

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

E·XF

Details	
Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	13824
Total RAM Bits	110592
Number of I/O	215
Number of Gates	600000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 85°C (TA)
Package / Case	281-TFBGA, CSBGA
Supplier Device Package	281-CSP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/m1agl600v5-csg281i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 2-20 • Different Components Contributing to the Static Power Consumption in IGLOO Devices For IGLOO V2 or V5 Devices, 1.5 V DC Core Supply Voltage

				Device-	Specific S	tatic Powe	er (mW)					
Parameter	Definition	AGL1000	AGL600	AGL400	AGL250	AGL125	AGL060	AGL030	AGL015			
PDC1	Array static power in Active mode			See	Table 2-12	2 on page 2	2-9.					
PDC2	Array static power in Static (Idle) mode		See Table 2-11 on page 2-8.									
PDC3	Array static power in Flash*Freeze mode		See Table 2-9 on page 2-7.									
PDC4	Static PLL contribution	1.84										
PDC5	Bank quiescent power (V _{CCI} -dependent)			See	Table 2-12	2 on page 2	2-9.					
PDC6	I/O input pin static power (standard-dependent)		See Table	2-13 on pa	ige 2-10 thi	rough Table	e 2-15 on p	age 2-11.				
PDC7	I/O output pin static power (standard-dependent)		See Table	2-16 on pa	ige 2-11 thr	ough Table	e 2-18 on p	age 2-12.				

Note: *For a different output load, drive strength, or slew rate, Microsemi recommends using the Microsemi power spreadsheet calculator or SmartPower tool in Libero SoC.

Table 2-21 • Different Components Contributing to Dynamic Power Consumption in IGLOO Devices For IGLOO V2 Devices, 1.2 V DC Core Supply Voltage

				Device	e Specific I (µW/N		ower		
Parameter	Definition	AGL1000	AGL600	AGL400	AGL250	AGL125	AGL060	AGL030	AGL015
PAC1	Clock contribution of a Global Rib	4.978	3.982	3.892	2.854	2.845	1.751	0.000	0.000
PAC2	Clock contribution of a Global Spine	2.773	2.248	1.765	1.740	1.122	1.261	2.229	2.229
PAC3	Clock contribution of a VersaTile row	0.883	0.924	0.881	0.949	0.939	0.962	0.942	0.942
PAC4	Clock contribution of a VersaTile used as a sequential module	0.096	0.095	0.096	0.095	0.095	0.096	0.094	0.094
PAC5	First contribution of a VersaTile used as a sequential module				0.04	45			
PAC6	Second contribution of a VersaTile used as a sequential module				0.18	86			
PAC7	Contribution of a VersaTile used as a combinatorial module	0.158	0.149	0.158	0.157	0.160	0.170	0.160	0.155
PAC8	Average contribution of a routing net	0.756	0.729	0.753	0.817	0.678	0.692	0.738	0.721
PAC9	Contribution of an I/O input pin (standard-dependent)		See Table	2-13 on pa	ge 2-10 thr	rough Table	e 2-15 on p	age 2-11.	
PAC10	Contribution of an I/O output pin (standard-dependent)		See Table	2-16 on pa	ge 2-11 thr	ough Table	e 2-18 on p	age 2-12.	
PAC11	Average contribution of a RAM block during a read operation				25.0	00			
PAC12	Average contribution of a RAM block during a write operation	RAM block during a write							
PAC13	Dynamic PLL contribution				2.1	0			

Note: For a different output load, drive strength, or slew rate, Microsemi recommends using the Microsemi power spreadsheet calculator or SmartPower tool in Libero SoC.

1.5 V LVCMOS (JESD8-11)

Low-Voltage CMOS for 1.5 V is an extension of the LVCMOS standard (JESD8-5) used for general-purpose 1.5 V applications. It uses a 1.5 V input buffer and a push-pull output buffer.

Table 2-111 • Minimum and Maximum DC Input and Output Levels Applicable to Advanced I/O Banks

1.5 V LVCMOS		VIL	VIH	VIH		VOH	IOL	ЮН	IOSH	IOSL	IIL¹	IIH ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
2 mA	-0.3	0.35 * VCCI	0.65 * VCCI	1.575	0.25 * VCCI	0.75 * VCCI	2	2	13	16	10	10
4 mA	-0.3	0.35 * VCCI	0.65 * VCCI	1.575	0.25 * VCCI	0.75 * VCCI	4	4	25	33	10	10
6 mA	-0.3	0.35 * VCCI	0.65 * VCCI	1.575	0.25 * VCCI	0.75 * VCCI	6	6	32	39	10	10
8 mA	-0.3	0.35 * VCCI	0.65 * VCCI	1.575	0.25 * VCCI	0.75 * VCCI	8	8	66	55	10	10
12 mA	-0.3	0.35 * VCCI	0.65 * VCCI	1.575	0.25 * VCCI	0.75 * VCCI	12	12	66	55	10	10

Notes:

1. IIL is the input leakage current per I/O pin over recommended operation conditions where -0.3 V < VIN < VIL.

2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges

3. Currents are measured at 100°C junction temperature and maximum voltage.

4. Currents are measured at 85°C junction temperature.

5. Software default selection highlighted in gray.

Table 2-112 • Minimum and Maximum DC Input and Output Levels Applicable to Standard Plus I/O Banks

1.5 V LVCMOS		VIL	VIH	VIH		VOH	IOL	юн	IOSH	IOSL	IIL ¹	IIH ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
2 mA	-0.3	0.35 * VCCI	0.65 * VCCI	1.575	0.25 * VCCI	0.75 * VCCI	2	2	13	16	10	10
4 mA	-0.3	0.35 * VCCI	0.65 * VCCI	1.575	0.25 * VCCI	0.75 * VCCI	4	4	25	33	10	10

Notes:

1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.

