

Welcome to **E-XFL.COM**

Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	13824
Total RAM Bits	110592
Number of I/O	215
Number of Gates	600000
Voltage - Supply	1.14V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 70°C (TA)
Package / Case	281-TFBGA, CSBGA
Supplier Device Package	281-CSP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/m1agl600v2-csg281

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

User I/O Characteristics

Timing Model

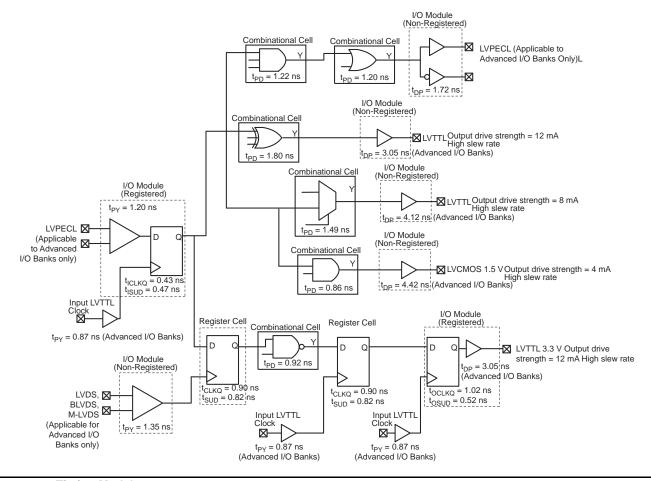


Figure 2-3 • Timing Model
Operating Conditions: Std. Speed, Commercial Temperature Range (T_J = 70°C), Worst-Case VCC = 1.425 V, for DC 1.5 V Core Voltage, Applicable to V2 and V5 Devices

Revision 27 2-19

Table 2-35 • Summary of I/O Timing Characteristics—Software Default Settings, Std. Speed Grade, Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI (per standard)

Applicable to Standard Plus I/O Banks

1																	
I/O Standard	Drive Strength	Equivalent Software Default Drive Strength Option ¹ (mA)	Slew Rate	Capacitive Load (pF)	External Resistor (Ω)	t _{DOUT} (ns)	(su) ^{dO} t	t _{DIN} (ns)	(su) ^{Ad} t	t _{EOUT} (ns)	(su) ^{1Z} t	(su) ^{HZ} t	t _{LZ} (ns)	t _{HZ} (ns)	(su) STZ _t	(su) ^{SHZ} t	Units
3.3 V LVTTL / 3.3 V LVCMOS	12 mA	12	High	5	I	1.55	2.31	0.26	0.97	1.10	2.34	1.86	2.93	3.64	8.12	7.65	ns
3.3 V LVCMOS Wide Range ²	100 μΑ	12	High	5	-	1.55	3.20	0.26	1.32	1.10	3.20	2.52	4.01	4.97	8.99	8.31	ns
2.5 V LVCMOS	12 mA	12	High	5	_	1.55	2.29	0.26	1.19	1.10	2.32	1.94	2.94	3.52	8.10	7.73	ns
1.8 V LVCMOS	8 mA	8	High	5	_	1.55	2.43	0.26	1.11	1.10	2.47	2.16	2.99	3.39	8.25	7.94	ns
1.5 V LVCMOS	4 mA	4	High	5	_	1.55	2.68	0.26	1.27	1.10	2.72	2.39	3.07	3.37	8.50	8.18	ns
1.2 V LVCMOS	2 mA	2	High	5	_	1.55	3.22	0.26	1.59	1.10	3.11	2.78	3.29	3.48	8.90	8.57	ns
1.2 V LVCMOS Wide Range ³	100 μΑ	2	High	5	-	1.55	3.22	0.26	1.59	1.10	3.11	2.78	3.29	3.48	8.90	8.57	ns
3.3 V PCI	Per PCI spec	ı	High	10	25 ²	1.55	2.53	0.26	0.84	1.10	2.57	1.98	2.93	3.64	8.35	7.76	ns
3.3 V PCI-X	Per PCI-X spec	-	High	10	25 ²	1.55	2.53	0.25	0.85	1.10	2.57	1.98	2.93	3.64	8.35	7.76	ns

Notes:

- 1. The minimum drive strength for any LVCMOS 1.2 V or LVCMOS 3.3 V software configuration when run in wide range is ±100 μA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.
- 2. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD-8B specification.
- 3. All LVCMOS 1.2 V software macros support LVCMOS 1.2 V wide range as specified in the JESD8-12 specification
- 4. Resistance is used to measure I/O propagation delays as defined in PCI specifications. See Figure 2-12 on page 2-79 for connectivity. This resistor is not required during normal operation.
- 5. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

2-32 Revision 27

3.3 V LVCMOS Wide Range

Table 2-63 • Minimum and Maximum DC Input and Output Levels for LVCMOS 3.3 V Wide Range Applicable to Advanced I/O Banks

