

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

E·XFI

Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	13824
Total RAM Bits	110592
Number of I/O	177
Number of Gates	600000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 85°C (TA)
Package / Case	256-LBGA
Supplier Device Package	256-FPBGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/m1agl600v5-fgg256i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Temperature and Voltage Derating Factors

Table 2-6 •Temperature and Voltage Derating Factors for Timing Delays (normalized to T_J = 70°C, VCC = 1.425 V)For IGLOO V2 or V5 devices, 1.5 V DC Core Supply Voltage

Array Voltage VCC (V)	Junction Temperature (°C)								
	–40°C	0°C	25°C	70°C	85°C	100°C			
1.425	0.934	0.953	0.971	1.000	1.007	1.013			
1.500	0.855	0.874	0.891	0.917	0.924	0.929			
1.575	0.799	0.816	0.832	0.857	0.864	0.868			

Table 2-7 • Temperature and Voltage Derating Factors for Timing Delays (normalized to T_J = 70°C, VCC = 1.14 V) For IGLOO V2, 1.2 V DC Core Supply Voltage

Array Voltage VCC (V)	Junction Temperature (°C)									
	–40°C	0°C	25°C	70°C	85°C	100°C				
1.14	0.967	0.978	0.991	1.000	1.006	1.010				
1.20	0.864	0.874	0.885	0.894	0.899	0.902				
1.26	0.794	0.803	0.814	0.821	0.827	0.830				

Calculating Power Dissipation

Quiescent Supply Current

Quiescent supply current (IDD) calculation depends on multiple factors, including operating voltages (VCC, VCCI, and VJTAG), operating temperature, system clock frequency, and power modes usage. Microsemi recommends using the PowerCalculator and SmartPower software estimation tools to evaluate the projected static and active power based on the user design, power mode usage, operating voltage, and temperature.

Table 2-8 • Power Supply State per Mode

Power Supply Configurations						
Modes/power supplies	VCC	VCCPLL	VCCI	VJTAG	VPUMP	
Flash*Freeze	On	On	On	On	On/off/floating	
Sleep	Off	Off	On	Off	Off	
Shutdown	Off	Off	Off	Off	Off	
No Flash*Freeze	On	On	On	On	On/off/floating	

Note: Off: Power supply level = 0 V

	Core Voltage	AGL015	AGL030	AGL060	AGL125	AGL250	AGL400	AGL600	AGL1000	Units
Typical	1.2 V	4	4	8	13	20	27	30	44	μΑ
(25°C)	1.5 V	6	6	10	18	34	51	72	127	μΑ

Note: *IDD includes VCC, VPUMP, VCCI, VCCPLL, and VMV currents. Values do not include I/O static contribution, which is shown in Table 2-13 on page 2-10 through Table 2-15 on page 2-11 and Table 2-16 on page 2-11 through Table 2-18 on page 2-12 (PDC6 and PDC7).

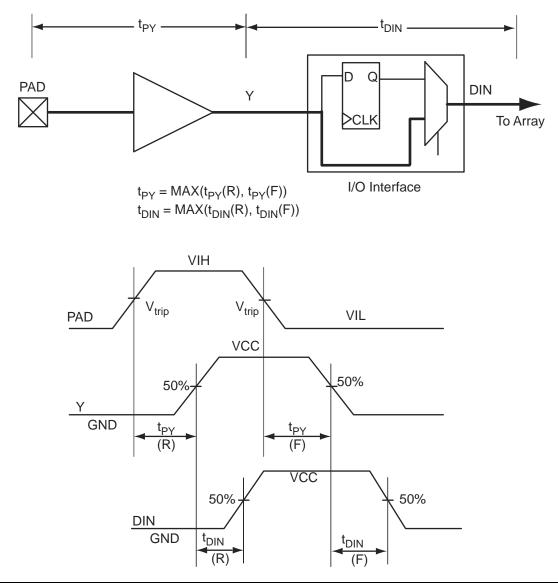


Figure 2-4 • Input Buffer Timing Model and Delays (example)

Single-Ended I/O Characteristics

3.3 V LVTTL / 3.3 V LVCMOS

Low-Voltage Transistor–Transistor Logic (LVTTL) is a general-purpose standard (EIA/JESD) for 3.3 V applications. It uses an LVTTL input buffer and push-pull output buffer. Furthermore, all LVCMOS 3.3 V software macros comply with LVCMOS 3.3 V wide range as specified in the JESD8a specification.