2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges

3. Currents are measured at 100°C junction temperature and maximum voltage.

4. Currents are measured at 85°C junction temperature.

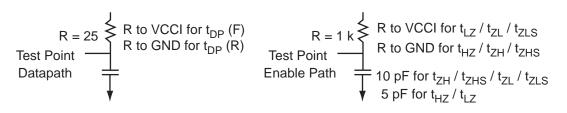
5. Software default selection highlighted in gray.

3.3 V PCI, 3.3 V PCI-X

Peripheral Component Interface for 3.3 V standard specifies support for 33 MHz and 66 MHz PCI Bus applications.

 Table 2-141 • Minimum and Maximum DC Input and Output Levels

 Applicable to Advanced and Standard Plus I/Os


3.3 V PCI/PCI-X	v	IL	V	IH	VOL	VOH	IOL	ЮН	IOSH	IOSL	IIL	IIH
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ¹	Max. mA ¹	μA ²	μA²
Per PCI specification		Per PCI curves							10	10		

Notes:

1. Currents are measured at 100°C junction temperature and maximum voltage.

2. Currents are measured at 85°C junction temperature.

AC loadings are defined per the PCI/PCI-X specifications for the datapath; Microsemi loadings for enable path characterization are described in Figure 2-12.

Figure 2-12 • AC Loading

AC loadings are defined per PCI/PCI-X specifications for the datapath; Microsemi loading for tristate is described in Table 2-142.

Table 2-142 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	C _{LOAD} (pF)
0	3.3	0.285 * VCCI for t _{DP(R)}	10
		0.615 * VCCI for $t_{DP(F)}$	

Note: *Measuring point = Vtrip. See Table 2-29 on page 2-28 for a complete table of trip points.

Timing Characteristics

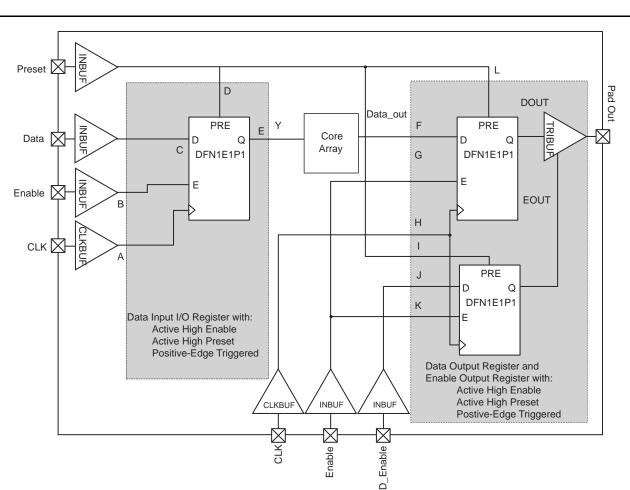
1.5 V DC Core Voltage

Table 2-143 • 3.3 V PCI/PCI-X

Commercial-Case Conditions: $T_J = 70^{\circ}$ C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V Applicable to Advanced I/O Banks

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{ZHS}	Units
Std.	0.97	2.32	0.19	0.70	0.66	2.37	1.78	2.67	3.05	5.96	5.38	ns

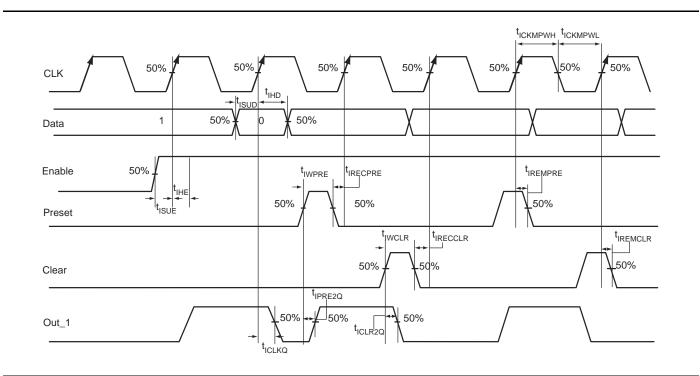
Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.


Table 2-144 • 3.3 V PCI/PCI-X

Commercial-Case Conditions: $T_J = 70^{\circ}$ C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V Applicable to Standard Plus I/O Banks

Speed Grade t	LOOUT	τ _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{ZHS}	Units
Std.	0.97	1.97	0.19	0.70	0.66	2.01	1.50	2.36	2.79	5.61	5.10	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.


I/O Register Specifications

Fully Registered I/O Buffers with Synchronous Enable and Asynchronous Preset

Figure 2-16 • Timing Model of Registered I/O Buffers with Synchronous Enable and Asynchronous Preset

Input Register

Figure 2-18 • Input Register Timing Diagram

Timing Characteristics

1.5 V DC Core Voltage

Table 2-157 • Input Data Register Propagation DelaysCommercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V

Parameter	Description	Std.	Units
t _{ICLKQ}	Clock-to-Q of the Input Data Register	0.42	ns
t _{ISUD}	Data Setup Time for the Input Data Register	0.47	ns
t _{IHD}	Data Hold Time for the Input Data Register	0.00	ns
t _{ISUE}	Enable Setup Time for the Input Data Register	0.67	ns
t _{IHE}	Enable Hold Time for the Input Data Register	0.00	ns
t _{ICLR2Q}	Asynchronous Clear-to-Q of the Input Data Register	0.79	ns
t _{IPRE2Q}	Asynchronous Preset-to-Q of the Input Data Register	0.79	ns
t _{IREMCLR}	Asynchronous Clear Removal Time for the Input Data Register	0.00	ns
t _{IRECCLR}	Asynchronous Clear Recovery Time for the Input Data Register	0.24	ns
t _{IREMPRE}	Asynchronous Preset Removal Time for the Input Data Register	0.00	ns
t _{IRECPRE}	Asynchronous Preset Recovery Time for the Input Data Register	0.24	ns
t _{IWCLR}	Asynchronous Clear Minimum Pulse Width for the Input Data Register	0.19	ns
t _{IWPRE}	Asynchronous Preset Minimum Pulse Width for the Input Data Register	0.19	ns
t _{ICKMPWH}	Clock Minimum Pulse Width High for the Input Data Register	0.31	ns
t _{ICKMPWL}	Clock Minimum Pulse Width Low for the Input Data Register	0.28	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

