

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	
Number of Logic Elements/Cells	13824
Total RAM Bits	110592
Number of I/O	97
Number of Gates	600000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 70°C (TA)
Package / Case	144-LBGA
Supplier Device Package	144-FPBGA (13x13)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/m1agl600v5-fgg144

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Flash*Freeze Technology

The IGLOO device has an ultra-low power static mode, called Flash*Freeze mode, which retains all SRAM and register information and can still quickly return to normal operation. Flash*Freeze technology enables the user to quickly (within 1 µs) enter and exit Flash*Freeze mode by activating the Flash*Freeze pin while all power supplies are kept at their original values. In addition, I/Os and global I/Os can still be driven and can be toggling without impact on power consumption, clocks can still be driven or can be toggling without impact on power consumption, and the device retains all core registers, SRAM information, and states. I/O states are tristated during Flash*Freeze mode or can be set to a certain state using weak pull-up or pull-down I/O attribute configuration. No power is consumed by the I/O banks, clocks, JTAG pins, or PLL, and the device consumes as little as 5 µW in this mode.

Flash*Freeze technology allows the user to switch to active mode on demand, thus simplifying the power management of the device.

The Flash*Freeze pin (active low) can be routed internally to the core to allow the user's logic to decide when it is safe to transition to this mode. It is also possible to use the Flash*Freeze pin as a regular I/O if Flash*Freeze mode usage is not planned, which is advantageous because of the inherent low power static (as low as 12 μ W) and dynamic capabilities of the IGLOO device. Refer to Figure 1-3 for an illustration of entering/exiting Flash*Freeze mode.

Figure 1-3 • IGLOO Flash*Freeze Mode

VersaTiles

The IGLOO core consists of VersaTiles, which have been enhanced beyond the ProASIC^{PLUS®} core tiles. The IGLOO VersaTile supports the following:

- All 3-input logic functions—LUT-3 equivalent
- Latch with clear or set
- D-flip-flop with clear or set
- Enable D-flip-flop with clear or set

Refer to Figure 1-4 for VersaTile configurations.

Table 2-22 • Different Components Contributing to the Static Power Consumption in IGLOO Device For IGLOO V2 Devices, 1.2 V DC Core Supply Voltage

				Device	Specific S	tatic Powe	er (mW)		
Parameter	Definition	AGL1000	AGL600	AGL400	AGL250	AGL125	AGL060	AGL030	AGL015
PDC1	Array static power in Active mode			See	Table 2-12	on page 2	-9.		
PDC2	Array static power in Static (Idle) mode			See	Table 2-11	on page 2	-8.		
PDC3	Array static power in Flash*Freeze mode			See	e Table 2-9	on page 2·	-7.		
PDC4	Static PLL contribution				0.9	0			
PDC5	Bank quiescent power (VCCI-Dependent)			See	Table 2-12	on page 2	-9.		
PDC6	I/O input pin static power (standard-dependent)		See Table	2-13 on pa	ge 2-10 thr	ough Table	e 2-15 on p	age 2-11.	
PDC7	I/O output pin static power (standard-dependent)		See Table	2-16 on pa	ge 2-11 thr	ough Table	e 2-18 on p	age 2-12.	

Note: For a different output load, drive strength, or slew rate, Microsemi recommends using the Microsemi power spreadsheet calculator or SmartPower tool in Libero SoC.

Figure 2-6 • Tristate Output Buffer Timing Model and Delays (example)

Table 2-35 • Summary of I/O Timing Characteristics—Software Default Settings, Std. Speed Grade, Commercial-CaseConditions: T_J = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI (per standard)Applicable to Standard Plus I/O Banks

I/O Standard	Drive Strength	Equivalent Software Default Drive Strength Option ¹ (mA)	Slew Rate	Capacitive Load (pF)	External Resistor (Ω)	tpour (ns)	t _{DP} (ns)	t _{DIN} (ns)	t _{PY} (ns)	t _{EOUT} (ns)	t _{ZL} (ns)	t _{ZH} (ns)	t _{LZ} (ns)	t _{HZ} (ns)	t _{ZLS} (ns)	t _{ZHS} (ns)	Units
3.3 V LVTTL / 3.3 V LVCMOS	12 mA	12	High	5	_	1.55	2.31	0.26	0.97	1.10	2.34	1.86	2.93	3.64	8.12	7.65	ns
3.3 V LVCMOS Wide Range ²	100 µA	12	High	5	_	1.55	3.20	0.26	1.32	1.10	3.20	2.52	4.01	4.97	8.99	8.31	ns
2.5 V LVCMOS	12 mA	12	High	5		1.55	2.29	0.26	1.19	1.10	2.32	1.94	2.94	3.52	8.10	7.73	ns
1.8 V LVCMOS	8 mA	8	High	5	_	1.55	2.43	0.26	1.11	1.10	2.47	2.16	2.99	3.39	8.25	7.94	ns
1.5 V LVCMOS	4 mA	4	High	5	_	1.55	2.68	0.26	1.27	1.10	2.72	2.39	3.07	3.37	8.50	8.18	ns
1.2 V LVCMOS	2 mA	2	High	5	_	1.55	3.22	0.26	1.59	1.10	3.11	2.78	3.29	3.48	8.90	8.57	ns
1.2 V LVCMOS Wide Range ³	100 μA	2	High	5	-	1.55	3.22	0.26	1.59	1.10	3.11	2.78	3.29	3.48	8.90	8.57	ns
3.3 V PCI	Per PCI spec	_	High	10	25 ²	1.55	2.53	0.26	0.84	1.10	2.57	1.98	2.93	3.64	8.35	7.76	ns
3.3 V PCI-X	Per PCI-X spec	_	High	10	25 ²	1.55	2.53	0.25	0.85	1.10	2.57	1.98	2.93	3.64	8.35	7.76	ns

