Table 2-116 • 1.5 V LVCMOS High Slew – Applies to 1.5 V DC Core Voltage

Commercial-Case Conditions: $T_J = 70^{\circ}$ C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.4 V Applicable to Advanced I/O Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{ZHS}	Units
2 mA	Std.	0.97	2.97	0.18	1.17	0.66	3.04	2.90	2.78	2.40	6.63	6.50	ns
4 mA	Std.	0.97	2.60	0.18	1.17	0.66	2.65	2.45	3.05	2.88	6.25	6.05	ns
6 mA	Std.	0.97	2.53	0.18	1.17	0.66	2.58	2.37	3.11	3.00	6.18	5.96	ns
8 mA	Std.	0.97	2.50	0.18	1.17	0.66	2.56	2.27	3.21	3.48	6.15	5.86	ns
12 mA	Std.	0.97	2.50	0.18	1.17	0.66	2.56	2.27	3.21	3.48	6.15	5.86	ns

Notes:

1. Software default selection highlighted in gray.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

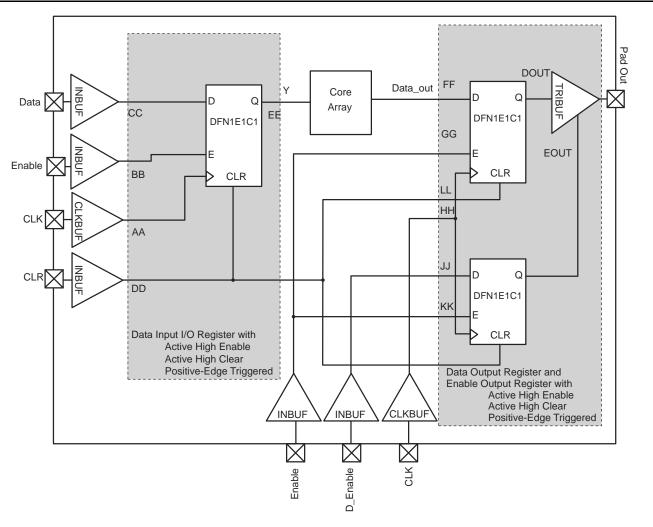
Table 2-117 • 1.5 V LVCMOS Low Slew – Applies to 1.5 V DC Core Voltage

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.4 V Applicable to Standard Plus Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{ZHS}	Units
2 mA	Std.	0.97	5.93	0.18	1.18	0.66	6.04	5.46	2.30	2.15	9.64	9.06	ns
4 mA	Std.	0.97	5.11	0.18	1.18	0.66	5.21	4.80	2.54	2.58	8.80	8.39	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

Table 2-118 • 1.5 V LVCMOS High Slew – Applies to 1.5 V DC Core Voltage


Commercial-Case Conditions: $T_J = 70^{\circ}$ C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.4 V Applicable to Standard Plus Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
2 mA	Std.	0.97	2.58	0.18	1.18	0.66	2.64	2.41	2.29	2.24	6.23	6.01	ns
4 mA	Std.	0.97	2.25	0.18	1.18	0.66	2.30	2.00	2.53	2.68	5.89	5.59	ns

Notes:

1. Software default selection highlighted in gray.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

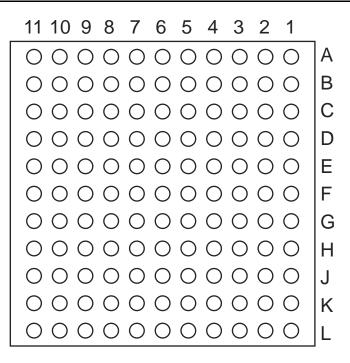

Fully Registered I/O Buffers with Synchronous Enable and Asynchronous Clear

Figure 2-17 • Timing Model of the Registered I/O Buffers with Synchronous Enable and Asynchronous Clear

Package Pin Assignments

CS121

Note: This is the bottom view of the package.

Note

For more information on package drawings, see PD3068: Package Mechanical Drawings.