3.3 V LVCMOS	Wide Range	VIL		VIH		VOL	VOH	IOL	ЮН	IOSL	IOSH	IIL ²	IIH ³
Drive Strength	Equivalent Software Default Drive Strength Option ¹	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	μΑ	μΑ	Max. mA ⁴	Max. mA ⁴	μ Α ⁵	μ Α ⁵
100 μΑ	2 mA	-0.3	0.8	2	3.6	0.2	VDD - 0.2	100	100	25	27	10	10
100 μΑ	4 mA	-0.3	0.8	2	3.6	0.2	VDD - 0.2	100	100	25	27	10	10
100 μΑ	6 mA	-0.3	0.8	2	3.6	0.2	VDD - 0.2	100	100	51	54	10	10
100 μΑ	8 mA	-0.3	0.8	2	3.6	0.2	VDD - 0.2	100	100	51	54	10	10
100 μΑ	12 mA	-0.3	0.8	2	3.6	0.2	VDD - 0.2	100	100	103	109	10	10
100 μΑ	16 mA	-0.3	0.8	2	3.6	0.2	VDD - 0.2	100	100	132	127	10	10
100 μΑ	24 mA	-0.3	0.8	2	3.6	0.2	VDD - 0.2	100	100	268	181	10	10

Notes:

- 1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ± 100 μA. Drive strengths displayed in software are supported for normal range only. For a detailed I/V curve, refer to the IBIS models.
- 2. IIL is the input leakage current per I/O pin over recommended operation conditions where -0.3 V < VIN < VIL.
- 3. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges
- 4. Currents are measured at 100°C junction temperature and maximum voltage.
- 5. Currents are measured at 85°C junction temperature.
- 6. Software default selection highlighted in gray.

2-46 Revision 27

Table 2-97 • Minimum and Maximum DC Input and Output Levels
Applicable to Standard I/O Banks

1.8 V LVCMOS		VIL	VIH		VOL	VOH	IOL	ЮН	IOSH	IOSL	IIL ¹	IIH ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μ Α ⁴
2 mA	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.45	VCCI - 0.45	2	2	9	11	10	10
4 mA	-0.3	0.35 * VCCI	0.65 * VCCI	3.6	0.45	VCCI - 0.45	4	4	17	22	10	10

Notes:

- 1. IIL is the input leakage current per I/O pin over recommended operation conditions where -0.3 V < VIN < VIL.
- 2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges
- 3. Currents are measured at 100°C junction temperature and maximum voltage.
- 4. Currents are measured at 85°C junction temperature.
- 5. Software default selection highlighted in gray.

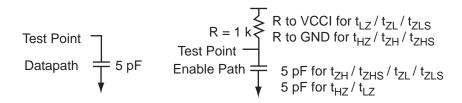


Figure 2-9 • AC Loading

Table 2-98 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	C _{LOAD} (pF)
0	1.8	0.9	5

Note: *Measuring point = Vtrip. See Table 2-29 on page 2-28 for a complete table of trip points.

Timing Characteristics

1.5 V DC Core Voltage

Table 2-99 • 1.8 V LVCMOS Low Slew – Applies to 1.5 V DC Core Voltage

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.7 V

Applicable to Advanced I/O Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t_{ZL}	t_{ZH}	t_{LZ}	t _{HZ}	t _{ZLS}	t _{ZHS}	Units
2 mA	Std.	0.97	6.38	0.18	1.01	0.66	6.51	5.93	2.33	1.56	10.10	9.53	ns
4 mA	Std.	0.97	5.35	0.18	1.01	0.66	5.46	5.04	2.67	2.38	9.05	8.64	ns
6 mA	Std.	0.97	4.62	0.18	1.01	0.66	4.71	4.44	2.90	2.79	8.31	8.04	ns
8 mA	Std.	0.97	4.37	0.18	1.01	0.66	4.46	4.31	2.95	2.89	8.05	7.90	ns
12 mA	Std.	0.97	4.32	0.18	1.01	0.66	4.37	4.32	3.03	3.30	7.97	7.92	ns
16 mA	Std.	0.97	4.32	0.18	1.01	0.66	4.37	4.32	3.03	3.30	7.97	7.92	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

2-62 Revision 27

Timing Characteristics

1.5 V DC Core Voltage

Table 2-115 • 1.5 V LVCMOS Low Slew – Applies to 1.5 V DC Core Voltage

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.4 V

Applicable to Advanced I/O Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{ZHS}	Units
2 mA	Std.	0.97	6.62	0.18	1.17	0.66	6.75	6.06	2.79	2.31	10.35	9.66	ns
4 mA	Std.	0.97	5.75	0.18	1.17	0.66	5.86	5.34	3.06	2.78	9.46	8.93	ns
6 mA	Std.	0.97	5.43	0.18	1.17	0.66	5.54	5.19	3.12	2.90	9.13	8.78	ns
8 mA	Std.	0.97	5.35	0.18	1.17	0.66	5.46	5.20	2.63	3.36	9.06	8.79	ns
12 mA	Std.	0.97	5.35	0.18	1.17	0.66	5.46	5.20	2.63	3.36	9.06	8.79	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