Notes:

 The minimum drive strength for any LVCMOS 1.2 V or LVCMOS 3.3 V software configuration when run in wide range is ±100 μA. Drive strength displayed in the software is supported for normal range only. For a detailed I/V curve, refer to the IBIS models.

2. All LVCMOS 3.3 V software macros support LVCMOS 3.3 V wide range as specified in the JESD-8B specification.

3. All LVCMOS 1.2 V software macros support LVCMOS 1.2 V wide range as specified in the JESD8-12 specification

4. Resistance is used to measure I/O propagation delays as defined in PCI specifications. See Figure 2-12 on page 2-79 for connectivity. This resistor is not required during normal operation.

5. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

Table 2-42 • I/O Short Currents IOSH/IOSL Applicable to Advanced I/O Banks

	Drive Strength	IOSL (mA)*	IOSH (mA)*
3.3 V LVTTL / 3.3 V LVCMOS	2 mA	25	27
	4 mA	25	27
	6 mA	51	54
	8 mA	51	54
	12 mA	103	109
	16 mA	132	127
	24 mA	268	181
3.3 V LVCMOS Wide Range	100 μA	Same as regular 3.3 V LVCMOS	Same as regular 3.3 V LVCMOS
2.5 V LVCMOS	2 mA	16	18
	4 mA	16	18
	6 mA	32	37
	8 mA	32	37
	12 mA	65	74
	16 mA	83	87
	24 mA	169	124
1.8 V LVCMOS	2 mA	9	11
	4 mA	17	22
	6 mA	35	44
	8 mA	45	51
	12 mA	91	74
	16 mA	91	74
1.5 V LVCMOS	2 mA	13	16
	4 mA	25	33
	6 mA	32	39
	8 mA	66	55
	12 mA	66	55
1.2 V LVCMOS	2 mA	20	26
1.2 V LVCMOS Wide Range	100 μA	20	26
3.3 V PCI/PCI-X	Per PCI/PCI-X specification	103	109

Note: $^{*}T_{J} = 100^{\circ}C$

Applies to 1.2 V DC Core Voltage

Table 2-57 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew – Applies to 1.2 V DC Core VoltageCommercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 3.0 VApplicable to Advanced I/O Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{ZHS}	Units
2 mA	Std.	1.55	5.12	0.26	0.98	1.10	5.20	4.46	2.81	3.02	10.99	10.25	ns
4 mA	Std.	1.55	5.12	0.26	0.98	1.10	5.20	4.46	2.81	3.02	10.99	10.25	ns
6 mA	Std.	1.55	4.38	0.26	0.98	1.10	4.45	3.93	3.07	3.48	10.23	9.72	ns
8 mA	Std.	1.55	4.38	0.26	0.98	1.10	4.45	3.93	3.07	3.48	10.23	9.72	ns
12 mA	Std.	1.55	3.85	0.26	0.98	1.10	3.91	3.53	3.24	3.77	9.69	9.32	ns
16 mA	Std.	1.55	3.69	0.26	0.98	1.10	3.75	3.44	3.28	3.84	9.54	9.23	ns
24 mA	Std.	1.55	3.61	0.26	0.98	1.10	3.67	3.46	3.33	4.13	9.45	9.24	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.