Timing Characteristics

1.5 V DC Core Voltage

Table 2-195 • FIFO

Worst Commercial-Case Conditions: T_J = 70°C, VCC = 1.425 V

Parameter	Description	Std.	Units
t _{ENS}	REN, WEN Setup Time	1.99	ns
t _{ENH}	REN, WEN Hold Time	0.16	ns
t _{BKS}	BLK Setup Time	0.30	ns
t _{BKH}	BLK Hold Time	0.00	ns
t _{DS}	Input Data (WD) Setup Time	0.76	ns
t _{DH}	Input Data (WD) Hold Time	0.25	ns
t _{CKQ1}	Clock High to New Data Valid on RD (flow-through)	3.33	ns
t _{CKQ2}	Clock High to New Data Valid on RD (pipelined)	1.80	ns
t _{RCKEF}	RCLK High to Empty Flag Valid	3.53	ns
t _{WCKFF}	WCLK High to Full Flag Valid	3.35	ns
t _{CKAF}	Clock High to Almost Empty/Full Flag Valid	12.85	ns
t _{RSTFG}	RESET Low to Empty/Full Flag Valid	3.48	ns
t _{RSTAF}	RESET Low to Almost Empty/Full Flag Valid	12.72	ns
t _{RSTBQ}	RESET Low to Data Out Low on RD (flow-through)	2.02	ns
	RESET Low to Data Out Low on RD (pipelined)	2.02	ns
t _{REMRSTB}	RESET Removal	0.61	ns
t _{RECRSTB}	RESET Recovery	3.21	ns
t _{MPWRSTB}	RESET Minimum Pulse Width	0.68	ns
t _{CYC}	Clock Cycle Time	6.24	ns
F _{MAX}	Maximum Frequency for FIFO	160	MHz

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

The Flash*Freeze pin can be used with any single-ended I/O standard supported by the I/O bank in which the pin is located, and input signal levels compatible with the I/O standard selected. The FF pin should be treated as a sensitive asynchronous signal. When defining pin placement and board layout, simultaneously switching outputs (SSOs) and their effects on sensitive asynchronous pins must be considered.

Unused FF or I/O pins are tristated with weak pull-up. This default configuration applies to both Flash*Freeze mode and normal operation mode. No user intervention is required.

Table 3-1 shows the Flash*Freeze pin location on the available packages for IGLOO a devices. The Flash*Freeze pin location is independent of device, allowing migration to larger or smaller IGLOO devices while maintaining the same pin location on the board. Refer to the "Flash*Freeze Technology and Low Power Modes" chapter of the *IGLOO FPGA Fabric User Guide* for more information on I/O states during Flash*Freeze mode.

Table 3-1 • Flash*Freeze Pin Location in IGLOO Family Packages (device-independent)

IGLOO Packages	Flash*Freeze Pin
CS81/UC81	H2
CS121	J5
CS196	P3
CS281	W2
QN48	14
QN68	18
QN132	B12
VQ100	27
FG144	L3
FG256	Т3
FG484	W6

JTAG Pins

IGLOO devices have a separate bank for the dedicated JTAG pins. The JTAG pins can be run at any voltage from 1.5 V to 3.3 V (nominal). VCC must also be powered for the JTAG state machine to operate, even if the device is in bypass mode; VJTAG alone is insufficient. Both VJTAG and VCC to the part must be supplied to allow JTAG signals to transition the device. Isolating the JTAG power supply in a separate I/O bank gives greater flexibility in supply selection and simplifies power supply and PCB design. If the JTAG interface is neither used nor planned for use, the VJTAG pin together with the TRST pin could be tied to GND.

TCK Test Clock

Test clock input for JTAG boundary scan, ISP, and UJTAG. The TCK pin does not have an internal pull-up/-down resistor. If JTAG is not used, Microsemi recommends tying off TCK to GND through a resistor placed close to the FPGA pin. This prevents JTAG operation in case TMS enters an undesired state.

Note that to operate at all VJTAG voltages, 500 Ω to 1 k Ω will satisfy the requirements. Refer to Table 3-2 for more information.

Table 3-2 • Recommended Tie-Off Values for the TCK and TRST Pins

VJTAG	Tie-Off Resistance ^{1,2}
VJTAG at 3.3 V	200 Ω to 1 kΩ
VJTAG at 2.5 V	200 Ω to 1 kΩ
VJTAG at 1.8 V	500 Ω to 1 kΩ
VJTAG at 1.5 V	500 Ω to 1 kΩ

Notes:

1. The TCK pin can be pulled-up or pulled-down.

2. The TRST pin is pulled-down.

TDI

3. Equivalent parallel resistance if more than one device is on the JTAG chain

Table 3-3 • TRST and TCK Pull-Down Recommendations

VJTAG	Tie-Off Resistance*
VJTAG at 3.3 V	200 Ω to 1 k Ω
VJTAG at 2.5 V	200 Ω to 1 kΩ
VJTAG at 1.8 V	500 Ω to 1 k Ω
VJTAG at 1.5 V	500 Ω to 1 k Ω

Note: Equivalent parallel resistance if more than one device is on the JTAG chain

Test Data Input

Serial input for JTAG boundary scan, ISP, and UJTAG usage. There is an internal weak pull-up resistor on the TDI pin.