	CS121						
Pin Number	AGL060 Function						
K10	VPUMP						
K11	GDB1/IO47RSB0						
L1	VMV1						
L2	GNDQ						
L3	IO65RSB1						
L4	IO63RSB1						
L5	IO61RSB1						
L6	IO58RSB1						
L7	IO57RSB1						
L8	IO55RSB1						
L9	GNDQ						
L10	GDA0/IO50RSB0						
L11	VMV1						

CS196			CS196		CS196			
Pin Number	AGL400 Function	Pin Number	AGL400 Function	Pin Number	AGL400 Function			
A1	GND	C8	IO31RSB0	F2	IO144NPB3			
A2	GAA0/IO00RSB0	C9	IO44RSB0	F3	IO148PDB3			
A3	GAC0/IO04RSB0	C10	IO49RSB0	F4	IO148NDB3			
A4	GAC1/IO05RSB0	C11	VCCIB0	F5	IO150NPB3			
A5	IO14RSB0	C12	IO60NPB1	F6	IO07RSB0			
A6	IO18RSB0	C13	GNDQ	F7	VCC			
A7	IO26RSB0	C14	IO61NDB1	F8	VCC			
A8	IO29RSB0	D1	IO153VDB3	F9	IO43RSB0			
A9	IO36RSB0	D2	IO154VDB3	F10	IO73PDB1			
A10	GBC0/IO54RSB0	D3	GAA2/IO155UDB3	F11	IO73NDB1			
A11	GBB0/IO56RSB0	D4	IO150PPB3	F12	IO66NDB1			
A12	GBB1/IO57RSB0	D5	IO11RSB0	F13	IO66PDB1			
A13	GBA1/IO59RSB0	D6	IO20RSB0	F14	IO64NDB1			
A14	GND	D7	IO23RSB0	G1	GFB1/IO146PDB3			
B1	VCCIB3	D8	IO28RSB0	G2	GFA0/IO145NDB3			
B2	VMV0	D9	IO41RSB0	G3	GFA2/IO144PPB3			
B2	VMV0	D10	IO47RSB0	G4	VCOMPLF			
B3	GAA1/IO01RSB0	D11	IO63PPB1	G5	GFC0/IO147NDB3			
B4	GAB1/IO03RSB0	D12	VMV1	G6	VCC			
B5	GND	D13	IO62NDB1	G7	GND			
B6	IO17RSB0	D14	GBC2/IO62PDB1	G8	GND			
B7	IO25RSB0	E1	IO149PDB3	G9	VCC			
B8	IO34RSB0	E2	GND	G10	GCC0/IO67NDB1			
B9	IO39RSB0	E3	IO155VDB3	G11	GCB1/IO68PDB1			
B10	GND	E4	VCCIB3	G12	GCA0/IO69NDB1			
B11	GBC1/IO55RSB0	E5	IO151USB3	G13	IO72NDB1			
B12	GBA0/IO58RSB0	E6	IO09RSB0	G14	GCC2/IO72PDB1			
B13	GBA2/IO60PPB1	E7	IO12RSB0	H1	GFB0/IO146NDB3			
B14	GBB2/IO61PDB1	E8	IO32RSB0	H2	GFA1/IO145PDB3			
C1	GAC2/IO153UDB3	E9	IO46RSB0	H3	VCCPLF			
C2	GAB2/IO154UDB3	E10	IO51RSB0	H4	GFB2/IO143PPB3			
C3	GNDQ	E11	VCCIB1	H5	GFC1/IO147PDB3			
C4	VCCIB0	E12	IO63NPB1	H6	VCC			
C5	GAB0/IO02RSB0	E13	GND	H7	GND			
C6	IO15RSB0	E14	IO64PDB1	H8	GND			
C7	VCCIB0	F1	IO149NDB3	H9	VCC			

	CS281
Pin Number	AGL1000 Function
A1	GND
A2	GAB0/IO02RSB0
A3	GAC1/IO05RSB0
A4	IO13RSB0
A5	IO11RSB0
A6	IO16RSB0
A7	IO20RSB0
A8	IO24RSB0
A9	IO29RSB0
A10	VCCIB0
A11	IO39RSB0
A12	IO45RSB0
A13	IO48RSB0
A14	IO58RSB0
A15	IO61RSB0
A16	IO62RSB0
A17	GBC1/IO73RSB0
A18	GBA0/IO76RSB0
A19	GND
B1	GAA2/IO225PPB3
B2	VCCIB0
B3	GAB1/IO03RSB0
B4	GAC0/IO04RSB0
B5	IO12RSB0
B6	GND
B7	IO21RSB0
B8	IO26RSB0
B9	IO34RSB0
B10	IO35RSB0
B11	IO36RSB0
B12	IO46RSB0
B13	IO52RSB0
B14	GND
B15	IO59RSB0
B16	GBC0/IO72RSB0
B17	GBA1/IO77RSB0