Table 2-58 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew – Applies to 1.2 V DC Core VoltageCommercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 3.0 VApplicable to Advanced I/O Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{ZHS}	Units
2 mA	Std.	1.55	3.33	0.26	0.98	1.10	3.38	2.75	2.82	3.18	9.17	8.54	ns
4 mA	Std.	1.55	3.33	0.26	0.98	1.10	3.38	2.75	2.82	3.18	9.17	8.54	ns
6 mA	Std.	1.55	2.91	0.26	0.98	1.10	2.95	2.37	3.07	3.64	8.73	8.15	ns
8 mA	Std.	1.55	2.91	0.26	0.98	1.10	2.95	2.37	3.07	3.64	8.73	8.15	ns
12 mA	Std.	1.55	2.67	0.26	0.98	1.10	2.71	2.18	3.25	3.93	8.50	7.97	ns
16 mA	Std.	1.55	2.63	0.26	0.98	1.10	2.67	2.14	3.28	4.01	8.45	7.93	ns
24 mA	Std.	1.55	2.65	0.26	0.98	1.10	2.69	2.10	3.33	4.31	8.47	7.89	ns

Notes:

1. Software default selection highlighted in gray.

2. For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.

Table 2-59 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew – Applies to 1.2 V DC Core VoltageCommercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.14 V, Worst-Case VCCI = 3.0 VApplicable to Standard Plus Banks

Drive Strength	Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{ZHS}	Units
2 mA	Std.	1.55	4.56	0.26	0.97	1.10	4.63	3.98	2.54	2.83	10.42	9.76	ns
4 mA	Std.	1.55	4.56	0.26	0.97	1.10	4.63	3.98	2.54	2.83	10.42	9.76	ns
6 mA	Std.	1.55	3.84	0.26	0.97	1.10	3.90	3.50	2.77	3.24	9.69	9.29	ns
8 mA	Std.	1.55	3.84	0.26	0.97	1.10	3.90	3.50	2.77	3.24	9.69	9.29	ns
12 mA	Std.	1.55	3.35	0.26	0.97	1.10	3.40	3.13	2.93	3.51	9.19	8.91	ns
16 mA	Std.	1.55	3.35	0.26	0.97	1.10	3.40	3.13	2.93	3.51	9.19	8.91	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.

Table 2-71 • 3.3 V LVCMOS Wide Range Low Slew – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.7 V
Applicable to Standard Banks

Drive Strength	Equivalent Software Default Drive Strength Option ¹	Speed Grade	t _{dout}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	Units
100 µA	2 mA	Std.	0.97	5.64	0.18	1.17	0.66	5.65	4.98	2.45	2.42	ns
100 µA	4 mA	Std.	0.97	5.64	0.18	1.17	0.66	5.65	4.98	2.45	2.42	ns
100 µA	6 mA	Std.	0.97	4.63	0.18	1.17	0.66	4.64	4.26	2.80	3.02	ns
100 µA	8 mA	Std.	0.97	4.63	0.18	1.17	0.66	4.64	4.26	2.80	3.02	ns

Notes:

1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ± 100 μA. Drive strengths displayed in software are supported for normal range only. For a detailed I/V curve, refer to the IBIS models.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

Table 2-72 • 3.3 V LVCMOS Wide Range High Slew – Applies to 1.5 V DC Core Voltage
Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 2.7 V
Applicable to Standard Banks

Drive Strength	Equivalent Software Default Drive Strength Option ¹	Speed Grade	t _{dout}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	Units
100 µA	2 mA	0.97	3.16	0.18	1.17	0.66	3.17	2.53	2.45	2.56	0.97	ns
100 µA	4 mA	0.97	3.16	0.18	1.17	0.66	3.17	2.53	2.45	2.56	0.97	ns
100 µA	6 mA	0.97	2.62	0.18	1.17	0.66	2.63	2.02	2.79	3.17	0.97	ns
100 µA	8 mA	0.97	2.62	0.18	1.17	0.66	2.63	2.02	2.79	3.17	0.97	ns

Notes:

1. The minimum drive strength for any LVCMOS 3.3 V software configuration when run in wide range is ± 100 μA. Drive strengths displayed in software are supported for normal range only. For a detailed I/V curve, refer to the IBIS models.

2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

3. Software default selection highlighted in gray.

Fully Registered I/O Buffers with Synchronous Enable and Asynchronous Clear

Figure 2-17 • Timing Model of the Registered I/O Buffers with Synchronous Enable and Asynchronous Clear

Timing Characteristics

1.5 V DC Core Voltage

Table 2-159 • Output Data Register Propagation DelaysCommercial-Case Conditions: TJ = 70°C, Worst-Case VCC = 1.425 V