TDO Test Data Output

Serial output for JTAG boundary scan, ISP, and UJTAG usage.

TMS Test Mode Select

The TMS pin controls the use of the IEEE 1532 boundary scan pins (TCK, TDI, TDO, TRST). There is an internal weak pull-up resistor on the TMS pin.

TRST Boundary Scan Reset Pin

The TRST pin functions as an active-low input to asynchronously initialize (or reset) the boundary scan circuitry. There is an internal weak pull-up resistor on the TRST pin. If JTAG is not used, an external pull-down resistor could be included to ensure the test access port (TAP) is held in reset mode. The resistor values must be chosen from Table 3-2 and must satisfy the parallel resistance value requirement. The values in Table 3-2 correspond to the resistor recommended when a single device is used, and the equivalent parallel resistor when multiple devices are connected via a JTAG chain.

In critical applications, an upset in the JTAG circuit could allow entrance to an undesired JTAG state. In such cases, Microsemi recommends tying off TRST to GND through a resistor placed close to the FPGA pin.

Note that to operate at all VJTAG voltages, 500 Ω to 1 k Ω will satisfy the requirements.

Special Function Pins

NC

No Connect

This pin is not connected to circuitry within the device. These pins can be driven to any voltage or can be left floating with no effect on the operation of the device.

DC Do Not Connect

This pin should not be connected to any signals on the PCB. These pins should be left unconnected.

Packaging

Semiconductor technology is constantly shrinking in size while growing in capability and functional integration. To enable next-generation silicon technologies, semiconductor packages have also evolved to provide improved performance and flexibility.

Microsemi consistently delivers packages that provide the necessary mechanical and environmental protection to ensure consistent reliability and performance. Microsemi IC packaging technology efficiently supports high-density FPGAs with large-pin-count Ball Grid Arrays (BGAs), but is also flexible enough to accommodate stringent form factor requirements for Chip Scale Packaging (CSP). In addition, Microsemi offers a variety of packages designed to meet your most demanding application and economic requirements for today's embedded and mobile systems.

Related Documents

User Guides

IGLOO FPGA Fabric User Guide http://www.microsemi.com/soc/documents/IGLOO_UG.pdf

Packaging Documents

The following documents provide packaging information and device selection for low power flash devices.

Product Catalog

http://www.microsemi.com/soc/documents/ProdCat_PIB.pdf

Lists devices currently recommended for new designs and the packages available for each member of the family. Use this document or the datasheet tables to determine the best package for your design, and which package drawing to use.

Package Mechanical Drawings

http://www.microsemi.com/soc/documents/PckgMechDrwngs.pdf

This document contains the package mechanical drawings for all packages currently or previously supplied by Microsemi. Use the bookmarks to navigate to the package mechanical drawings.

Additional packaging materials are available on the Microsemi SoC Products Group website at http://www.microsemi.com/soc/products/solutions/package/docs.aspx.

IGLOO Low Power Flash FPGAs

	CS281		CS281		CS281	
Pin Number	AGL600 Function	n Pin Number	AGL600 Function	Pin Number	AGL600 Function	
A1	GND	B18	VCCIB1	E13	IO46RSB0	
A2	GAB0/IO02RSB0	B19	IO61NDB1	E14	GBB1/IO57RSB0	
A3	GAC1/IO05RSB0	C1	GAB2/IO173PPB3	E15	IO62NPB1	
A4	IO07RSB0	C2	IO174NPB3	E16	IO63PPB1	
A5	IO10RSB0	C6	IO12RSB0	E18	IO64PPB1	
A6	IO14RSB0	C14	IO50RSB0	E19	IO65NPB1	
A7	IO18RSB0	C18	IO60NPB1	F1	IO168NPB3	
A8	IO21RSB0	C19	GBB2/IO61PDB1	F2	GND	
A9	IO22RSB0	D1	IO170PPB3	F3	IO169PPB3	
A10	VCCIB0	D2	IO172NPB3	F4	IO170NPB3	
A11	IO33RSB0	D4	GAA0/IO00RSB0	F5	IO173NPB3	
A12	IO40RSB0	D5	GAA1/IO01RSB0	F15	IO63NPB1	
A13	IO37RSB0	D6	IO09RSB0	F16	IO65PPB1	
A14	IO48RSB0	D7	IO16RSB0	F17	IO64NPB1	
A15	IO51RSB0	D8	IO19RSB0	F18	GND	
A16	IO53RSB0	D9	IO26RSB0	F19	IO68PPB1	
A17	GBC1/IO55RSB0	D10	GND	G1	IO167NPB3	
A18	GBA0/IO58RSB0	D11	IO34RSB0	G2	IO165NDB3	
A19	GND	D12	IO45RSB0	G4	IO168PPB3	
B1	GAA2/IO174PPB3	D13	IO49RSB0	G5	IO167PPB3	
B2	VCCIB0	D14	IO47RSB0	G7	GAC2/IO172PPB3	
B3	GAB1/IO03RSB0	D15	GBB0/IO56RSB0	G8	VCCIB0	
B4	GAC0/IO04RSB0	D16	GBA2/IO60PPB1	G9	IO28RSB0	
B5	IO06RSB0	D18	GBC2/IO62PPB1	G10	IO32RSB0	
B6	GND	D19	IO66NPB1	G11	IO43RSB0	
B7	IO15RSB0	E1	IO169NPB3	G12	VCCIB0	
B8	IO20RSB0	E2	IO171PPB3	G13	IO66PPB1	
B9	IO23RSB0	E4	IO171NPB3	G15	IO67NDB1	
B10	IO24RSB0	E5	IO08RSB0	G16	IO67PDB1	
B11	IO36RSB0	E6	IO11RSB0	G18	GCC0/IO69NPB1	
B12	IO35RSB0	E7	IO13RSB0	G19	GCB1/IO70PPB1	
B13	IO44RSB0	E8	IO17RSB0	H1	GFB0/IO163NPB3	
B14	GND	E9	IO25RSB0	H2	IO165PDB3	
B15	IO52RSB0	E10	IO30RSB0	H4	GFC1/IO164PPB3	
B16	GBC0/IO54RSB0	E11	IO41RSB0	H5	GFB1/IO163PPB3	
B17	GBA1/IO59RSB0	E12	IO42RSB0	H7	VCCIB3	