Table 2-47 • Minimum and Maximum DC Input and Output Levels Applicable to Advanced I/O Banks

3.3 V LVTTL / 3.3 V LVCMOS	v	IL	v	н	VOL	VOH	IOL	юн	IOSL	IOSH	IIL¹	IIH ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
2 mA	-0.3	0.8	2	3.6	0.4	2.4	2	2	25	27	10	10
4 mA	-0.3	0.8	2	3.6	0.4	2.4	4	4	25	27	10	10
6 mA	-0.3	0.8	2	3.6	0.4	2.4	6	6	51	54	10	10
8 mA	-0.3	0.8	2	3.6	0.4	2.4	8	8	51	54	10	10
12 mA	-0.3	0.8	2	3.6	0.4	2.4	12	12	103	109	10	10
16 mA	-0.3	0.8	2	3.6	0.4	2.4	16	16	132	127	10	10
24 mA	-0.3	0.8	2	3.6	0.4	2.4	24	24	268	181	10	10

Notes:

1. IIL is the input leakage current per I/O pin over recommended operation conditions where -0.3 V < VIN < VIL.

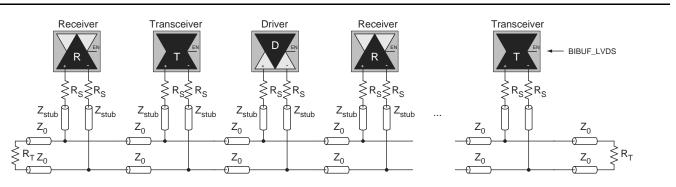
- 2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.
- 3. Currents are measured at 100°C junction temperature and maximum voltage.
- 4. Currents are measured at 85°C junction temperature.
- 5. Software default selection highlighted in gray.

 Table 2-48 •
 Minimum and Maximum DC Input and Output Levels

 Applicable to Standard Plus I/O Banks

3.3 V LVTTL / 3.3 V LVCMOS	v	ΊL	v	н	V _{OL}	VOH	IOL	ЮН	IOSL	IOSH	IIL ¹	IIH ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
2 mA	-0.3	0.8	2	3.6	0.4	2.4	2	2	25	27	10	10
4 mA	-0.3	0.8	2	3.6	0.4	2.4	4	4	25	27	10	10
6 mA	-0.3	0.8	2	3.6	0.4	2.4	6	6	51	54	10	10
8 mA	-0.3	0.8	2	3.6	0.4	2.4	8	8	51	54	10	10
12 mA	-0.3	0.8	2	3.6	0.4	2.4	12	12	103	109	10	10
16 mA	-0.3	0.8	2	3.6	0.4	2.4	16	16	103	109	10	10

Notes:


1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.

- 2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges
- 3. Currents are measured at 100°C junction temperature and maximum voltage.
- 4. Currents are measured at 85°C junction temperature.
- 5. Software default selection highlighted in gray.

B-LVDS/M-LVDS

Bus LVDS (B-LVDS) and Multipoint LVDS (M-LVDS) specifications extend the existing LVDS standard to highperformance multipoint bus applications. Multidrop and multipoint bus configurations may contain any combination of drivers, receivers, and transceivers. Microsemi LVDS drivers provide the higher drive current required by B-LVDS and M-LVDS to accommodate the loading. The drivers require series terminations for better signal quality and to control voltage swing. Termination is also required at both ends of the bus since the driver can be located anywhere on the bus. These configurations can be implemented using the TRIBUF_LVDS and BIBUF_LVDS macros along with appropriate terminations. Multipoint designs using Microsemi LVDS macros can achieve up to 200 MHz with a maximum of 20 loads. A sample application is given in Figure 2-14. The input and output buffer delays are available in the LVDS section in Table 2-149 on page 2-81 and Table 2-150 on page 2-81.

Example: For a bus consisting of 20 equidistant loads, the following terminations provide the required differential voltage, in worst-case Industrial operating conditions, at the farthest receiver: $R_S = 60 \Omega$ and $R_T = 70 \Omega$, given $Z_0 = 50 \Omega$ (2") and $Z_{stub} = 50 \Omega$ (~1.5").

LVPECL

Low-Voltage Positive Emitter-Coupled Logic (LVPECL) is another differential I/O standard. It requires that one data bit be carried through two signal lines. Like LVDS, two pins are needed. It also requires external resistor termination.

The full implementation of the LVDS transmitter and receiver is shown in an example in Figure 2-15. The building blocks of the LVPECL transmitter-receiver are one transmitter macro, one receiver macro, three board resistors at the transmitter end, and one resistor at the receiver end. The values for the three driver resistors are different from those used in the LVDS implementation because the output standard specifications are different.