Parameter	Description	Std.	Units
t _{OCLKQ}	Clock-to-Q of the Output Data Register	1.00	ns
tOSUD	Data Setup Time for the Output Data Register	0.51	ns
t _{OHD}	Data Hold Time for the Output Data Register	0.00	ns
t _{OSUE}	Enable Setup Time for the Output Data Register	0.70	ns
t _{OHE}	Enable Hold Time for the Output Data Register	0.00	ns
t _{OCLR2Q}	Asynchronous Clear-to-Q of the Output Data Register	1.34	ns
t _{OPRE2Q}	Asynchronous Preset-to-Q of the Output Data Register	1.34	ns
t _{OREMCLR}	Asynchronous Clear Removal Time for the Output Data Register	0.00	ns
t _{ORECCLR}	Asynchronous Clear Recovery Time for the Output Data Register	0.24	ns
t _{OREMPRE}	Asynchronous Preset Removal Time for the Output Data Register	0.00	ns
t _{ORECPRE}	Asynchronous Preset Recovery Time for the Output Data Register	0.24	ns
t _{OWCLR}	Asynchronous Clear Minimum Pulse Width for the Output Data Register	0.19	ns
tOWPRE	Asynchronous Preset Minimum Pulse Width for the Output Data Register	0.19	ns
t _{OCKMPWH}	Clock Minimum Pulse Width High for the Output Data Register	0.31	ns
t _{OCKMPWL}	Clock Minimum Pulse Width Low for the Output Data Register	0.28	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

1.2 V DC Core Voltage

Table 2-160 • Output Data Register Propagation Delays Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V

Parameter	Description	Std.	Units
t _{OCLKQ}	Clock-to-Q of the Output Data Register	1.52	ns
tOSUD	Data Setup Time for the Output Data Register	1.15	ns
t _{OHD}	Data Hold Time for the Output Data Register	0.00	ns
tOSUE	Enable Setup Time for the Output Data Register	1.11	ns
t _{OHE}	Enable Hold Time for the Output Data Register	0.00	ns
t _{OCLR2Q}	Asynchronous Clear-to-Q of the Output Data Register	1.96	ns
t _{OPRE2Q}	Asynchronous Preset-to-Q of the Output Data Register	1.96	ns
t _{OREMCLR}	Asynchronous Clear Removal Time for the Output Data Register	0.00	ns
t _{ORECCLR}	Asynchronous Clear Recovery Time for the Output Data Register	0.24	ns
t _{OREMPRE}	Asynchronous Preset Removal Time for the Output Data Register	0.00	ns
t _{ORECPRE}	Asynchronous Preset Recovery Time for the Output Data Register	0.24	ns
t _{OWCLR}	Asynchronous Clear Minimum Pulse Width for the Output Data Register	0.19	ns
t _{OWPRE}	Asynchronous Preset Minimum Pulse Width for the Output Data Register	0.19	ns
t _{OCKMPWH}	Clock Minimum Pulse Width High for the Output Data Register	0.31	ns
t _{OCKMPWL}	Clock Minimum Pulse Width Low for the Output Data Register	0.28	ns

Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.

VersaTile Specifications as a Sequential Module

The IGLOO library offers a wide variety of sequential cells, including flip-flops and latches. Each has a data input and optional enable, clear, or preset. In this section, timing characteristics are presented for a representative sample from the library. For more details, refer to the *IGLOO, Fusion, and ProASIC3 Macro Library Guide*.

Figure 2-27 • Sample of Sequential Cells

Global Tree Timing Characteristics

Global clock delays include the central rib delay, the spine delay, and the row delay. Delays do not include I/O input buffer clock delays, as these are I/O standard–dependent, and the clock may be driven and conditioned internally by the CCC module. For more details on clock conditioning capabilities, refer to the "Clock Conditioning Circuits" section on page 2-115. Table 2-173 to Table 2-188 on page 2-114 present minimum and maximum global clock delays within each device. Minimum and maximum delays are measured with minimum and maximum loading.

Timing Characteristics

1.5 V DC Core Voltage

Table 2-173 • AGL015 Global Resource

Commercial-Case Conditions: T_J = 70°C, VCC = 1.425 V

		S	Std.		
Parameter	Description	Min. ¹	Max. ²	Units	
t _{RCKL}	Input Low Delay for Global Clock	1.21	1.42	ns	
t _{RCKH}	Input High Delay for Global Clock	1.23	1.49	ns	
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock	1.18		ns	
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock	1.15		ns	
t _{RCKSW}	Maximum Skew for Global Clock		0.27	ns	

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

Table 2-174 • AGL030 Global Resource

Commercial-Case Conditions: T_J = 70°C, VCC = 1.425 V

		Std.		
Parameter	Description	Min. ¹	Max. ²	Units
t _{RCKL}	Input Low Delay for Global Clock	1.21	1.42	ns
t _{RCKH}	Input High Delay for Global Clock	1.23	1.49	ns
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock	1.18		ns
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock	1.15		ns
t _{RCKSW}	Maximum Skew for Global Clock		0.27	ns

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

Table 2-177 • AGL250 Global Resource

Commercial-Case Conditions: T_J = 70°C, VCC = 1.425 V

		Std.		
Parameter	Description	Min. ¹	Max. ²	Units
t _{RCKL}	Input Low Delay for Global Clock	1.39	1.73	ns
t _{RCKH}	Input High Delay for Global Clock	1.41	1.84	ns
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock	1.18		ns
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock	1.15		ns
t _{RCKSW}	Maximum Skew for Global Clock		0.43	ns