Package Pin Assignments

	CS281		CS281	CS281	
Pin Number	AGL600 Function	Pin Number	per AGL600 Function Pin Number AGL60		AGL600 Function
H8	VCC	K15	IO73NPB1	N4	IO150PPB3
H9	VCCIB0	K16	GND	N5	IO148NPB3
H10	VCC	K18	IO74NPB1	N7	GEA2/IO143RSB2
H11	VCCIB0	K19	VCCIB1	N8	VCCIB2
H12	VCC	L1	GFB2/IO160PDB3	N9	IO117RSB2
H13	VCCIB1	L2	IO160NDB3	N10	IO115RSB2
H15	IO68NPB1	L4	GFC2/IO159PPB3	N11	IO114RSB2
H16	GCB0/IO70NPB1	L5	IO153PPB3	N12	VCCIB2
H18	GCA1/IO71PPB1	L7	IO153NPB3	N13	VPUMP
H19	GCA2/IO72PPB1	L8	VCCIB3	N15	IO82PPB1
J1	VCOMPLF	L9	GND	N16	IO85PPB1
J2	GFA0/IO162NDB3	L10	GND	N18	IO82NPB1
J4	VCCPLF	L11	GND	N19	IO81PPB1
J5	GFC0/IO164NPB3	L12	VCCIB1	P1	IO151PDB3
J7	GFA2/IO161PDB3	L13	IO76PPB1	P2	GND
J8	VCCIB3	L15	IO76NPB1	P3	IO151NDB3
J9	GND	L16	IO77PPB1	P4	IO149PPB3
J10	GND	L18	IO78NPB1	P5	GEA0/IO144NPB3
J11	GND	L19	IO77NPB1	P15	IO83NDB1
J12	VCCIB1	M1	IO158PDB3	P16	IO83PDB1
J13	GCC1/IO69PPB1	M2	IO158NDB3	P17	GDC1/IO86PPB1
J15	GCA0/IO71NPB1	M4	IO154NPB3	P18	GND
J16	GCB2/IO73PPB1	M5	IO152PPB3	P19	IO85NPB1
J18	IO72NPB1	M7	VCCIB3	R1	IO150NPB3
J19	IO75PSB1	M8	VCC	R2	IO149NPB3
K1	VCCIB3	M9	VCCIB2	R4	GEC1/IO146PPB3
K2	GFA1/IO162PDB3	M10	VCC	R5	GEB1/IO145PPB3
K4	GND	M11	VCCIB2	R6	IO138RSB2
K5	IO159NPB3	M12	VCC	R7	IO127RSB2
K7	IO161NDB3	M13	VCCIB1	R8	IO123RSB2
K8	VCC	M15	IO79NPB1	R9	IO118RSB2
K9	GND	M16	IO81NPB1	R10	IO111RSB2
K10	GND	M18	IO79PPB1	R11	IO106RSB2
K11	GND	M19	IO78PPB1	R12	IO103RSB2
K12	VCC	N1	IO154PPB3	R13	IO97RSB2
K13	GCC2/IO74PPB1	N2	IO152NPB3	R14	IO95RSB2

Package Pin Assignments

CS281		
Pin Number	AGL1000 Function	
A1	GND	
A2	GAB0/IO02RSB0	
A3	GAC1/IO05RSB0	
A4	IO13RSB0	
A5	IO11RSB0	
A6	IO16RSB0	
A7	IO20RSB0	
A8	IO24RSB0	
A9	IO29RSB0	
A10	VCCIB0	
A11	IO39RSB0	
A12	IO45RSB0	
A13	IO48RSB0	
A14	IO58RSB0	
A15	IO61RSB0	
A16	IO62RSB0	
A17	GBC1/IO73RSB0	
A18	GBA0/IO76RSB0	
A19	GND	
B1	GAA2/IO225PPB3	
B2	VCCIB0	
B3	GAB1/IO03RSB0	
B4	GAC0/IO04RSB0	
B5	IO12RSB0	
B6	GND	
B7	IO21RSB0	
B8	IO26RSB0	
B9	IO34RSB0	
B10	IO35RSB0	
B11	IO36RSB0	
B12	IO46RSB0	
B13	IO52RSB0	
B14	GND	
B15	IO59RSB0	
B16	GBC0/IO72RSB0	
B17	GBA1/IO77RSB0	

	CS281
Pin Number	AGL1000 Function
B18	VCCIB1
B19	IO79NDB1
C1	GAB2/IO224PPB3
C2	IO225NPB3
C6	IO18RSB0
C14	IO63RSB0
C18	IO78NPB1
C19	GBB2/IO79PDB1
D1	IO219PPB3
D2	IO223NPB3
D4	GAA0/IO00RSB0
D5	GAA1/IO01RSB0
D6	IO15RSB0
D7	IO19RSB0
D8	IO27RSB0
D9	IO32RSB0
D10	GND
D11	IO38RSB0
D12	IO44RSB0
D13	IO47RSB0
D14	IO60RSB0
D15	GBB0/IO74RSB0
D16	GBA2/IO78PPB1
D18	GBC2/IO80PPB1
D19	IO88NPB1
E1	IO217NPB3
E2	IO221PPB3
E4	IO221NPB3
E5	IO10RSB0
E6	IO14RSB0
E7	IO25RSB0
E8	IO28RSB0
E9	IO31RSB0
E10	IO33RSB0
E11	IO42RSB0
E12	IO49RSB0