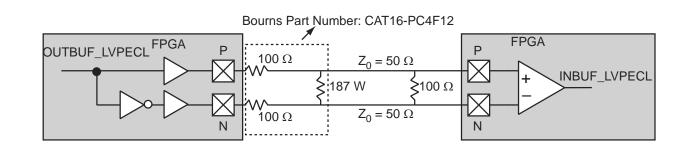


Figure 2-15 • LVPECL Circuit Diagram and Board-Level Implementation

Parameter Name	Parameter Definition	Measuring Nodes (from, to)*
t _{oclkq}	Clock-to-Q of the Output Data Register	H, DOUT
tosud	Data Setup Time for the Output Data Register	F, H
t _{OHD}	Data Hold Time for the Output Data Register	F, H
tosue	Enable Setup Time for the Output Data Register	G, H
t _{OHE}	Enable Hold Time for the Output Data Register	G, H
t _{OPRE2Q}	Asynchronous Preset-to-Q of the Output Data Register	L, DOUT
t _{OREMPRE}	Asynchronous Preset Removal Time for the Output Data Register	L, H
t _{ORECPRE}	Asynchronous Preset Recovery Time for the Output Data Register	L, H
t _{oeclkq}	Clock-to-Q of the Output Enable Register	H, EOUT
tOESUD	Data Setup Time for the Output Enable Register	J, H
t _{OEHD}	Data Hold Time for the Output Enable Register	J, H
tOESUE	Enable Setup Time for the Output Enable Register	К, Н
t _{OEHE}	Enable Hold Time for the Output Enable Register	К, Н
t _{OEPRE2Q}	Asynchronous Preset-to-Q of the Output Enable Register	I, EOUT
t _{OEREMPRE}	Asynchronous Preset Removal Time for the Output Enable Register	I, H
t _{OERECPRE}	Asynchronous Preset Recovery Time for the Output Enable Register	I, H
t _{ICLKQ}	Clock-to-Q of the Input Data Register	A, E
t _{ISUD}	Data Setup Time for the Input Data Register	C, A
t _{IHD}	Data Hold Time for the Input Data Register	C, A
t _{ISUE}	Enable Setup Time for the Input Data Register	B, A
t _{IHE}	Enable Hold Time for the Input Data Register	B, A
t _{IPRE2Q}	Asynchronous Preset-to-Q of the Input Data Register	D, E
t _{IREMPRE}	Asynchronous Preset Removal Time for the Input Data Register	D, A
t _{IRECPRE}	Asynchronous Preset Recovery Time for the Input Data Register	D, A

Table 2-155 • Parameter Definition and Measuring Nodes

Note: *See Figure 2-16 on page 2-84 for more information.

VersaTile Characteristics

VersaTile Specifications as a Combinatorial Module

The IGLOO library offers all combinations of LUT-3 combinatorial functions. In this section, timing characteristics are presented for a sample of the library. For more details, refer to the *IGLOO, Fusion, and ProASIC3 Macro Library Guide*.

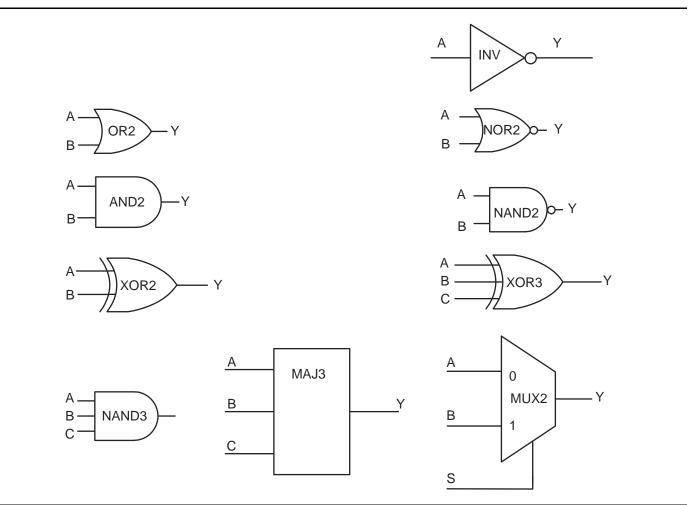


Figure 2-25 • Sample of Combinatorial Cells

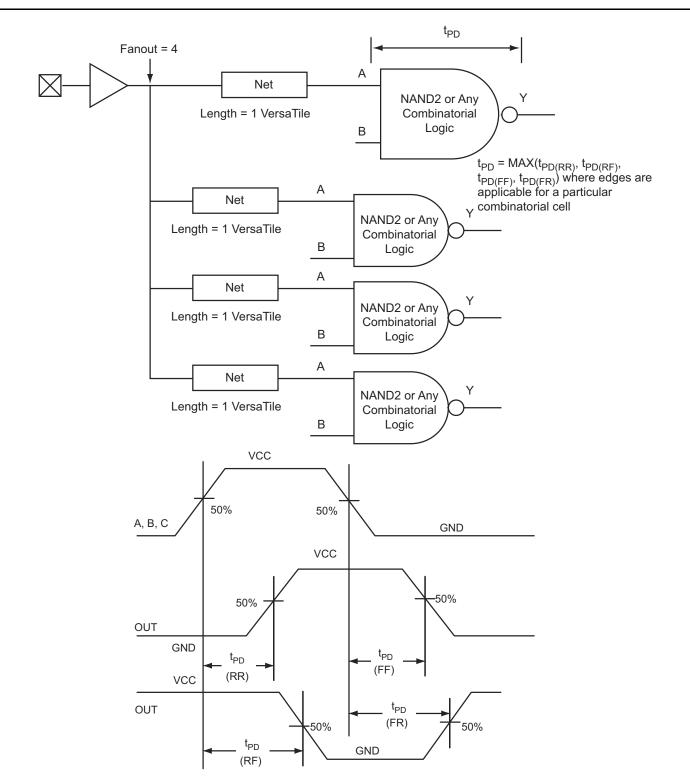


Figure 2-26 • Timing Model and Waveforms

1.2 V DC Core Voltage

Table 2-181 • AGL015 Global ResourceCommercial-Case Conditions: TJ = 70°C, VCC = 1.14 V