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

Table 2-178 • AGL400 Global Resource

Commercial-Case Conditions: T_J = 70°C, VCC = 1.425 V

		Std.		
Parameter	Description	Min. ¹	Max. ²	Units
t _{RCKL}	Input Low Delay for Global Clock	1.45	1.79	ns
t _{RCKH}	Input High Delay for Global Clock	1.48	1.91	ns
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock	1.18		ns
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock	1.15		ns
t _{RCKSW}	Maximum Skew for Global Clock		0.43	ns

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

3. For specific junction temperature and voltage-supply levels, refer to Table 2-6 on page 2-7 for derating values.

VJTAG JTAG Supply Voltage

Low power flash devices have a separate bank for the dedicated JTAG pins. The JTAG pins can be run at any voltage from 1.5 V to 3.3 V (nominal). Isolating the JTAG power supply in a separate I/O bank gives greater flexibility in supply selection and simplifies power supply and PCB design. If the JTAG interface is neither used nor planned for use, the VJTAG pin together with the TRST pin could be tied to GND. It should be noted that VCC is required to be powered for JTAG operation; VJTAG alone is insufficient. If a device is in a JTAG chain of interconnected boards, the board containing the device can be powered down, provided both VJTAG and VCC to the part remain powered; otherwise, JTAG signals will not be able to transition the device, even in bypass mode.

Microsemi recommends that VPUMP and VJTAG power supplies be kept separate with independent filtering capacitors rather than supplying them from a common rail.

VPUMP Programming Supply Voltage

IGLOO devices support single-voltage ISP of the configuration flash and FlashROM. For programming, VPUMP should be 3.3 V nominal. During normal device operation, VPUMP can be left floating or can be tied (pulled up) to any voltage between 0 V and the VPUMP maximum. Programming power supply voltage (VPUMP) range is listed in the datasheet.

When the VPUMP pin is tied to ground, it will shut off the charge pump circuitry, resulting in no sources of oscillation from the charge pump circuitry.

For proper programming, 0.01 μ F and 0.33 μ F capacitors (both rated at 16 V) are to be connected in parallel across VPUMP and GND, and positioned as close to the FPGA pins as possible.

Microsemi recommends that VPUMP and VJTAG power supplies be kept separate with independent filtering capacitors rather than supplying them from a common rail.

User Pins

I/O

User Input/Output

The I/O pin functions as an input, output, tristate, or bidirectional buffer. Input and output signal levels are compatible with the I/O standard selected.

During programming, I/Os become tristated and weakly pulled up to VCCI. With VCCI, VMV, and VCC supplies continuously powered up, when the device transitions from programming to operating mode, the I/Os are instantly configured to the desired user configuration.

Unused I/Os are configured as follows:

- Output buffer is disabled (with tristate value of high impedance)
- Input buffer is disabled (with tristate value of high impedance)
- Weak pull-up is programmed

GL Globals

GL I/Os have access to certain clock conditioning circuitry (and the PLL) and/or have direct access to the global network (spines). Additionally, the global I/Os can be used as regular I/Os, since they have identical capabilities. Unused GL pins are configured as inputs with pull-up resistors.

See more detailed descriptions of global I/O connectivity in the "Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs" chapter of the *IGLOO FPGA Fabric User Guide*. All inputs labeled GC/GF are direct inputs into the quadrant clocks. For example, if GAA0 is used for an input, GAA1 and GAA2 are no longer available for input to the quadrant globals. All inputs labeled GC/GF are direct inputs into the chip-level globals, and the rest are connected to the quadrant globals. The inputs to the global network are multiplexed, and only one input can be used as a global input.

Refer to the "I/O Structures in IGLOO and ProASIC3 Devices" chapter of the *IGLOO FPGA Fabric User Guide* for an explanation of the naming of global pins.

FF

Flash*Freeze Mode Activation Pin

Flash*Freeze mode is available on IGLOO devices. The FF pin is a dedicated input pin used to enter and exit Flash*Freeze mode. The FF pin is active low, has the same characteristics as a single-ended I/O, and must meet the maximum rise and fall times. When Flash*Freeze mode is not used in the design, the FF pin is available as a regular I/O.

When Flash*Freeze mode is used, the FF pin must not be left floating to avoid accidentally entering Flash*Freeze mode. While in Flash*Freeze mode, the Flash*Freeze pin should be constantly asserted.