CS281				
Pin Number AGL1000 Function				
E13	IO53RSB0			
E14	GBB1/IO75RSB0			
E15	IO80NPB1			
E16	IO85PPB1			
E18	IO83PPB1			
E19	IO84NPB1			
F1	IO214NPB3			
F2	GND			
F3	IO217PPB3			
F4	IO219NPB3			
F5	IO224NPB3			
F15	IO85NPB1			
F16	IO84PPB1			
F17	IO83NPB1			
F18	GND			
F19	IO90PPB1			
G1	IO212NPB3			
G2	IO211NDB3			
G4	IO214PPB3			
G5	IO212PPB3			
G7	GAC2/IO223PPB3			
G8	VCCIB0			
G9	IO30RSB0			
G10	IO37RSB0			
G11	IO43RSB0			
G12	VCCIB0			
G13	IO88PPB1			
G15	IO89NDB1			
G16	IO89PDB1			
G18	GCC0/IO91NPB1			
G19	GCB1/IO92PPB1			
H1	GFB0/IO208NPB3			
H2	IO211PDB3			
H4	GFC1/IO209PPB3			
H5	GFB1/IO208PPB3			
H7	VCCIB3			

Package Pin Assignments

	VQ100		VQ100		VQ100		
Pin Number	AGL030 Function	Pin Number	AGL030 Function	Pin Number	AGL030 Function		
1	GND	37	VCC	73	IO27RSB0		
2	IO82RSB1	38	GND	74	IO26RSB0		
3	IO81RSB1	39	VCCIB1	75	IO25RSB0		
4	IO80RSB1	40	IO49RSB1	76	IO24RSB0		
5	IO79RSB1	41	IO47RSB1	77	IO23RSB0		
6	IO78RSB1	42	IO46RSB1	78	IO22RSB0		
7	IO77RSB1	43	IO45RSB1	79	IO21RSB0		
8	IO76RSB1	44	IO44RSB1	80	IO20RSB0		
9	GND	45	IO43RSB1	81	IO19RSB0		
10	IO75RSB1	46	IO42RSB1	82	IO18RSB0		
11	IO74RSB1	47	ТСК	83	IO17RSB0		
12	GEC0/IO73RSB1	48	TDI	84	IO16RSB0		
13	GEA0/IO72RSB1	49	TMS	85	IO15RSB0		
14	GEB0/IO71RSB1	50	NC	86	IO14RSB0		
15	IO70RSB1	51	GND	87	VCCIB0		
16	IO69RSB1	52	VPUMP	88	GND		
17	VCC	53	NC	89	VCC		
18	VCCIB1	54	TDO	90	IO12RSB0		
19	IO68RSB1	55	TRST	91	IO10RSB0		
20	IO67RSB1	56	VJTAG	92	IO08RSB0		
21	IO66RSB1	57	IO41RSB0	93	IO07RSB0		
22	IO65RSB1	58	IO40RSB0	94	IO06RSB0		
23	IO64RSB1	59	IO39RSB0	95	IO05RSB0		
24	IO63RSB1	60	IO38RSB0	96	IO04RSB0		
25	IO62RSB1	61	IO37RSB0	97	IO03RSB0		
26	IO61RSB1	62	IO36RSB0	98	IO02RSB0		
27	FF/IO60RSB1	63	GDB0/IO34RSB0	99	IO01RSB0		
28	IO59RSB1	64	GDA0/IO33RSB0	100	IO00RSB0		
29	IO58RSB1	65	GDC0/IO32RSB0	L			
30	IO57RSB1	66	VCCIB0				
31	IO56RSB1	67	GND				
32	IO55RSB1	68	VCC				
33	IO54RSB1	69	IO31RSB0				
34	IO53RSB1	70	IO30RSB0				
35	IO52RSB1	71	IO29RSB0				
36	IO51RSB1	72	IO28RSB0				

FG484		
Pin Number AGL600 Function		
K11	GND	
K12	GND	
K13	GND	
K14	VCC	
K15	VCCIB1	
K16	GCC1/IO69PPB1	
K17	IO65NPB1	
K18	IO75PDB1	
K19	IO75NDB1	
K20	NC	
K21	IO76NDB1	
K22	IO76PDB1	
L1	NC	
L2	IO155PDB3	
L3	NC	
L4	GFB0/IO163NPB3	
L5	GFA0/IO162NDB3	
L6	GFB1/IO163PPB3	
L7	VCOMPLF	
L8	GFC0/IO164NPB3	
L9	VCC	
L10	GND	
L11	GND	
L12	GND	
L13	GND	
L14	VCC	
L15	GCC0/IO69NPB1	
L16	GCB1/IO70PPB1	
L17	GCA0/IO71NPB1	
L18	IO67NPB1	
L19	GCB0/IO70NPB1	
L20	IO77PDB1	
L21	IO77NDB1	
L22	IO78NPB1	
M1	NC	
M2	IO155NDB3	

FG484		
Pin Number AGL600 Function		
U1	IO149PDB3	
U2	IO149NDB3	
U3	NC	
U4	GEB1/IO145PDB3	
U5	GEB0/IO145NDB3	
U6	VMV2	
U7	IO138RSB2	
U8	IO136RSB2	
U9	IO131RSB2	
U10	IO124RSB2	
U11	IO119RSB2	
U12	IO107RSB2	
U13	IO104RSB2	
U14	IO97RSB2	
U15	VMV1	
U16	ТСК	
U17	VPUMP	
U18	TRST	
U19	GDA0/IO88NDB1	
U20	NC	
U21	IO83NDB1	
U22	NC	
V1	NC	
V2	NC	
V3	GND	
V4	GEA1/IO144PDB3	
V5	GEA0/IO144NDB3	
V6	IO139RSB2	
V7	GEC2/IO141RSB2	
V8	IO132RSB2	
V9	IO127RSB2	
V10	IO121RSB2	
V11	IO114RSB2	
V12	IO109RSB2	
V13	IO105RSB2	
V14	IO98RSB2	

5 – Datasheet Information

List of Changes

The following tables list critical changes that were made in each revision of the IGLOO datasheet.