Table 2-116 • 1.5 V LVCMOS High Slew – Applies to 1.5 V DC Core Voltage

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.4 V

Applicable to Advanced I/O Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{ZHS}	Units
2 mA	Std.	0.97	2.97	0.18	1.17	0.66	3.04	2.90	2.78	2.40	6.63	6.50	ns
4 mA	Std.	0.97	2.60	0.18	1.17	0.66	2.65	2.45	3.05	2.88	6.25	6.05	ns
6 mA	Std.	0.97	2.53	0.18	1.17	0.66	2.58	2.37	3.11	3.00	6.18	5.96	ns
8 mA	Std.	0.97	2.50	0.18	1.17	0.66	2.56	2.27	3.21	3.48	6.15	5.86	ns
12 mA	Std.	0.97	2.50	0.18	1.17	0.66	2.56	2.27	3.21	3.48	6.15	5.86	ns

Notes:

- 1. Software default selection highlighted in gray.
- 2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

Table 2-117 • 1.5 V LVCMOS Low Slew – Applies to 1.5 V DC Core Voltage

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.4 V

Applicable to Standard Plus Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{ZHS}	Units
2 mA	Std.	0.97	5.93	0.18	1.18	0.66	6.04	5.46	2.30	2.15	9.64	9.06	ns
4 mA	Std.	0.97	5.11	0.18	1.18	0.66	5.21	4.80	2.54	2.58	8.80	8.39	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

Table 2-118 • 1.5 V LVCMOS High Slew – Applies to 1.5 V DC Core Voltage

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.4 V

Applicable to Standard Plus Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{ZHS}	Units
2 mA	Std.	0.97	2.58	0.18	1.18	0.66	2.64	2.41	2.29	2.24	6.23	6.01	ns
4 mA	Std.	0.97	2.25	0.18	1.18	0.66	2.30	2.00	2.53	2.68	5.89	5.59	ns

Notes:

- 1. Software default selection highlighted in gray.
- 2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

2-68 Revision 27

Output DDR Module

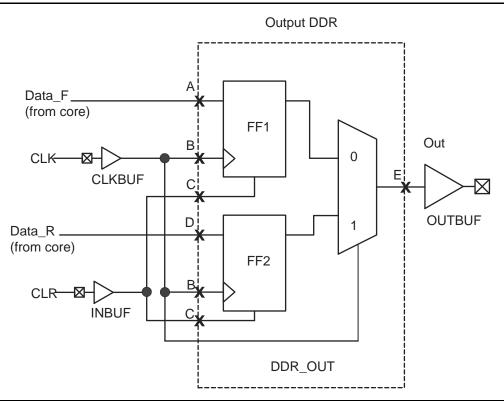


Figure 2-23 • Output DDR Timing Model

Table 2-166 • Parameter Definitions

Parameter Name	Parameter Definition	Measuring Nodes (from, to)
t _{DDROCLKQ}	Clock-to-Out	B, E
t _{DDROCLR2Q}	Asynchronous Clear-to-Out	C, E
t _{DDROREMCLR}	Clear Removal	C, B
t _{DDRORECCLR}	Clear Recovery	C, B
t _{DDROSUD1}	Data Setup Data_F	A, B
t _{DDROSUD2}	Data Setup Data_R	D, B
t _{DDROHD1}	Data Hold Data_F	A, B
t _{DDROHD2}	Data Hold Data_R	D, B

2-92 Revision 27

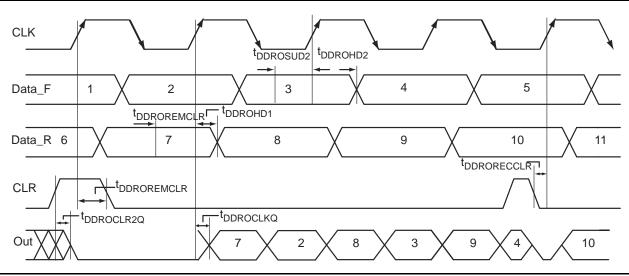


Figure 2-24 • Output DDR Timing Diagram

Timing Characteristics

1.5 V DC Core Voltage

Table 2-167 • Output DDR Propagation Delays Commercial-Case Conditions: $T_J = 70^{\circ}$ C, Worst-Case VCC = 1.425 V

Parameter	Description	Std.	Units
t _{DDROCLKQ}	Clock-to-Out of DDR for Output DDR	1.07	ns
t _{DDROSUD1}	Data_F Data Setup for Output DDR	0.67	ns
t _{DDROSUD2}	Data_R Data Setup for Output DDR	0.67	ns
t _{DDROHD1}	Data_F Data Hold for Output DDR	0.00	ns
t _{DDROHD2}	Data_R Data Hold for Output DDR	0.00	ns
t _{DDROCLR2Q}	Asynchronous Clear-to-Out for Output DDR	1.38	ns
t _{DDROREMCLR}	Asynchronous Clear Removal Time for Output DDR	0.00	ns
t _{DDRORECCLR}	Asynchronous Clear Recovery Time for Output DDR	0.23	ns
t _{DDROWCLR1}	Asynchronous Clear Minimum Pulse Width for Output DDR	0.19	ns
t _{DDROCKMPWH}	Clock Minimum Pulse Width High for the Output DDR	0.31	ns
t _{DDROCKMPWL}	Clock Minimum Pulse Width Low for the Output DDR	0.28	ns
F _{DDOMAX}	Maximum Frequency for the Output DDR	250.00	MHz