		S	td.	
Parameter	Description	Min. ¹	Max. ²	Units
t _{RCKL}	Input Low Delay for Global Clock	1.79	2.09	ns
t _{RCKH}	Input High Delay for Global Clock	1.87	2.26	ns
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock	1.40		ns
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock	1.65		ns
t _{RCKSW}	Maximum Skew for Global Clock		0.39	ns

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

Table 2-182 • AGL030 Global Resource

Commercial-Case Conditions: $T_J = 70^{\circ}C$, VCC = 1.14 V

		S	td.	
Parameter	Description	Min. ¹	Max. ²	Units
t _{RCKL}	Input Low Delay for Global Clock	1.80	2.09	ns
t _{RCKH}	Input High Delay for Global Clock	1.88	2.27	ns
t _{RCKMPWH}	Minimum Pulse Width High for Global Clock	1.40		ns
t _{RCKMPWL}	Minimum Pulse Width Low for Global Clock	1.65		ns
t _{RCKSW}	Maximum Skew for Global Clock		0.39	ns

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).

2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).

3. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

Table 2-190 • IGLOO CCC/PLL Specification For IGLOO V2 Devices, 1.2 V DC Core Supply Voltage

Parameter	Min.	Тур.	Max.	Units
Clock Conditioning Circuitry Input Frequency fIN_CCC	1.5		160	MHz
Clock Conditioning Circuitry Output Frequency f _{OUT_CCC}	0.75		160	MHz
Delay Increments in Programmable Delay Blocks ^{1, 2}		580 ³		ps
Number of Programmable Values in Each Programmable Delay Block			32	
Serial Clock (SCLK) for Dynamic PLL ^{4,5}			60	ns
Input Cycle-to-Cycle Jitter (peak magnitude)			0.25	ns
Acquisition Time				
LockControl = 0			300	μs
LockControl = 1			6.0	ms
Tracking Jitter ⁶				
LockControl = 0			4	ns
LockControl = 1			3	ns
Output Duty Cycle	48.5		51.5	%
Delay Range in Block: Programmable Delay 1 ^{1,2}	2.3		20.86	ns
Delay Range in Block: Programmable Delay 2 ^{1,2}	0.863		20.86	ns
Delay Range in Block: Fixed Delay ^{1, 2, 5}		5.7		ns
CCC Output Peak-to-Peak Period Jitter F _{CCC_OUT}	Maxim	um Peak-to-I	Peak Jitter Dat	ta ^{7,8}
	$SSO \geq 4^9$	$SSO \geq 8^9$	$SSO \geq 16^9$	
0.75 MHz to 50 MHz	1.20%	2.00%	3.00%	
50 MHz to 160 MHz	5.00%	7.00%	15.00%	

Notes:

1. This delay is a function of voltage and temperature. See Table 2-6 on page 2-7 and Table 2-7 on page 2-7 for deratings.

2. $T_J = 25^{\circ}C$, $V_{CC} = 1.2 V$

3. When the CCC/PLL core is generated by Microsemi core generator software, not all delay values of the specified delay increments are available. Refer to the Libero SoC Online Help associated with the core for more information.

4. Maximum value obtained for a Std. speed grade device in Worst-Case Commercial Conditions. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

5. The AGL030 device does not support a PLL.

6. Tracking jitter is defined as the variation in clock edge position of PLL outputs with reference to the PLL input clock edge. Tracking jitter does not measure the variation in PLL output period, which is covered by the period jitter parameter.

7. VCO output jitter is calculated as a percentage of the VCO frequency. The jitter (in ps) can be calculated by multiplying the VCO period by the per cent jitter. The VCO jitter (in ps) applies to CCC_OUT regardless of the output divider settings. For example, if the jitter on VCO is 300 ps, the jitter on CCC_OUT is also 300 ps, regardless of the output divider settings.

Measurements done with LVTTL 3.3 V, 8 mA I/O drive strength, and high slew Rate. VCC/VCCPLL = 1.14 V, VQ/PQ/TQ type of packages, 20 pF load.