Revision	Changes	Page
Revision 27 (May 2016)	Added the deleted package FG144 from AGL125 device in "IGLOO Devices" (SAR 79355).	1-I
Revision 26 (March 2016)	 Updated "IGLOO Ordering Information" and "Temperature Grade Offerings" notes by: Replacing Commercial (0°C to +70°C Ambient Temperature) with Commercial (0°C to +85°C Junction Temperature) (SAR 48352). Replacing Industrial (-40°C to +85°C Ambient Temperature) with Industrial (-40°C to +100°C Junction Temperature) (SAR 48352). 	1-III and 1-IV
	Ambient temperature row removed in Table 2-2 (SAR 48352).	2-2
	Updated Table 2-2 note 2 from "To ensure targeted reliability standards are met across ambient and junction operating temperatures, Microsemi recommends that the user follow best design practices using Microsemi's timing and power simulation tools." to "Software Default Junction Temperature Range in the Libero SoC software is set to 0°C to +70°C for commercial, and -40°C to +85°C for industrial. To ensure targeted reliability standards are met across the full range of junction temperatures, Microsemi recommends using custom settings for temperature range before running timing and power analysis tools. For more information on custom settings, refer to the New Project Dialog Box in the Libero SoC Online Help." (SAR 77087).	2-2
	Updated Table 2-2 note 9 from "VMV pins must be connected to the corresponding VCCI pins. See the "Pin Descriptions" chapter of the IGLOO FPGA Fabric User Guide for further information." to "VMV and VCCI must be at the same voltage within a given I/O bank. VMV pins must be connected to the corresponding VCCI pins. See the "VMVx I/O Supply Voltage (quiet)" on page 3-1 for further information." (SAR 77087)	2-2
	Added 2 mA drive strengths in tables same as 4 mA (SAR 57179).	NA
	Added reference of Package Mechanical Drawings document in all package pin assignment notes (76777).	NA
Revision 25 (June2015)	Removed package FG144 from AGL060 device in the following tables: "IGLOO Devices", "I/Os Per Package1" and "Temperature Grade Offerings" (SAR 68517)	I, II, and IV
	Removed Package Pin Assignment table of AGL060 device from FG144.(SAR 68517)	-
Revision 24 (March 2014)	Note added for the discontinuance of QN132 package to the following tables: "IGLOO Devices", "I/Os Per Package1", "IGLOO FPGAs Package Sizes Dimensions", and "Temperature Grade Offerings" and "QN132" section (SAR 55117, PDN 1306).	I, II, IV, and 4-28
	Removed packages CS81 and QN132 from AGL250 device in the following tables: "IGLOO Devices", "I/Os Per Package1", and "Temperature Grade Offerings" (SAR 49472).	I, II, and IV

IGLOO Low Power Flash FPGAs

Revision / Version	Changes	Page
Revision 18 (Nov 2009)	The version changed to v2.0 for IGLOO datasheet chapters, indicating the datasheet contains information based on final characterization. Please review the datasheet carefully as most tables were updated with new data.	N/A
Revision 17 (Sep 2009) Product Brief v1.6	The "Reprogrammable Flash Technology" section was modified to add "250 MHz (1.5 V systems) and 160 MHz (1.2 V systems) System Performance."	I
	"IGLOO Ordering Information" was revised to note that halogen-free packages are available with RoHS-compliant packaging.	
	Table 1-1 • I/O Standards Supported is new.	1-7
	The definitions of hot-swap and cold-sparing were added to the "I/Os with Advanced I/O Standards" section.	1-7
Revision 16 (Apr 2009) Product Brief v1.5	M1AGL400 is no longer offered and was removed from the "IGLOO Devices" product table, "IGLOO Ordering Information", and "Temperature Grade Offerings".	I, III, IV
	The –F speed grade is no longer offered for IGLOO devices. The speed grade column and note regarding –F speed grade were removed from "IGLOO Ordering Information". The "Speed Grade and Temperature Grade Matrix" section was removed.	III, IV
	This datasheet now has fully characterized data and has moved from being Advance to a Production version. The version number changed from Advance v0.5 to v2.0.	N/A
	Please review the datasheet carefully as most tables were updated with new data.	
DC and Switching Characteristics Advance v0.6	$3.3~\rm V$ LVCMOS and 1.2 V LVCMOS Wide Range support was added to the datasheet. This affects all tables that contained 3.3 V LVCMOS and 1.2 V LVCMOS data.	
	$\rm I_{\rm IL}$ and $\rm I_{\rm IH}$ input leakage current information was added to all "Minimum and Maximum DC Input and Output Levels" tables.	N/A
	-F was removed from the datasheet. The speed grade is no longer supported.	N/A
	The notes in Table 2-2 • Recommended Operating Conditions 1 were updated.	2-2
	Table 2-4 • Overshoot and Undershoot Limits 1 was updated.	2-3
	Table 2-5 • Package Thermal Resistivities was updated.	2-6
	Table 2-6 • Temperature and Voltage Derating Factors for Timing Delays (normalized to $TJ = 70^{\circ}$ C, VCC = 1.425 V) and Table 2-7 • Temperature and Voltage Derating Factors for Timing Delays (normalized to $TJ = 70^{\circ}$ C, VCC = 1.14 V) were updated.	2-7
	In Table 2-191 • RAM4K9 and Table 2-193 • RAM4K9, the following specifications were removed:	2-122 and
	twro	2-124
	tсскн	
	In Table 2-192 • RAM512X18 and Table 2-194 • RAM512X18, the following specifications were removed:	2-123 and
	twro	2-125
	tсскн	
Revision 15 (Feb 2009)	The "QN132" pin table for the AGL060 device is new.	4-31
Packaging v1.9		