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

Revision 27 2-93

Table 2-187 • AGL600 Global Resource

Commercial-Case Conditions: T_J = 70°C, VCC = 1.14 V

		Std.		
Parameter	Description	Min. ¹	Max. ²	Units
t _{RCKL}	Input Low Delay for Global Clock	2.22	2.67	ns
t _{RCKH}	Input High Delay for Global Clock	2.32	2.93	ns
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock	1.40		ns
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock	1.65		ns
t _{RCKSW}	Maximum Skew for Global Clock		0.61	ns

Notes:

- Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).
- 2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).
- 3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

Table 2-188 • AGL1000 Global Resource

Commercial-Case Conditions: T_J = 70°C, VCC = 1.14 V

		Std.		
Parameter	Description	Min. ¹	Max. ²	Units
t _{RCKL}	Input Low Delay for Global Clock	2.31	2.76	ns
t _{RCKH}	Input High Delay for Global Clock	2.42	3.03	ns
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock	1.40		ns
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock	1.65		ns
t _{RCKSW}	Maximum Skew for Global Clock		0.61	ns

Notes:

- 1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).
- 2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).
- 3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

Revision 27 2-109

Timing Waveforms

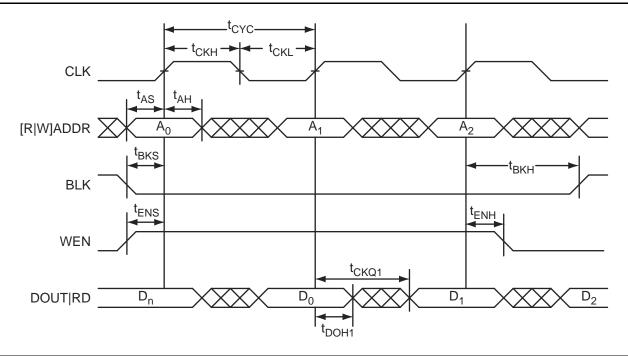


Figure 2-32 • RAM Read for Pass-Through Output. Applicable to Both RAM4K9 and RAM512x18.

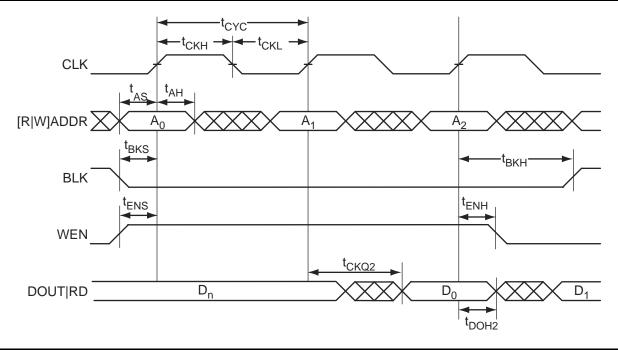


Figure 2-33 • RAM Read for Pipelined Output. Applicable to Both RAM4K9 and RAM512x18.

2-114 Revision 27

Timing Characteristics 1.5 V DC Core Voltage

Table 2-191 • RAM4K9

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V

Parameter	Description	Std.	Units
t _{AS}	Address setup time	0.83	ns
t _{AH}	Address hold time	0.16	ns
t _{ENS}	REN, WEN setup time	0.81	ns
t _{ENH}	REN, WEN hold time	0.16	ns
t _{BKS}	BLK setup time	1.65	ns
t _{BKH}	BLK hold time	0.16	ns
t _{DS}	Input data (DIN) setup time	0.71	ns
t _{DH}	Input data (DIN) hold time	0.36	ns
t _{CKQ1}	Clock High to new data valid on DOUT (output retained, WMODE = 0)	3.53	ns
	Clock High to new data valid on DOUT (flow-through, WMODE = 1)	3.06	ns
t _{CKQ2}	Clock High to new data valid on DOUT (pipelined)	1.81	ns
t _{C2CWWL} 1	Address collision clk-to-clk delay for reliable write after write on same address – Applicable to Closing Edge	0.23	ns
t _{C2CRWL} 1	Address collision clk-to-clk delay for reliable read access after write on same address – Applicable to Opening Edge	0.35	ns
t _{C2CWRH} 1	Address collision clk-to-clk delay for reliable write access after read on same address – Applicable to Opening Edge	0.41	ns
t _{RSTBQ}	RESET Low to data out Low on DOUT (flow-through)	2.06	ns
	RESET Low to data out Low on DOUT (pipelined)	2.06	ns
t _{REMRSTB}	RESET removal	0.61	ns
t _{RECRSTB}	RESET recovery	3.21	ns
t _{MPWRSTB}	RESET minimum pulse width	0.68	ns
t _{CYC}	Clock cycle time	6.24	ns
F _{MAX}	Maximum frequency	160	MHz