	CS281
Pin Number	AGL1000 Function
B18	VCCIB1
B19	IO79NDB1
C1	GAB2/IO224PPB3
C2	IO225NPB3
C6	IO18RSB0
C14	IO63RSB0
C18	IO78NPB1
C19	GBB2/IO79PDB1
D1	IO219PPB3
D2	IO223NPB3
D4	GAA0/IO00RSB0
D5	GAA1/IO01RSB0
D6	IO15RSB0
D7	IO19RSB0
D8	IO27RSB0
D9	IO32RSB0
D10	GND
D11	IO38RSB0
D12	IO44RSB0
D13	IO47RSB0
D14	IO60RSB0
D15	GBB0/IO74RSB0
D16	GBA2/IO78PPB1
D18	GBC2/IO80PPB1
D19	IO88NPB1
E1	IO217NPB3
E2	IO221PPB3
E4	IO221NPB3
E5	IO10RSB0
E6	IO14RSB0
E7	IO25RSB0
E8	IO28RSB0
E9	IO31RSB0
E10	IO33RSB0
E11	IO42RSB0
E12	IO49RSB0

	CS281
Pin Number	AGL1000 Function
E13	IO53RSB0
E14	GBB1/IO75RSB0
E15	IO80NPB1
E16	IO85PPB1
E18	IO83PPB1
E19	IO84NPB1
F1	IO214NPB3
F2	GND
F3	IO217PPB3
F4	IO219NPB3
F5	IO224NPB3
F15	IO85NPB1
F16	IO84PPB1
F17	IO83NPB1
F18	GND
F19	IO90PPB1
G1	IO212NPB3
G2	IO211NDB3
G4	IO214PPB3
G5	IO212PPB3
G7	GAC2/IO223PPB3
G8	VCCIB0
G9	IO30RSB0
G10	IO37RSB0
G11	IO43RSB0
G12	VCCIB0
G13	IO88PPB1
G15	IO89NDB1
G16	IO89PDB1
G18	GCC0/IO91NPB1
G19	GCB1/IO92PPB1
H1	GFB0/IO208NPB3
H2	IO211PDB3
H4	GFC1/IO209PPB3
H5	GFB1/IO208PPB3
H7	VCCIB3