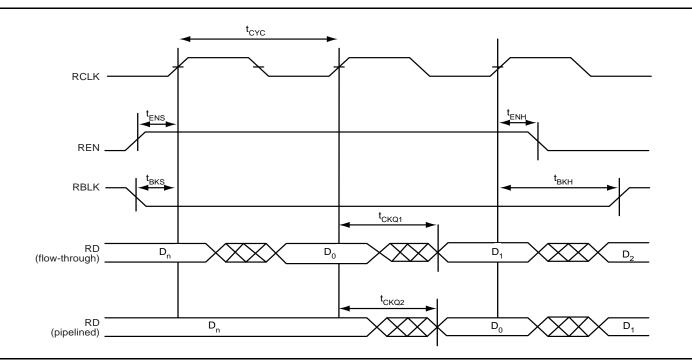
 SSO are outputs that are synchronous to a single clock domain and have clock-to-out times that are within ±200 ps of each other. Switching I/Os are placed outside of the PLL bank. Refer to the "Simultaneously Switching Outputs (SSOs) and Printed Circuit Board Layout" section in the IGLOO FPGA Fabric User Guide.

10. For definitions of Type 1 and Type 2, refer to the PLL Block Diagram in the "Clock Conditioning Circuits in IGLOO and ProASIC3 Devices" chapter of the IGLOO FPGA Fabric User Guide.

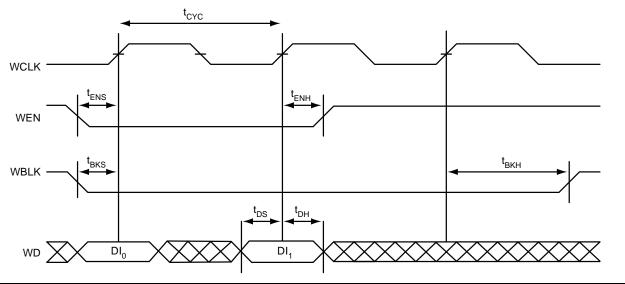
1.2 V DC Core Voltage

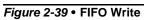
Table 2-193 • RAM4K9

Commercial-Case Conditions: T_J = 70°C, Worst-Case VCC = 1.14 V


Parameter	Description	Std.	Units
t _{AS}	Address setup time	1.53	ns
t _{AH}	Address hold time		ns
t _{ENS}	REN WEN setup time	1.50	ns
t _{ENH}	REN, WEN hold time	0.29	ns
t _{BKS}	BLK setup time	3.05	ns
t _{BKH}	BLK hold time	0.29	ns
t _{DS}	Input data (DIN) setup time	1.33	ns
t _{DH}	Input data (DIN) hold time	0.66	ns
t _{CKQ1}	Clock High to new data valid on DOUT (output retained, WMODE = 0)	6.61	ns
	Clock High to new data valid on DOUT (flow-through, WMODE = 1)	5.72	ns
t _{CKQ2}	Clock High to new data valid on DOUT (pipelined)	3.38	ns
t _{C2CWWL} 1	Address collision clk-to-clk delay for reliable write after write on same address – Applicable to Closing Edge		ns
t _{C2CRWH} 1	Address collision clk-to-clk delay for reliable read access after write on same address – Applicable to Opening Edge		ns
t _{C2CWRH} 1	Address collision clk-to-clk delay for reliable write access after read on same address – Applicable to Opening Edge		ns
t _{RSTBQ}	RESET Low to data out Low on DOUT (flow-through)		ns
	RESET Low to data out Low on DOUT (pipelined)	3.86	ns
t _{REMRSTB}	RESET removal		ns
t _{RECRSTB}	RESET recovery		ns
t _{MPWRSTB}	RESET minimum pulse width		ns
t _{CYC}	Clock cycle time	10.90	ns
F _{MAX}	Maximum frequency	92	MHz

Notes:


1. For more information, refer to the application note Simultaneous Read-Write Operations in Dual-Port SRAM for Flash-Based cSoCs and FPGAs.