Notes:

- 1. For more information, refer to the application note Simultaneous Read-Write Operations in Dual-Port SRAM for Flash-Based cSoCs and FPGAs.
- 2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

Revision 27 2-117

Package Pin Assignments

CS196		CS196			CS196		
Pin Number	AGL125 Function	Pin Number	AGL125 Function	Pin Number AGL125 Functio			
A1	GND	C9	IO23RSB0	F3	IO113RSB1		
A2	GAA0/IO00RSB0	C10	IO29RSB0	F4	IO112RSB1		
A2 A3	GAC0/IO04RSB0	C10	VCCIB0	F5	IO111RSB1		
A4	GAC1/IO05RSB0	C12	IO42RSB0	F6	NC NC		
A5	IO09RSB0	C13	GNDQ	F7	VCC		
A6	IO15RSB0	C14	IO44RSB0	F8	VCC		
A7	IO18RSB0	D1	IO127RSB1	F9	NC		
A8	IO22RSB0	D2	IO129RSB1	F10	IO07RSB0		
A9	IO27RSB0	D3	GAA2/IO132RSB1	F11	IO25RSB0		
A10	GBC0/IO35RSB0	D4	IO126RSB1	F12	IO10RSB0		
A11	GBB0/IO37RSB0	D5	IO06RSB0	F13	IO33RSB0		
A12	GBB1/IO38RSB0	D6	IO13RSB0	F14	IO47RSB0		
A13	GBA1/IO40RSB0	D7	IO19RSB0	G1	GFB1/IO121RSB1		
A14	GND	D8	IO21RSB0	G2	GFA0/IO119RSB1		
B1	VCCIB1	D9	IO26RSB0	G3	GFA2/IO117RSB1		
B2	VMV0	D10	IO31RSB0	G4	VCOMPLF		
В3	GAA1/IO01RSB0	D11	IO30RSB0	G5	GFC0/IO122RSB1		
B4	GAB1/IO03RSB0	D12	VMV0	G6	VCC		
B5	GND	D13	IO46RSB0	G7	GND		
B6	IO16RSB0	D14	GBC2/IO45RSB0	G8	GND		
B7	IO20RSB0	E1	IO125RSB1	G9	VCC		
B8	IO24RSB0	E2	GND	G10	GCC0/IO52RSB0		
B9	IO28RSB0	E3	IO131RSB1	G11	GCB1/IO53RSB0		
B10	GND	E4	VCCIB1	G12	GCA0/IO56RSB0		
B11	GBC1/IO36RSB0	E5	NC	G13	IO48RSB0		
B12	GBA0/IO39RSB0	E6	IO08RSB0	G14	GCC2/IO59RSB0		
B13	GBA2/IO41RSB0	E7	IO17RSB0	H1	GFB0/IO120RSB1		
B14	GBB2/IO43RSB0	E8	IO12RSB0	H2	GFA1/IO118RSB1		
C1	GAC2/IO128RSB1	E9	IO11RSB0	H3	VCCPLF		
C2	GAB2/IO130RSB1	E10	NC	H4	GFB2/IO116RSB1		
C3	GNDQ	E11	VCCIB0	H5	GFC1/IO123RSB1		
C4	VCCIB0	E12	IO32RSB0	H6	VCC		
C5	GAB0/IO02RSB0	E13	GND	H7	GND		
C6	IO14RSB0	E14	IO34RSB0	H8	GND		
C7	VCCIB0	F1	IO124RSB1	H9	VCC		
C8	NC	F2	IO114RSB1	H10	GCC1/IO51RSB0		

4-10 Revision 27

IGLOO Low Power Flash FPGAs

	CS196				
Pin Number	AGL125 Function				
H11	GCB0/IO54RSB0				
H12	GCA1/IO55RSB0				
H13	IO49RSB0				
H14	GCA2/IO57RSB0				
J1	GFC2/IO115RSB1				
J2	IO110RSB1				
J3	IO94RSB1				
J4	IO93RSB1				
J5	IO89RSB1				
J6	NC				
J7	VCC				
J8	VCC				
J9	NC				
J10	IO60RSB0				
J11	GCB2/IO58RSB0				
J12	IO50RSB0				
J13	GDC1/IO61RSB0				
J14	GDC0/IO62RSB0				
K1	IO99RSB1				
K2	GND				
K3	IO95RSB1				
K4	VCCIB1				
K5	NC				
K6	IO86RSB1				
K7	IO80RSB1				
K8	IO74RSB1				
K9	IO72RSB1				
K10	NC				
K11	VCCIB0				
K12	GDA1/IO65RSB0				
K13	GND				
K14	GDB1/IO63RSB0				
L1	GEB1/IO107RSB1				
L2	GEC1/IO109RSB1				
L3	GEC0/IO108RSB1				
L4	IO96RSB1				