IGLOO Low Power Flash FPGAs

FG144			FG144		FG144			
Pin Number	AGL400 Function	Pin Number	AGL400 Function	Pin Number	AGL400 Function			
A1	GNDQ	D1	IO149NDB3	G1	GFA1/IO145PPB3			
A2	VMV0	D2	IO149PDB3	G2	GND			
A3	GAB0/IO02RSB0	D3	IO153VDB3	G3	VCCPLF			
A4	GAB1/IO03RSB0	D4	GAA2/IO155UPB3	G4	GFA0/IO145NPB			
A5	IO16RSB0	D5	GAC0/IO04RSB0	G5	GND			
A6	GND	D6	GAC1/IO05RSB0	G6	GND			
A7	IO30RSB0	D7	GBC0/IO54RSB0	G7	GND			
A8	VCC	D8	GBC1/IO55RSB0	G8	GDC1/IO77UPB1			
A9	IO34RSB0	D9	GBB2/IO61PDB1	G9	IO72NDB1			
A10	GBA0/IO58RSB0	D10	IO61NDB1	G10	GCC2/IO72PDB1			
A11	GBA1/IO59RSB0	D11	IO62NPB1	G11	IO71NDB1			
A12	GNDQ	D12	GCB1/IO68PPB1	G12	GCB2/IO71PDB1			
B1	GAB2/IO154UDB3	E1	VCC	H1	VCC			
B2	GND	E2	GFC0/IO147NDB3	H2	GFB2/IO143PDB			
B3	GAA0/IO00RSB0	E3	GFC1/IO147PDB3	H3	GFC2/IO142PSB			
B4	GAA1/IO01RSB0	E4	VCCIB3	H4	GEC1/IO137PDB			
B5	IO14RSB0	E5	IO155VPB3	H5	VCC			
B6	IO19RSB0	E6	VCCIB0	H6	IO75PDB1			
B7	IO23RSB0	E7	VCCIB0	H7	IO75NDB1			
B8	IO31RSB0	E8	GCC1/IO67PDB1	H8	GDB2/IO81RSB2			
B9	GBB0/IO56RSB0	E9	VCCIB1	H9	GDC0/IO77VPB1			
B10	GBB1/IO57RSB0	E10	VCC	H10	VCCIB1			
B11	GND	E11	GCA0/IO69NDB1	H11	IO73PSB1			
B12	VMV1	E12	IO70NDB1	H12	VCC			
C1	IO154VDB3	F1	GFB0/IO146NPB3	J1	GEB1/IO136PDB			
C2	GFA2/IO144PPB3	F2	VCOMPLF	J2	IO143NDB3			
C3	GAC2/IO153UDB3	F3	GFB1/IO146PPB3	J3	VCCIB3			
C4	VCC	F4	IO144NPB3	J4	GEC0/IO137NDB			
C5	IO12RSB0	F5	GND	J5	IO125RSB2			
C6	IO17RSB0	F6	GND	J6	IO116RSB2			
C7	IO25RSB0	F7	GND	J7	VCC			
C8	IO32RSB0	F8	GCC0/IO67NDB1	J8	ТСК			
C9	IO53RSB0	F9	GCB0/IO68NPB1	J9	GDA2/IO80RSB2			
C10	GBA2/IO60PDB1	F10	GND	J10	TDO			
C11	IO60NDB1	F11	GCA1/IO69PDB1	J11	GDA1/IO79UDB			
C12	GBC2/IO62PPB1	F12	GCA2/IO70PDB1	J12	GDB1/IO78UDB1			

FG144							
Pin Number	AGL600 Function						
K1	GEB0/IO145NDB3						
K2	GEA1/IO144PDB3						
K3	GEA0/IO144NDB3						
K4	GEA2/IO143RSB2						
K5	IO119RSB2						
K6	IO111RSB2						
K7	GND						
K8	IO94RSB2						
K9	GDC2/IO91RSB2						
K10	GND						
K11	GDA0/IO88NDB1						
K12	GDB0/IO87NDB1						
L1	GND						
L2	VMV3						
L3	FF/GEB2/IO142RSB2						
L4	IO136RSB2						
L5	VCCIB2						
L6	IO115RSB2						
L7	IO103RSB2						
L8	IO97RSB2						
L9	TMS						
L10	VJTAG						
L11	VMV2						
L12	TRST						
M1	GNDQ						
M2	GEC2/IO141RSB2						
M3	IO138RSB2						
M4	IO123RSB2						
M5	IO126RSB2						
M6	IO134RSB2						
M7	IO108RSB2						
M8	IO99RSB2						
M9	TDI						
M10	VCCIB2						
M11	VPUMP						
M12	GNDQ						

FG256						
Pin Number	AGL1000 Function					
R5	IO168RSB2					
R6	IO163RSB2					
R7	IO157RSB2					
R8	IO149RSB2					
R9	IO143RSB2					
R10	IO138RSB2					
R11	IO131RSB2					
R12	IO125RSB2					
R13	GDB2/IO115RSB2					
R14	TDI					
R15	GNDQ					
R16	TDO					
T1	GND					
T2	IO183RSB2					
Т3	FF/GEB2/IO186RSB2					
T4	IO172RSB2					
T5	IO170RSB2					
Т6	IO164RSB2					
T7	IO158RSB2					
Т8	IO153RSB2					
Т9	IO142RSB2					
T10	IO135RSB2					
T11	IO130RSB2					
T12	GDC2/IO116RSB2					
T13	IO120RSB2					
T14	GDA2/IO114RSB2					
T15	TMS					
T16	GND					