2. For specific junction temperature and voltage supply levels, refer to Table 2-6 on page 2-7 for derating values.

Timing Waveforms

Figure 2-38 • FIFO Read

1.2 V DC Core Voltage

Table 2-196 • FIFO

Worst Commercial-Case Conditions: $T_J = 70^{\circ}C$, VCC = 1.14 V

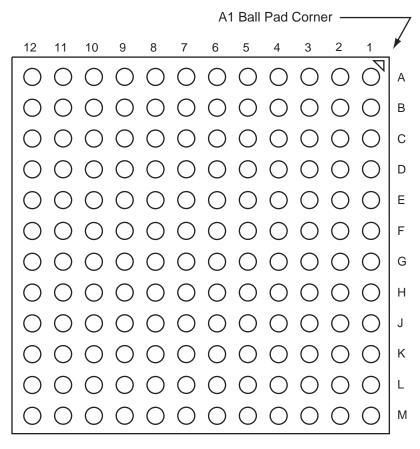
Parameter	Description	Std.	Units
t _{ENS}	REN, WEN Setup Time	4.13	ns
t _{ENH}	REN, WEN Hold Time	0.31	ns
t _{BKS}	BLK Setup Time	0.47	ns
t _{BKH}	BLK Hold Time	0.00	ns
t _{DS}	Input Data (WD) Setup Time	1.56	ns
t _{DH}	Input Data (WD) Hold Time	0.49	ns
t _{CKQ1}	Clock High to New Data Valid on RD (flow-through)	6.80	ns
t _{CKQ2}	Clock High to New Data Valid on RD (pipelined)	3.62	ns
t _{RCKEF}	RCLK High to Empty Flag Valid	7.23	ns
t _{WCKFF}	WCLK High to Full Flag Valid	6.85	ns
t _{CKAF}	Clock High to Almost Empty/Full Flag Valid	26.61	ns
t _{RSTFG}	RESET Low to Empty/Full Flag Valid	7.12	ns
t _{RSTAF}	RESET Low to Almost Empty/Full Flag Valid	26.33	ns
t _{RSTBQ}	RESET Low to Data Out Low on RD (flow-through)	4.09	ns
	RESET Low to Data Out Low on RD (pipelined)	4.09	ns
t _{REMRSTB}	RESET Removal	1.23	ns
t _{RECRSTB}	RESET Recovery	6.58	ns
t _{MPWRSTB}	RESET Minimum Pulse Width	1.18	ns
t _{CYC}	Clock Cycle Time	10.90	ns
F _{MAX}	Maximum Frequency for FIFO	92	MHz

Note: For specific junction temperature and voltage supply levels, refer to Table 2-7 on page 2-7 for derating values.

Microsemi

Package Pin Assignments

QN132			
Pin Number AGL030 Function			
C17	IO47RSB1		
C18	NC		
C19	ТСК		
C20	NC		
C21	VPUMP		
C22	VJTAG		
C23	NC		
C24	NC		
C25	NC		
C26	GDB0/IO34RSB0		
C27	NC		
C28	VCCIB0		
C29	IO28RSB0		
C30	IO25RSB0		
C31	IO24RSB0		
C32	IO21RSB0		
C33	NC		
C34	NC		
C35	VCCIB0		
C36	IO13RSB0		
C37	IO10RSB0		
C38	IO07RSB0		
C39	IO03RSB0		
C40	IO00RSB0		
D1	GND		
D2	GND		
D3	GND		
D4	GND		


Microsemi

Package Pin Assignments

	VQ100		VQ100	VQ100	
Pin Number	AGL125 Function	Pin Number	AGL125 Function	Pin Number	AGL125 Function
1	GND	36	IO93RSB1	72	IO42RSB0
2	GAA2/IO67RSB1	37	VCC	73	GBA2/IO41RSB0
3	IO68RSB1	38	GND	74	VMV0
4	GAB2/IO69RSB1	39	VCCIB1	75	GNDQ
5	IO132RSB1	40	IO87RSB1	76	GBA1/IO40RSB0
6	GAC2/IO131RSB1	41	IO84RSB1	77	GBA0/IO39RSB0
7	IO130RSB1	42	IO81RSB1	78	GBB1/IO38RSB0
8	IO129RSB1	43	IO75RSB1	79	GBB0/IO37RSB0
9	GND	44	GDC2/IO72RSB1	80	GBC1/IO36RSB0
10	GFB1/IO124RSB1	45	GDB2/IO71RSB1	81	GBC0/IO35RSB0
11	GFB0/IO123RSB1	46	GDA2/IO70RSB1	82	IO32RSB0
12	VCOMPLF	47	TCK	83	IO28RSB0
13	GFA0/IO122RSB1	48	TDI	84	IO25RSB0
14	VCCPLF	49	TMS	85	IO22RSB0
15	GFA1/IO121RSB1	50	VMV1	86	IO19RSB0
16	GFA2/IO120RSB1	51	GND	87	VCCIB0
17	VCC	52	VPUMP	88	GND
18	VCCIB1	53	NC	89	VCC
19	GEC0/IO111RSB1	54	TDO	90	IO15RSB0
20	GEB1/IO110RSB1	55	TRST	91	IO13RSB0
21	GEB0/IO109RSB1	56	VJTAG	92	IO11RSB0
22	GEA1/IO108RSB1	57	GDA1/IO65RSB0	93	IO09RSB0
23	GEA0/IO107RSB1	58	GDC0/IO62RSB0	94	IO07RSB0
24	VMV1	59	GDC1/IO61RSB0	95	GAC1/IO05RSB0
25	GNDQ	60	GCC2/IO59RSB0	96	GAC0/IO04RSB0
26	GEA2/IO106RSB1	61	GCB2/IO58RSB0	97	GAB1/IO03RSB0
27	FF/GEB2/IO105RSB	62	GCA0/IO56RSB0	98	GAB0/IO02RSB0
	1	63	GCA1/IO55RSB0	99	GAA1/IO01RSB0
28	GEC2/IO104RSB1	64	GCC0/IO52RSB0	100	GAA0/IO00RSB0
29	IO102RSB1	65	GCC1/IO51RSB0		
30	IO100RSB1	66	VCCIB0		
31	IO99RSB1	67	GND		
32	IO97RSB1	68	VCC		
33	IO96RSB1	69	IO47RSB0		
34	IO95RSB1	70	GBC2/IO45RSB0		
35	IO94RSB1	71	GBB2/IO43RSB0		

FG144

Note: This is the bottom view of the package.