CS196				
Pin Number AGL125 Function				
L5	IO91RSB1			
L6	IO90RSB1			
L7	IO83RSB1			
	IO83RSB1			
L8				
L9	IO71RSB1			
L10	IO70RSB1			
L11	VPUMP			
L12	VJTAG			
L13	GDA0/IO66RSB0			
L14	GDB0/IO64RSB0			
M1	GEB0/IO106RSB1			
M2	GEA1/IO105RSB1			
M3	GNDQ			
M4	VCCIB1			
M5	IO92RSB1			
M6	IO88RSB1			
M7	NC			
M8	VCCIB1			
M9	IO76RSB1			
M10	GDB2/IO68RSB1			
M11	VCCIB1			
M12	VMV1			
M13	TRST			
M14	VCCIB0			
N1	GEA0/IO104RSB1			
N2	VMV1			
N3	GEC2/IO101RSB1			
N4	IO100RSB1			
N5	GND			
N6	IO87RSB1			
N7	IO82RSB1			
N8	IO78RSB1			
N9	IO73RSB1			
N10	GND			
N11	TCK			
N12	TDI			

CS196				
Pin Number	AGL125 Function			
N13	GNDQ			
N14	TDO			
P1	GND			
P2	GEA2/IO103RSB1			
P3	FF/GEB2/IO102RSB1			
P4	IO98RSB1			
P5	IO97RSB1			
P6	IO85RSB1			
P7	IO84RSB1			
P8	IO79RSB1			
P9	IO77RSB1			
P10	IO75RSB1			
P11	GDC2/IO69RSB1			
P12	GDA2/IO67RSB1			
P13	TMS			
P14	GND			

Package Pin Assignments

QN132				
Pin Number	AGL125 Function			
C17	IO83RSB1			
C18	VCCIB1			
C19	TCK			
C20	VMV1			
C21	VPUMP			
C22	VJTAG			
C23	VCCIB0			
C24	NC			
C25	NC			
C26	GCA1/IO55RSB0			
C27	GCC0/IO52RSB0			
C28	VCCIB0			
C29	IO42RSB0			
C30	GNDQ			
C31	GBA1/IO40RSB0			
C32	GBB0/IO37RSB0			
C33	VCC			
C34	IO24RSB0			
C35	IO19RSB0			
C36	IO16RSB0			
C37	IO10RSB0			
C38	VCCIB0			
C39	GAB1/IO03RSB0			
C40	VMV0			
D1	GND			
D2	GND			
D3	GND			
D4	GND			

4-34 Revision 27

IGLOO Low Power Flash FPGAs

VQ100			
Pin Number	AGL250 Function		
1	GND		
2	GAA2/IO118UDB3		
3	IO118VDB3		
4	GAB2/IO117UDB3		
5	IO117VDB3		
6	GAC2/IO116UDB3		
7	IO116VDB3		
8	IO112PSB3		
9	GND		
10	GFB1/IO109PDB3		
11	GFB0/IO109NDB3		
12	VCOMPLF		
13	GFA0/IO108NPB3		
14	VCCPLF		
15	GFA1/IO108PPB3		
16	GFA2/IO107PSB3		
17	VCC		
18	VCCIB3		
19	GFC2/IO105PSB3		
20	GEC1/IO100PDB3		
21	GEC0/IO100NDB3		
22	GEA1/IO98PDB3		
23	GEA0/IO98NDB3		
24	VMV3		
25	GNDQ		
26	GEA2/IO97RSB2		
27	FF/GEB2/IO96RSB2		
28	GEC2/IO95RSB2		
29	IO93RSB2		
30	IO92RSB2		
31	IO91RSB2		
32	IO90RSB2		
33	IO88RSB2		
34	IO86RSB2		
35	IO85RSB2		
36	IO84RSB2		

VQ100			
Pin Number	AGL250 Function		
37	VCC		
38	GND		
39	VCCIB2		
40	IO77RSB2		
41	IO74RSB2		
42	IO71RSB2		
43	GDC2/IO63RSB2		
44	GDB2/IO62RSB2		
45	GDA2/IO61RSB2		
46	GNDQ		
47	TCK		
48	TDI		
49	TMS		
50	VMV2		
51	GND		
52	VPUMP		
53	NC		
54	TDO		
55	TRST		
56	VJTAG		
57	GDA1/IO60USB1		
58	GDC0/IO58VDB1		
59	GDC1/IO58UDB1		
60	IO52NDB1		
61	GCB2/IO52PDB1		
62	GCA1/IO50PDB1		
63	GCA0/IO50NDB1		
64	GCC0/IO48NDB1		
65	GCC1/IO48PDB1		
66	VCCIB1		
67	GND		
68	VCC		
69	IO43NDB1		
70	GBC2/IO43PDB1		
71	GBB2/IO42PSB1		
72	IO41NDB1		