FG484						
Pin Number	AGL600 Function					
R9	VCCIB2					
R10	VCCIB2					
R11	IO117RSB2					
R12	IO110RSB2					
R13	VCCIB2					
R14	VCCIB2					
R15	VMV2					
R16	IO94RSB2					
R17	GDB1/IO87PPB1					
R18	GDC1/IO86PDB1					
R19	IO84NDB1					
R20	VCC					
R21	IO81NDB1					
R22	IO82PDB1					
T1	IO152PDB3					
T2	IO152NDB3					
Т3	NC					
T4	IO150NDB3					
T5	IO147PPB3					
Т6	GEC1/IO146PPB3					
T7	IO140RSB2					
Т8	GNDQ					
Т9	GEA2/IO143RSB2					
T10	IO126RSB2					
T11	IO120RSB2					
T12	IO108RSB2					
T13	IO103RSB2					
T14	IO99RSB2					
T15	GNDQ					
T16	IO92RSB2					
T17	VJTAG					
T18	GDC0/IO86NDB1					
T19	GDA1/IO88PDB1					
T20	NC					
T21	IO83PDB1					
T22	IO82NDB1					

FG484		
Pin Number	AGL1000 Function	
E13	IO51RSB0	
E14	IO57RSB0	
E15	GBC1/IO73RSB0	
E16	GBB0/IO74RSB0	
E17	IO71RSB0	
E18	GBA2/IO78PDB1	
E19	IO81PDB1	
E20	GND	
E21	NC	
E22	IO84PDB1	
F1	NC	
F2	IO215PDB3	
F3	IO215NDB3	
F4	IO224NDB3	
F5	IO225NDB3	
F6	VMV3	
F7	IO11RSB0	
F8	GAC0/IO04RSB0	
F9	GAC1/IO05RSB0	
F10	IO25RSB0	
F11	IO36RSB0	
F12	IO42RSB0	
F13	IO49RSB0	
F14	IO56RSB0	
F15	GBC0/IO72RSB0	
F16	IO62RSB0	
F17	VMV0	
F18	IO78NDB1	
F19	IO81NDB1	
F20	IO82PPB1	
F21	NC	
F22	IO84NDB1	
G1	IO214NDB3	
G2	IO214PDB3	
G3	NC	
G4	IO222NDB3	

Datasheet Information

Revision	Changes	Page
Revision 21 (continued)	Pin description table for AGL125 CS121 was removed as it was incorrectly added to the datasheet in revision 19 (SAR 38217).	-
(March 2012)	Notes indicating that AGL015 is not recommended for new designs have been added. The "Devices Not Recommended For New Designs" section is new (SAR 35015).	I to IV
	Notes indicating that device/package support is TBD for AGL250-QN132 and AGL060-FG144 have been reinserted (SAR 33689).	I to IV
	Values for the power data for PAC1, PAC2, PAC3, PAC4, PAC7, and PAC8 were revised in Table 2-19 • Different Components Contributing to Dynamic Power Consumption in IGLOO Devices and Table 2-21 • Different Components Contributing to Dynamic Power Consumption in IGLOO Devices to match the SmartPower tool in Libero software version 9.0 SP1 and Power Calculator spreadsheet v7a released on 08/10/2010 (SAR 33768).	2-15
	The reference to guidelines for global spines and VersaTile rows, given in the "Global Clock Contribution—PCLOCK" section, was corrected to the "Spine Architecture" section of the Global Resources chapter in the <i>IGLOO FPGA Fabric User Guide</i> (SAR 34730).	
	Figure 2-4 • Input Buffer Timing Model and Delays (example) has been modified for the DIN waveform; the Rise and Fall time label has been changed to t _{DIN} (SAR 37104).	2-21
	 Added missing characteristics for 3.3 V LVCMOS, 3.3 V LVCMOS Wide range, 1.2 V LVCMOS, and 1.2 V LVCMOS Wide range to the following tables: Table 2-38, Table 2-39, Table 2-40, Table 2-42, Table 2-43, and Table 2-44 (SARs 33854 and 36891) Table 2-63, Table 2-64, and Table 2-65 (SAR 33854) Table 2-127, Table 2-128, Table 2-129, Table 2-137, Table 2-138, and Table 2-139 (SAR 36891). 	2-40, 2-47 to 2-49, 2-74, 2-77, and
	AC Loading figures in the "Single-Ended I/O Characteristics" section were updated to match Table 2-50 · AC Waveforms, Measuring Points, and Capacitive Loads (SAR 34878).	
	Added values for minimum pulse width and removed the FRMAX row from Table 2-173 through Table 2-188 in the "Global Tree Timing Characteristics" section. Use the software to determine the FRMAX for the device you are using (SAR 29271).	
Revision 19 (September 2011)	CS121 was added to the product tables in the "IGLOO Low Power Flash FPGAs" section for AGL125 (SAR 22737). CS81 was added for AGL250 (SAR 22737).	I
	Notes indicating that device/package support is TBD for AGL250-QN132 and AGL060-FG144 have been removed (SAR 33689).	I to IV
	M1AGL400 was removed from the "I/Os Per Package1" table. This device was discontinued in April 2009 (SAR 32450).	II
	Dimensions for the QN48 package were added to Table 1 • IGLOO FPGAs Package Sizes Dimensions (SAR 30537).	II
	The Y security option and Licensed DPA Logo were added to the "IGLOO Ordering Information" section. The trademarked Licensed DPA Logo identifies that a product is covered by a DPA counter-measures license from Cryptography Research (SAR 32151).	
	The "In-System Programming (ISP) and Security" section and "Security" section were revised to clarify that although no existing security measures can give an absolute guarantee, Microsemi FPGAs implement the best security available in the industry (SAR 32865).	