IGLOO Low Power Flash FPGAs

	CS81	CS81		
Pin Number	AGL250 Function	Pin Number	AGL250 Function	
A1	GAA0/IO00RSB0	E1	GFB0/IO109NDB3	
A2	GAA1/IO01RSB0	E2	GFB1/IO109PDB3	
A3	GAC0/IO04RSB0	E3	GFA1/IO108PSB3	
A4	IO13RSB0	E4	VCCIB3	
A5	IO21RSB0	E5	VCC	
A6	IO27RSB0	E6	VCCIB1	
A7	GBB0/IO37RSB0	E7	GCA0/IO50NDB1	
A8	GBA1/IO40RSB0	E8	GCA1/IO50PDB1	
A9	GBA2/IO41PPB1	E9	GCB2/IO52PPB1	
B1	GAA2/IO118UPB3	F1	VCCPLF	
B2	GAB0/IO02RSB0	F2	VCOMPLF	
B3	GAC1/IO05RSB0	F3	GND	
B4	IO11RSB0	F4	GND	
B5	IO23RSB0	F5	VCCIB2	
B6	GBC0/IO35RSB0	F6	GND	
B7	GBB1/IO38RSB0	F7	GDA1/IO60USB1	
B8	IO41NPB1	F8	GDC1/IO58UDB1	
B9	GBB2/IO42PSB1	F9	GDC0/IO58VDB1	
C1	GAB2/IO117UPB3	G1	GEA0/IO98NDB3	
C2	IO118VPB3	G2	GEC1/IO100PDB3	
C3	GND	G3	GEC0/IO100NDB3	
C4	IO15RSB0	G4	IO91RSB2	
C5	IO25RSB0	G5	IO86RSB2	
C6	GND	G6	IO71RSB2	
C7	GBA0/IO39RSB0	G7	GDB2/IO62RSB2	
C8	GBC2/IO43PDB1	G8	VJTAG	
C9	IO43NDB1	G9	TRST	
D1	GAC2/IO116USB3	H1	GEA1/IO98PDB3	
D2	IO117VPB3	H2	FF/GEB2/IO96RSB2	
D3	GFA2/IO107PSB3	H3	IO93RSB2	
D4	VCC	H4	IO90RSB2	
D5	VCCIB0	H5	IO85RSB2	
D6	GND	H6	IO77RSB2	
D7	IO52NPB1	H7	GDA2/IO61RSB2	
D8	GCC1/IO48PDB1	H8	TDI	
D9	GCC0/IO48NDB1	H9	TDO	
l	1	L		

CS81				
Pin Number	AGL250 Function			
J1	GEA2/IO97RSB2			
J2	GEC2/IO95RSB2			
J3	IO92RSB2			
J4	IO88RSB2			
J5	IO84RSB2			
J6	IO74RSB2			
J7	ТСК			
J8	TMS			
J9	VPUMP			

CS196		CS196		CS196		
Pin Number	AGL250 Function	Pin Number	AGL250 Function	Pin Number	AGL250 Function	
A1	GND	C9	IO30RSB0	F3	IO111PDB3	
A2	GAA0/IO00RSB0	C10	IO33RSB0	F4	IO111NDB3	
A3	GAC0/IO04RSB0	C11	VCCIB0	F5	IO113NPB3	
A4	GAC1/IO05RSB0	C12	IO41NPB1	F6	IO06RSB0	
A5	IO10RSB0	C13	GNDQ	F7	VCC	
A6	IO13RSB0	C14	IO42NDB1	F8	VCC	
A7	IO17RSB0	D1	IO116VDB3	F9	IO28RSB0	
A8	IO19RSB0	D2	IO117VDB3	F10	IO54PDB1	
A9	IO23RSB0	D3	GAA2/IO118UDB3	F11	IO54NDB1	
A10	GBC0/IO35RSB0	D4	IO113PPB3	F12	IO47NDB1	
A11	GBB0/IO37RSB0	D5	IO08RSB0	F13	IO47PDB1	
A12	GBB1/IO38RSB0	D6	IO14RSB0	F14	IO45NDB1	
A13	GBA1/IO40RSB0	D7	IO15RSB0	G1	GFB1/IO109PDB3	
A14	GND	D8	IO18RSB0	G2	GFA0/IO108NDB3	
B1	VCCIB3	D9	IO25RSB0	G3	GFA2/IO107PPB3	
B2	VMV0	D10	IO32RSB0	G4	VCOMPLF	
B3	GAA1/IO01RSB0	D11	IO44PPB1	G5	GFC0/IO110NDB3	
B4	GAB1/IO03RSB0	D12	VMV1	G6	VCC	
B5	GND	D13	IO43NDB1	G7	GND	
B6	IO12RSB0	D14	GBC2/IO43PDB1	G8	GND	
B7	IO16RSB0	E1	IO112PDB3	G9	VCC	
B8	IO22RSB0	E2	GND	G10	GCC0/IO48NDB1	
B9	IO24RSB0	E3	IO118VDB3	G11	GCB1/IO49PDB1	
B10	GND	E4	VCCIB3	G12	GCA0/IO50NDB1	
B11	GBC1/IO36RSB0	E5	IO114USB3	G13	IO53NDB1	
B12	GBA0/IO39RSB0	E6	IO07RSB0	G14	GCC2/IO53PDB1	
B13	GBA2/IO41PPB1	E7	IO09RSB0	H1	GFB0/IO109NDB3	
B14	GBB2/IO42PDB1	E8	IO21RSB0	H2	GFA1/IO108PDB3	
C1	GAC2/IO116UDB3	E9	IO31RSB0	H3	VCCPLF	
C2	GAB2/IO117UDB3	E10	IO34RSB0	H4	GFB2/IO106PPB3	
C3	GNDQ	E11	VCCIB1	H5	GFC1/IO110PDB3	
C4	VCCIB0	E12	IO44NPB1	H6	VCC	
C5	GAB0/IO02RSB0	E13	GND	H7	GND	
C6	IO11RSB0	E14	IO45PDB1	H8	GND	
C7	VCCIB0	F1	IO112NDB3	H9	VCC	
C8	IO20RSB0	F2	IO107NPB3	H10	GCC1/IO48PDB1	