VQ100				
Pin Number	AGL250 Function			
73	GBA2/IO41PDB1			
74	VMV1			
75	GNDQ			
76	GBA1/IO40RSB0			
77	GBA0/IO39RSB0			
78	GBB1/IO38RSB0			
79	GBB0/IO37RSB0			
80	GBC1/IO36RSB0			
81	GBC0/IO35RSB0			
82	IO29RSB0			
83	IO27RSB0			
84	IO25RSB0			
85	IO23RSB0			
86	IO21RSB0			
87	VCCIB0			
88	GND			
89	VCC			
90	IO15RSB0			
91	IO13RSB0			
92	IO11RSB0			
93	GAC1/IO05RSB0			
94	GAC0/IO04RSB0			
95	GAB1/IO03RSB0			
96	GAB0/IO02RSB0			
97	GAA1/IO01RSB0			
98	GAA0/IO00RSB0			
99	GNDQ			
100	VMV0			

FG484				
Pin Number	AGL400 Function			
G5	IO151UDB3			
G6	GAC2/IO153UDB3			
G7	IO06RSB0			
G8	GNDQ			
G9	IO10RSB0			
G10	IO19RSB0			
G11	IO26RSB0			
G12	IO30RSB0			
G13	IO40RSB0			
G14	IO46RSB0			
G15	GNDQ			
G16	IO47RSB0			
G17	GBB2/IO61PPB1			
G18	IO53RSB0			
G19	IO63NDB1			
G20	NC			
G21	NC			
G22	NC			
H1	NC			
H2	NC			
Н3	VCC			
H4	IO150PDB3			
H5	IO08RSB0			
H6	IO153VDB3			
H7	IO152VDB3			
H8	VMV0			
H9	VCCIB0			
H10	VCCIB0			
H11	IO25RSB0			
H12	IO31RSB0			
H13	VCCIB0			
H14	VCCIB0			
H15	VMV1			
H16	GBC2/IO62PDB1			
H17	IO65RSB1			
H18	IO52RSB0			

Revision 27 4-69

Package Pin Assignments

FG484		
Pin Number	AGL400 Function	
H19	IO66PDB1	
H20	VCC	
H21	NC	
H22	NC NC	
J1	NC NC	
J2	NC NC	
J3	NC NC	
J4	IO150NDB3	
J5	IO149NPB3	
J6	IO09RSB0 IO152UDB3	
J7		
J8	VCCIB3	
J9	GND	
J10	VCC	
J11	VCC	
J12	VCC	
J13	VCC	
J14	GND	
J15	VCCIB1	
J16	IO62NDB1	
J17	IO49RSB0	
J18	IO64PPB1	
J19	IO66NDB1	
J20	NC	
J21	NC	
J22	NC	
K1	NC	
K2	NC	
K3	NC	
K4	IO148NDB3	
K5	IO148PDB3	
K6	IO149PPB3	
K7	GFC1/IO147PPB3	
K8	VCCIB3	
K9	VCC	
K10	GND	

4-70 Revision 27

FG484		
Pin Number	AGL400 Function	
K11	GND	
K12	GND	
K13	GND	
K14	VCC	
K15	VCCIB1	
K16	GCC1/IO67PPB1	
K17	IO64NPB1	
K18	IO73PDB1	
K19	IO73NDB1	
K20	NC	
K21	NC	
K22	NC	
L1	NC	
L2	NC	
L3	NC	
L4	GFB0/IO146NPB3	
L5	GFA0/IO145NDB3	
L6	GFB1/IO146PPB3	
L7	VCOMPLF	
L8	GFC0/IO147NPB3	
L9	VCC	
L10	GND	
L11	GND	
L12	GND	
L13	GND	
L14	VCC	
L15	GCC0/IO67NPB1	
L16	GCB1/IO68PPB1	
L17	GCA0/IO69NPB1	
L18	NC	
L19	GCB0/IO68NPB1	
L20	NC	
L21	NC	
L22	NC	
M1	NC	
M2	NC	

Revision 27 4-71

F0.494		
FG484		
Pin Number	AGL600 Function	
M3	IO158NPB3	
M4	GFA2/IO161PPB3	
M5	GFA1/IO162PDB3	
M6	VCCPLF	
M7	IO160NDB3	
M8	GFB2/IO160PDB3	
M9	VCC	
M10	GND	
M11	GND	
M12	GND	
M13	GND	
M14	VCC	
M15	GCB2/IO73PPB1	
M16	GCA1/IO71PPB1	
M17	GCC2/IO74PPB1	
M18	IO80PPB1	
M19	GCA2/IO72PDB1	
M20	IO79PPB1	
M21	IO78PPB1	
M22	NC	
N1	IO154NDB3	
N2	IO154PDB3	
N3	NC	
N4	GFC2/IO159PDB3	
N5	IO161NPB3	
N6	IO156PPB3	
N7	IO129RSB2	
N8	VCCIB3	
N9	VCC	
N10	GND	
N11	GND	
N12	GND	
N13	GND	
N14	VCC	
N15	VCCIB1	
N16	IO73NPB1	