Datasheet Information

Revision / Version	Changes	Page
Advance v0.7 (continued)	The former Table 2-16 • Maximum I/O Frequency for Single-Ended and Differential I/Os in All Banks in IGLOO Devices (maximum drive strength and high slew selected) was removed.	N/A
	The "During Flash*Freeze Mode" section was updated to include information about the output of the I/O to the FPGA core.	2-57
	Table 2-31 • Flash*Freeze Pin Location in IGLOO Family Packages (device- independent) was updated to add UC81 and CS281. Flash*Freeze pins were assigned for CS81, CS121, and CS196.	2-61
	Figure 2-40 • Flash*Freeze Mode Type 2 – Timing Diagram was updated to modify the LSICC Signal.	2-55
	Information regarding calculation of the quiescent supply current was added to the "Quiescent Supply Current" section.	3-6
	Table3-8 • QuiescentSupplyCurrent(IDD)Characteristics,IGLOOFlash*FreezeMode [†] was updated.	3-6
	Table 3-9 • Quiescent Supply Current (I_{DD}) Characteristics, IGLOO Sleep Mode (VCC = 0 V) [†] was updated.	3-6
	Table 3-11 • Quiescent Supply Current (I _{DD}), No IGLOO Flash*Freeze Mode1 was updated.	3-7
	Table 3-115 Minimum and Maximum DC Input and Output Levels was updated.	3-58
	Table 3-156 • JTAG 1532 was updated and Table 3-155 • JTAG 1532 is new.	3-104
	The "121-Pin CSP" and "281-Pin CSP" packages are new.	4-5, 4-7
	The "81-Pin CSP" table for the AGL030 device was updated to change the G6 pin function to IO44RSB1 and the JG pin function to IO45RSB1.	4-4
	The "121-Pin CSP" table for the AGL060 device is new.	4-6
	The "256-Pin FBGA" table for the AGL1000 device is new.	4-34
	The "281-Pin CSP" table for the AGL 600 device is new.	4-8
	The "100-Pin VQFP" table for the AGL060 device is new.	4-18
	The "144-Pin FBGA" table for the AGL250 device is new.	4-24
	The "144-Pin FBGA" table for the AGL1000 device is new.	4-28
	The "484-Pin FBGA" table for the AGL600 device is new.	4-38
	The "484-Pin FBGA" table for the AGL1000 device is new.	4-43
(November 2007)Ordering Information", and the T to add the UC81 package.The "81-Pin μCSP" table for the μ	Table 1 • IGLOO Product Family, the "I/Os Per Package1" table, and the "IGLOO Ordering Information", and the Temperature Grade Offerings table were updated to add the UC81 package.	i, ii, iii, iv
	The "81-Pin μ CSP" table for the AGL030 device is new.	4-3
	The "81-Pin CSP" table for the AGL030 device is new.	4-1
Advance v0.5 (September 2007)	Table 1 • IGLOO Product Family was updated for AGL030 in the Package Pins section to change CS181 to CS81.	i