Note

For more information on package drawings, see PD3068: Package Mechanical Drawings.

Microsemi

Package Pin Assignments

FG484			
Pin Number AGL400 Function			
V15	IO85RSB2		
V16	GDB2/IO81RSB2		
V17	TDI		
V18	NC		
V19	TDO		
V20	GND		
V21	NC		
V22	NC		
W1	NC		
W2	NC		
W3	NC		
W4	GND		
W5	IO126RSB2		
W6	FF/GEB2/IO133RSB2		
W7	IO124RSB2		
W8	IO116RSB2		
W9	IO113RSB2		
W10	IO107RSB2		
W11	IO105RSB2		
W12	IO102RSB2		
W13	IO97RSB2		
W14	IO92RSB2		
W15	GDC2/IO82RSB2		
W16	IO86RSB2		
W17	GDA2/IO80RSB2		
W18	TMS		
W19	GND		
W20	NC		
W21	NC		
W22	NC		
Y1	VCCIB3		
Y2	NC		
Y3	NC		
Y4	NC		
Y5	GND		
Y6	NC		

FG484			
Pin Number AGL1000 Function			
AA15	NC		
AA16	IO122RSB2		
AA17	IO119RSB2		
AA18	IO117RSB2		
AA19	NC		
AA20	NC		
AA21	VCCIB1		
AA22	GND		
AB1	GND		
AB2	GND		
AB3	VCCIB2		
AB4	IO180RSB2		
AB5	IO176RSB2		
AB6	IO173RSB2		
AB7	IO167RSB2		
AB8	IO162RSB2		
AB9	IO156RSB2		
AB10	IO150RSB2		
AB11	IO145RSB2		
AB12	IO144RSB2		
AB13	IO132RSB2		
AB14	IO127RSB2		
AB15	IO126RSB2		
AB16	IO123RSB2		
AB17	IO121RSB2		
AB18	IO118RSB2		
AB19	NC		
AB20	VCCIB2		
AB21	GND		
AB22	GND		
B1	GND		
B2	VCCIB3		
B3	NC		
B4	IO06RSB0		
B5	IO08RSB0		
	IO12RSB0		

FG484			
Pin Number AGL1000 Function			
B7	IO15RSB0		
B8	IO19RSB0		
B9	IO24RSB0		
B10	IO31RSB0		
B11	IO39RSB0		
B12	IO48RSB0		
B13	IO54RSB0		
B14	IO58RSB0		
B15	IO63RSB0		
B16	IO66RSB0		
B17	IO68RSB0		
B18	IO70RSB0		
B19	NC		
B20	NC		
B21	VCCIB1		
B22	GND		
C1	VCCIB3		
C2	IO220PDB3		
C3	NC		
C4	NC		
C5	GND		
C6	IO10RSB0		
C7	IO14RSB0		
C8	VCC		
C9	VCC		
C10	IO30RSB0		
C11	IO37RSB0		
C12	IO43RSB0		
C13	NC		
C14	VCC		
C15	VCC		
C16	NC		
C17	NC		
C18	GND		
C19	NC		
C20	NC		