QN132					
Pin Number AGL125 Function					
C17	IO83RSB1				
C18	VCCIB1				
C19	ТСК				
C20	VMV1				
C21	VPUMP				
C22	VJTAG				
C23	VCCIB0				
C24	NC				
C25	NC				
C26	GCA1/IO55RSB0				
C27	GCC0/IO52RSB0				
C28	VCCIB0				
C29	IO42RSB0				
C30	GNDQ				
C31	GBA1/IO40RSB0				
C32	GBB0/IO37RSB0				
C33	VCC				
C34	IO24RSB0				
C35	IO19RSB0				
C36	IO16RSB0				
C37	IO10RSB0				
C38	VCCIB0				
C39	GAB1/IO03RSB0				
C40	VMV0				
D1	GND				
D2	GND				
D3	GND				
D4	GND				

VQ100		VQ100		VQ100		
Pin Number	AGL030 Function	Pin Number	AGL030 Function	Pin Number	AGL030 Function	
1	GND	37	VCC	73	IO27RSB0	
2	IO82RSB1	38	GND	74	IO26RSB0	
3	IO81RSB1	39	VCCIB1	75	IO25RSB0	
4	IO80RSB1	40	IO49RSB1	76	IO24RSB0	
5	IO79RSB1	41	IO47RSB1	77	IO23RSB0	
6	IO78RSB1	42	IO46RSB1	78	IO22RSB0	
7	IO77RSB1	43	IO45RSB1	79	IO21RSB0	
8	IO76RSB1	44	IO44RSB1	80	IO20RSB0	
9	GND	45	IO43RSB1	81	IO19RSB0	
10	IO75RSB1	46	IO42RSB1	82	IO18RSB0	
11	IO74RSB1	47	ТСК	83	IO17RSB0	
12	GEC0/IO73RSB1	48	TDI	84	IO16RSB0	
13	GEA0/IO72RSB1	49	TMS	85	IO15RSB0	
14	GEB0/IO71RSB1	50	NC	86	IO14RSB0	
15	IO70RSB1	51	GND	87	VCCIB0	
16	IO69RSB1	52	VPUMP	88	GND	
17	VCC	53	NC	89	VCC	
18	VCCIB1	54	TDO	90	IO12RSB0	
19	IO68RSB1	55	TRST	91	IO10RSB0	
20	IO67RSB1	56	VJTAG	92	IO08RSB0	
21	IO66RSB1	57	IO41RSB0	93	IO07RSB0	
22	IO65RSB1	58	IO40RSB0	94	IO06RSB0	
23	IO64RSB1	59	IO39RSB0	95	IO05RSB0	
24	IO63RSB1	60	IO38RSB0	96	IO04RSB0	
25	IO62RSB1	61	IO37RSB0	97	IO03RSB0	
26	IO61RSB1	62	IO36RSB0	98	IO02RSB0	
27	FF/IO60RSB1	63	GDB0/IO34RSB0	99	IO01RSB0	
28	IO59RSB1	64	GDA0/IO33RSB0	100	IO00RSB0	
29	IO58RSB1	65	GDC0/IO32RSB0		•	
30	IO57RSB1	66	VCCIB0			
31	IO56RSB1	67	GND			
32	IO55RSB1	68	VCC			
33	IO54RSB1	69	IO31RSB0			
34	IO53RSB1	70	IO30RSB0			
35	IO52RSB1	71	IO29RSB0			
36	IO51RSB1	72	IO28RSB0			