4-84 Revision 27

IGLOO Low Power Flash FPGAs

Revision / Version	Changes	Page
Revision 3 (Feb 2008) Product Brief rev. 2	This document was updated to include AGL015 device information. QN68 is a new package offered in the AGL015. The following sections were updated: "Features and Benefits" "IGLOO Ordering Information" "Temperature Grade Offerings" "IGLOO Devices" Product Family Table Table 1 • IGLOO FPGAs Package Sizes Dimensions "AGL015 and AGL030" note The "Temperature Grade Offerings" table was updated to include M1AGL600. In the "IGLOO Ordering Information" table, the QN package measurements were updated to include both 0.4 mm and 0.5 mm. In the "General Description" section, the number of I/Os was updated from 288 to	IV III
	300.	
Packaging v1.2	The "QN68" section is new.	4-25
Revision 2 (Jan 2008) Packaging v1.1	The "CS196" package and pin table was added for AGL125.	4-10
Revision 1 (Jan 2008) Product Brief rev. 1	The "Low Power" section was updated to change the description of low power active FPGA operation to "from 12 μ W" from "from 25 μ W." The same update was made in the "General Description" section and the "Flash*Freeze Technology" section.	l, 1-1
Revision 0 (Jan 2008)	This document was previously in datasheet Advance v0.7. As a result of moving to the handbook format, Actel has restarted the numbering.	N/A
Advance v0.7 (December 2007)	Table 1 • IGLOO Product Family, the "I/Os Per Package1" table, and the Temperature Grade Offerings table were updated to reflect the following: CS196 is now supported for AGL250; device/package support for QN132 is to be determined for AGL250; the CS281 package was added for AGL600 and AGL1000.	i, ii, iv
	Table 2 • IGLOO FPGAs Package Sizes Dimensions is new, and package sizes were removed from the "I/Os Per Package1" table.	ii
	The "I/Os Per Package1"table was updated to reflect 77 instead of 79 single-ended I/Os for the VG100 package for AGL030.	ii
	The "Timing Model" was updated to be consistent with the revised timing numbers.	2-20
	In Table 2-27 • Summary of Maximum and Minimum DC Input and Output Levels Applicable to Commercial and Industrial Conditions—Software Default Settings, T_J was changed to T_A in notes 1 and 2.	2-26
	All AC Loading figures for single-ended I/O standards were changed from Datapaths at 35 pF to 5 pF.	N/A
	The "1.2 V LVCMOS (JESD8-12A)" section is new.	2-74
	This document was previously in datasheet Advance v0.7. As a result of moving to the handbook format, Actel has restarted the version numbers. The new version number is Advance v0.1.	N/A
	Table 2-4 • IGLOO CCC/PLL Specification and Table 2-5 • IGLOO CCC/PLL Specification were updated.	2-19, 2-20

Revision 27 5-10

Datasheet Information

Datasheet Categories

Categories

In order to provide the latest information to designers, some datasheet parameters are published before data has been fully characterized from silicon devices. The data provided for a given device, as highlighted in the "IGLOO Device Status" table, is designated as either "Product Brief," "Advance," "Preliminary," or "Production." The definitions of these categories are as follows:

Product Brief

The product brief is a summarized version of a datasheet (advance or production) and contains general product information. This document gives an overview of specific device and family information.

Advance

This version contains initial estimated information based on simulation, other products, devices, or speed grades. This information can be used as estimates, but not for production. This label only applies to the DC and Switching Characteristics chapter of the datasheet and will only be used when the data has not been fully characterized.

Preliminary

The datasheet contains information based on simulation and/or initial characterization. The information is believed to be correct, but changes are possible.

Unmarked (production)

This version contains information that is considered to be final.

Export Administration Regulations (EAR)

The products described in this document are subject to the Export Administration Regulations (EAR). They could require an approved export license prior to export from the United States. An export includes release of product or disclosure of technology to a foreign national inside or outside the United States.

Safety Critical, Life Support, and High-Reliability Applications Policy

The Microsemi products described in this advance status document may not have completed Microsemi's qualification process. Microsemi may amend or enhance products during the product introduction and qualification process, resulting in changes in device functionality or performance. It is the responsibility of each customer to ensure the fitness of any Microsemi product (but especially a new product) for a particular purpose, including appropriateness for safety-critical, life-support, and other high-reliability applications. Consult Microsemi's Terms and Conditions for specific liability exclusions relating to life-support applications. A reliability report covering all of the Microsemi SoC Products Group's products is available at http://www.microsemi.com/soc/documents/ORT_Report.pdf. Microsemi also offers a variety of enhanced qualification and lot acceptance screening procedures. Contact your local Microsemi sales office for additional reliability information.

5-13 Revision 27