IGLOO Low Power Flash FPGAs

Revision / Version	Changes	Page
DC & Switching, cont'd.	Table 2-49 · Minimum and Maximum DC Input and Output Levels for LVCMOS 3.3 V Wide Range is new.	2-39
Revision 9 (Jul 2008) Product Brief v1.1 DC and Switching Characteristics Advance v0.3	As a result of the Libero IDE v8.4 release, Actel now offers a wide range of core voltage support. The document was updated to change $1.2 \text{ V} / 1.5 \text{ V}$ to 1.2 V to 1.5 V .	N/A
Revision 8 (Jun 2008)	As a result of the Libero IDE v8.4 release, Actel now offers a wide range of core voltage support. The document was updated to change $1.2 \text{ V} / 1.5 \text{ V}$ to 1.2 V to 1.5 V .	N/A
DC and Switching Characteristics Advance v0.2	Tables have been updated to reflect default values in the software. The default I/O capacitance is 5 pF. Tables have been updated to include the LVCMOS 1.2 V I/O set. DDR Tables have two additional data points added to reflect both edges for Input DDR setup and hold time. The power data table has been updated to match SmartPower data rather then simulation values. AGL015 global clock delays have been added.	N/A
	Table 2-1 • Absolute Maximum Ratings was updated to combine the VCCI and VMV parameters in one row. The word "output" from the parameter description for VCCI and VMV, and table note 3 was added.	2-1
	Table 2-2 • Recommended Operating Conditions 1 was updated to add references to tables notes 4, 6, 7, and 8. VMV was added to the VCCI parameter row, and table note 9 was added.	2-2
	In Table 2-3 • Flash Programming Limits – Retention, Storage, and Operating Temperature1, the maximum operating junction temperature was changed from 110° to 100°.	2-3
	VMV was removed from Table 2-4 • Overshoot and Undershoot Limits 1. The table title was modified to remove "as measured on quiet I/Os." Table note 2 was revised to remove "estimated SSO density over cycles." Table note 3 was revised to remove "refers only to overshoot/undershoot limits for simultaneous switching I/Os."	2-3
	The "PLL Behavior at Brownout Condition" section is new.	2-4
	Figure 2-2 • V2 Devices – I/O State as a Function of VCCI and VCC Voltage Levels is new.	2-5
	EQ 2 was updated. The temperature was changed to 100°C, and therefore the end result changed.	2-6
	The table notes for Table 2-9 • Quiescent Supply Current (IDD) Characteristics, IGLOO Flash*Freeze Mode*, Table 2-10 • Quiescent Supply Current (IDD) Characteristics, IGLOO Sleep Mode*, and Table 2-11 • Quiescent Supply Current (IDD) Characteristics, IGLOO Shutdown Mode were updated to remove VMV and include PDC6 and PDC7. VCCI and VJTAG were removed from the statement about IDD in the table note for Table 2-11 • Quiescent Supply Current (IDD) Characteristics, IGLOO Shutdown Mode.	2-7
	Note 2 of Table 2-12 • Quiescent Supply Current (IDD), No IGLOO Flash*Freeze Mode1 was updated to include VCCPLL. Note 4 was updated to include PDC6 and PDC7.	2-9

Microsemi Corporate Headquarters

One Enterprise, Aliso Viejo, CA 92656 USA Within the USA: +1 (800) 713-4113 Outside the USA: +1 (949) 380-6100 Sales: +1 (949) 380-6136 Fax: +1 (949) 215-4996 E-mail: sales.support@microsemi.com www.microsemi.com

© 2016 Microsemi Corporation. All rights reserved. Microsemi and the Microsemi logo are trademarks of Microsemi Corporation. All other trademarks and service marks are the property of their respective owners. Microsemi makes no warranty, representation, or guarantee regarding the information contained herein or the suitability of its products and services for any particular purpose, nor does Microsemi assume any liability whatsoever arising out of the application or use of any product or circuit. The products sold hereunder and any other products sold by Microsemi have been subject to limited testing and should not be used in conjunction with mission-critical equipment or applications. Any performance specifications are believed to be reliable but are not verified, and Buyer must conduct and complete all performance and other testing of the products, alone and together with, or installed in, any end-products. Buyer shall not rely on any data and performance specifications or parameters provided by Microsemi. It is the Buyer's responsibility to independently determine suitability of any products and to test and verify the same. The information provided by Microsemi hereunder is provided "as is, where is" and with all faults, and the entire risk associated with such information is entirely with the Buyer. Microsemi does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other IP rights, whether with regard to such information itself or anything described by such information. Information provided in this document is proprietary to Microsemi, and Microsemi reserves the right to make any changes to the information in this document or to any products and services at any time without notice.

About Microsemi

Microsemi Corporation (Nasdaq: MSCC) offers a comprehensive portfolio of semiconductor and system solutions for aerospace & defense, communications, data center and industrial markets. Products include high-performance and radiation-hardened analog mixed-signal integrated circuits, FPGAs, SoCs and ASICs; power management products; timing and synchronization devices and precise time solutions, setting the world's standard for time; voice processing devices; RF solutions; discrete components; enterprise storage and communication solutions, security technologies and scalable anti-tamper products; Ethernet solutions; Power-over-Ethernet ICs and midspans; as well as custom design capabilities and services. Microsemi is headquartered in Aliso Viejo, Calif., and has approximately 4,800 employees globally. Learn more at www.microsemi.com.