IGLOO Low Power Flash FPGAs

Revision / Version	Changes	Page
DC & Switching, cont'd.	Table 2-49 · Minimum and Maximum DC Input and Output Levels for LVCMOS 3.3 V Wide Range is new.	2-39
Revision 9 (Jul 2008)As a result of the Libero IDE v8.4 release, Actel now offers a wide range of convoltage support. The document was updated to change 1.2 V / 1.5 V to 1.2 V to 1.2 V to 1.2 V to 1.2 V to 1.4 V to 1.5 V.DC and Switching Characteristics Advance v0.31.5 V.		N/A
Revision 8 (Jun 2008)	As a result of the Libero IDE v8.4 release, Actel now offers a wide range of core voltage support. The document was updated to change $1.2 \text{ V} / 1.5 \text{ V}$ to 1.2 V to 1.5 V .	N/A
DC and Switching Characteristics Advance v0.2	Tables have been updated to reflect default values in the software. The default I/O capacitance is 5 pF. Tables have been updated to include the LVCMOS 1.2 V I/O set. DDR Tables have two additional data points added to reflect both edges for Input DDR setup and hold time. The power data table has been updated to match SmartPower data rather then simulation values. AGL015 global clock delays have been added.	N/A
	Table 2-1 • Absolute Maximum Ratings was updated to combine the VCCI and VMV parameters in one row. The word "output" from the parameter description for VCCI and VMV, and table note 3 was added.	2-1
	Table 2-2 • Recommended Operating Conditions 1 was updated to add references to tables notes 4, 6, 7, and 8. VMV was added to the VCCI parameter row, and table note 9 was added.	2-2
	In Table 2-3 • Flash Programming Limits – Retention, Storage, and Operating Temperature1, the maximum operating junction temperature was changed from 110° to 100°.	2-3
	VMV was removed from Table 2-4 • Overshoot and Undershoot Limits 1. The table title was modified to remove "as measured on quiet I/Os." Table note 2 was revised to remove "estimated SSO density over cycles." Table note 3 was revised to remove "refers only to overshoot/undershoot limits for simultaneous switching I/Os."	2-3
	The "PLL Behavior at Brownout Condition" section is new.	2-4
	Figure 2-2 • V2 Devices – I/O State as a Function of VCCI and VCC Voltage Levels is new.	2-5
	EQ 2 was updated. The temperature was changed to 100°C, and therefore the end result changed.	2-6
	The table notes for Table 2-9 • Quiescent Supply Current (IDD) Characteristics, IGLOO Flash*Freeze Mode*, Table 2-10 • Quiescent Supply Current (IDD) Characteristics, IGLOO Sleep Mode*, and Table 2-11 • Quiescent Supply Current (IDD) Characteristics, IGLOO Shutdown Mode were updated to remove VMV and include PDC6 and PDC7. VCCI and VJTAG were removed from the statement about IDD in the table note for Table 2-11 • Quiescent Supply Current (IDD) Characteristics, IGLOO Shutdown Mode.	2-7
	Note 2 of Table 2-12 • Quiescent Supply Current (IDD), No IGLOO Flash*Freeze Mode1 was updated to include VCCPLL. Note 4 was updated to include PDC6 and PDC7.	2-9

Datasheet Information

Revision / Version	Changes	Page
Revision 8 (cont'd)	Table 2-13 • Summary of I/O Input Buffer Power (per pin) – Default I/O Software Settings, Table 2-14 • Summary of I/O Input Buffer Power (per pin) – Default I/O Software Settings, Table 2-15 • Summary of I/O Input Buffer Power (per pin) – Default I/O Software Settings, and Table 2-16 • Summary of I/O Output Buffer Power (per pin) – Default I/O Software Settings1 were updated to change PDC2 to PDC6 and PDC3 to PDC7. The table notes were updated to reflect that power was measured on VCCI.	2-10 through 2-11
	In Table 2-19 • Different Components Contributing to Dynamic Power Consumption in IGLOO Devices, the description for PAC13 was changed from Static to Dynamic.	2-13
	Table 2-20 • Different Components Contributing to the Static Power Consumption in IGLOO Devices and Table 2-22 • Different Components Contributing to the Static Power Consumption in IGLOO Device were updated to add PDC6 and PDC7, and to change the definition for PDC5 to bank quiescent power. Subtitles were added to indicate type of devices and core supply voltage.	2-14, 2-16
	The "Total Static Power Consumption—PSTAT" section was updated to revise the calculation of P _{STAT} , including PDC6 and PDC7.	2-17
	Footnote † was updated to include information about PAC13. The PLL Contribution equation was changed from: $P_{PLL} = P_{AC13} + P_{AC14} * F_{CLKOUT}$ to $P_{PLL} = P_{DC4} + P_{AC13} * F_{CLKOUT}$.	2-18
Revision 7 (Jun 2008) Packaging v1.5	The "QN132" package diagram was updated to include D1 to D4. In addition, note 1 was changed from top view to bottom view, and note 2 is new.	4-28
Revision 6 (Jun 2008) Packaging v1.4	This document was divided into two sections and given a version number, starting at v1.0. The first section of the document includes features, benefits, ordering information, and temperature and speed grade offerings. The second section is a device family overview.	N/A
	Pin numbers were added to the "QN68" package diagram. Note 2 was added below the diagram.	4-25
Revision 5 (Mar 2008) Packaging v1.3	The "CS196" package and pin table was added for AGL250.	4-12
Revision 4 (Mar 2008) Product Brief v1.0	The "Low Power" section was updated to change "1.2 V and 1.5 V Core Voltage" to "1.2 V and 1.5 V Core and I/O Voltage." The text "(from 12 μ W)" was removed from "Low Power Active FPGA Operation."	Ι
	1.2_V was added to the list of core and I/O voltages in the "Advanced I/O" and "I/Os with Advanced I/O Standards" section sections.	l, 1-7
	The "Embedded Memory" section was updated to remove the footnote reference from the section heading and place it instead after "4,608-Bit" and "True Dual-Port SRAM (except ×18)."	Ι