FG256				
Pin Number AGL400 Function				
R5	IO123RSB2			
R6	IO118RSB2			
R7	IO112RSB2			
R8	IO106RSB2			
R9	IO100RSB2			
R10	IO96RSB2			
R11	IO89RSB2			
R12	IO85RSB2			
R13	GDB2/IO81RSB2			
R14	TDI			
R15	NC			
R16	TDO			
T1	GND			
T2	IO126RSB2			
Т3	FF/GEB2/IO133RSB2			
T4	IO124RSB2			
T5	IO116RSB2			
T6	IO113RSB2			
T7	IO107RSB2			
T8	IO105RSB2			
Т9	IO102RSB2			
T10	IO97RSB2			
T11	IO92RSB2			
T12	GDC2/IO82RSB2			
T13	IO86RSB2			
T14	GDA2/IO80RSB2			
T15	TMS			
T16	GND			

FG484				
Pin Number	AGL600 Function			
E13	IO38RSB0			
E14	IO42RSB0			
E15	GBC1/IO55RSB0			
E16	GBB0/IO56RSB0			
E17	IO52RSB0			
E18	GBA2/IO60PDB1			
E19	IO60NDB1			
E20	GND			
E21	NC			
E22	NC			
F1	NC			
F2	NC			
F3	NC			
F4	IO173NDB3			
F5	IO174NDB3			
F6	VMV3			
F7	IO07RSB0			
F8	GAC0/IO04RSB0			
F9	GAC1/IO05RSB0			
F10	IO20RSB0			
F11	IO24RSB0			
F12	IO33RSB0			
F13	IO39RSB0			
F14	IO44RSB0			
F15	GBC0/IO54RSB0			
F16	IO51RSB0			
F17	VMV0			
F18	IO61NPB1			
F19	IO63PDB1			
F20	NC			
F21	NC			
F22	NC			
G1	IO170NDB3			
G2	IO170PDB3			
G3	NC			
G4	IO171NDB3			

Datasheet Information

Revision / Version	Changes			
Advance v0.7 (continued)	The former Table 2-16 • Maximum I/O Frequency for Single-Ended and Differential I/Os in All Banks in IGLOO Devices (maximum drive strength and high slew selected) was removed.			
	The "During Flash*Freeze Mode" section was updated to include information about the output of the I/O to the FPGA core.	2-57		
	Table 2-31 • Flash*Freeze Pin Location in IGLOO Family Packages (device- independent) was updated to add UC81 and CS281. Flash*Freeze pins were assigned for CS81, CS121, and CS196.			
	Figure 2-40 • Flash*Freeze Mode Type 2 – Timing Diagram was updated to modify the LSICC Signal.	2-55		
	Information regarding calculation of the quiescent supply current was added to the "Quiescent Supply Current" section.	3-6		
	Table3-8 • QuiescentSupplyCurrent(IDD)Characteristics,IGLOOFlash*FreezeMode [†] was updated.	3-6		
	Table 3-9 • Quiescent Supply Current (I _{DD}) Characteristics, IGLOO Sleep Mode (VCC = 0 V) [†] was updated.	3-6		
	Table 3-11 • Quiescent Supply Current (I _{DD}), No IGLOO Flash*Freeze Mode1 was updated.			
	Table 3-115 Minimum and Maximum DC Input and Output Levels was updated.	3-58		
	Table 3-156 • JTAG 1532 was updated and Table 3-155 • JTAG 1532 is new.	3-104		
	The "121-Pin CSP" and "281-Pin CSP" packages are new.	4-5, 4-7		
	The "81-Pin CSP" table for the AGL030 device was updated to change the G6 pin function to IO44RSB1 and the JG pin function to IO45RSB1.	4-4		
	The "121-Pin CSP" table for the AGL060 device is new.	4-6		
	The "256-Pin FBGA" table for the AGL1000 device is new.	4-34		
	The "281-Pin CSP" table for the AGL 600 device is new.	4-8		
	The "100-Pin VQFP" table for the AGL060 device is new.	4-18		
	The "144-Pin FBGA" table for the AGL250 device is new.	4-24		
	The "144-Pin FBGA" table for the AGL1000 device is new.	4-28		
	The "484-Pin FBGA" table for the AGL600 device is new.			
	The "484-Pin FBGA" table for the AGL1000 device is new.	4-43		
Advance v0.6 (November 2007)	Table 1 • IGLOO Product Family, the "I/Os Per Package1" table, and the "IGLOO Ordering Information", and the Temperature Grade Offerings table were updated to add the UC81 package.	i, ii, iii, iv		
	The "81-Pin μ CSP" table for the AGL030 device is new.			
	The "81-Pin CSP" table for the AGL030 device is new.	4-1		
Advance v0.5 (September 2007)	Table 1 • IGLOO Product Family was updated for AGL030 in the Package Pins section to change CS181 to CS81.	i		