AMD Xilinx - XCZU5CG-2FBVB900I Datasheet

Welcome to E-XFL.COM

Embedded - System On Chip (SoC): The Heart of Modern Embedded Systems

Embedded - System On Chip (SoC) refers to an integrated circuit that consolidates all the essential components of a computer system into a single chip. This includes a microprocessor, memory, and other peripherals, all packed into one compact and efficient package. SoCs are designed to provide a complete computing solution, optimizing both space and power consumption, making them ideal for a wide range of embedded applications.

What are Embedded - System On Chip (SoC)?

System On Chip (SoC) integrates multiple functions of a computer or electronic system onto a single chip. Unlike traditional multi-chip solutions. SoCs combine a central

Details

Product Status	Active
Architecture	MCU, FPGA
Core Processor	Dual ARM® Cortex®-A53 MPCore [™] with CoreSight [™] , Dual ARM®Cortex [™] -R5 with CoreSight [™]
Flash Size	-
RAM Size	256KB
Peripherals	DMA, WDT
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, MMC/SD/SDIO, SPI, UART/USART, USB OTG
Speed	533MHz, 1.3GHz
Primary Attributes	Zynq®UltraScale+™ FPGA, 256K+ Logic Cells
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	900-BBGA, FCBGA
Supplier Device Package	900-FCBGA (31x31)
Purchase URL	https://www.e-xfl.com/product-detail/xilinx/xczu5cg-2fbvb900i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	Table	4:	DC	Characteristics	Over	Recommended	Operating	g Conditions	(Cont'd)
--	-------	----	----	-----------------	------	-------------	-----------	--------------	----------

Symbol	Description	Min	Typ <mark>(1)</mark>	Max	Units
Differential termination	Programmable differential termination (TERM_100) for HP I/O banks.	-35%	100	+35%	Ω
n	Temperature diode ideality factor.	_	1.026	-	-
r	Temperature diode series resistance.	_	2	_	Ω

Notes:

- 1. Typical values are specified at nominal voltage, 25°C.
- 2. For HP I/O banks with a V_{CCO} of 1.8V and separated V_{CCO} and $V_{CCAUX_{IO}}$ power supplies, the I_L maximum current is 70 μ A.
- 3. This measurement represents the die capacitance at the pad, not including the package.
- 4. Maximum value specified for worst case process at 25°C.
- 5. I_{CC PSBATT} is measured when the battery-backed RAM (BBRAM) is enabled.
- 6. Do not program eFUSE during device configuration (e.g., during configuration, during configuration readback, or when readback CRC is active).
- 7. If VRP resides at a different bank (DCI cascade), the range increases to $\pm 15\%$.
- 8. VRP resistor tolerance is (240 Ω ±1%)
- On-die input termination resistance, for more information see the UltraScale Architecture SelectIO Resources User Guide (UG571).

Table 5: PS MIO Pull-up and Pull-down Current

Symbol	Description	Min	Мах	Units
	Pad pull-up (when selected) at $V_{IN} = 0V$, $V_{CCO_PSMIO} = 3.3V$.	20	80	μA
I _{RPU}	Pad pull-up (when selected) at $V_{IN} = 0V$, $V_{CCO_PSMIO} = 2.5V$.	20	80	μA
	Pad pull-up (when selected) at $V_{IN} = 0V$, $V_{CCO_PSMIO} = 1.8V$.	15	65	μA
I _{RPD}	Pad pull-down (when selected) at $V_{IN} = 3.3V$.	20	80	μA
	Pad pull-down (when selected) at $V_{IN} = 2.5V$.	20	80	μA
	Pad pull-down (when selected) at $V_{IN} = 1.8V$.	15	65	μA

I/O Standard	V _{ICM} (V) ⁽²⁾			V _{ID} (V) ⁽³⁾		V _{OL} (V) ⁽⁴⁾	V _{OH} (V) ⁽⁵⁾	I _{OL}	I _{ОН}
170 Standard	Min	Тур	Max	Min	Max	Max	Min	mA	mA
DIFF_HSTL_I	0.680	$V_{CCO}/2$	$(V_{CCO}/2) + 0.150$	0.100	-	0.400	V _{CCO} – 0.400	5.8	-5.8
DIFF_HSTL_I_12	0.400 x V _{CCO}	$V_{CCO}/2$	0.600 x V _{CCO}	0.100	-	0.250 x V _{CCO}	0.750 x V _{CCO}	4.1	-4.1
DIFF_HSTL_I_18	(V _{CCO} /2) – 0.175	$V_{CCO}/2$	$(V_{CCO}/2) + 0.175$	0.100	-	0.400	V _{CCO} – 0.400	6.2	-6.2
DIFF_HSUL_12	(V _{CCO} /2) – 0.120	$V_{CCO}/2$	$(V_{CCO}/2) + 0.120$	0.100	-	20% V _{CCO}	80% V _{CCO}	0.1	-0.1
DIFF_SSTL12	(V _{CCO} /2) – 0.150	$V_{CCO}/2$	$(V_{CCO}/2) + 0.150$	0.100	-	(V _{CCO} /2) – 0.150	$(V_{CCO}/2) + 0.150$	8.0	-8.0
DIFF_SSTL135	(V _{CCO} /2) – 0.150	$V_{CCO}/2$	$(V_{CCO}/2) + 0.150$	0.100	-	(V _{CCO} /2) – 0.150	$(V_{CCO}/2) + 0.150$	9.0	-9.0
DIFF_SSTL15	(V _{CCO} /2) – 0.175	$V_{CCO}/2$	$(V_{CCO}/2) + 0.175$	0.100	-	(V _{CCO} /2) – 0.175	$(V_{CCO}/2) + 0.175$	10.0	-10.0
DIFF_SSTL18_I	(V _{CCO} /2) – 0.175	$V_{CCO}/2$	$(V_{CCO}/2) + 0.175$	0.100	-	(V _{CCO} /2) - 0.470	$(V_{CCO}/2) + 0.470$	7.0	-7.0

Table 19: Complementary Differential SelectIO DC Input and Output Levels for HP I/O Banks⁽¹⁾

Notes:

- 1. DIFF_POD10 and DIFF_POD12 HP I/O bank specifications are shown in Table 20, Table 21, and Table 22.
- 2. V_{ICM} is the input common mode voltage.
- 3. V_{ID} is the input differential voltage.
- 4. V_{OL} is the single-ended low-output voltage.
- 5. V_{OH} is the single-ended high-output voltage.

Table 20: DC Input Levels for Differential POD10 and POD12 I/O Standards⁽¹⁾⁽²⁾

L/O Standard		V _{ICM} (V)	V _{ID} (V)		
170 Standard	Min	Тур	Мах	Min	Мах
DIFF_POD10	0.63	0.70	0.77	0.14	-
DIFF_POD12	0.76	0.84	0.92	0.16	_

Notes:

2. Standards specified using the default I/O standard configuration. For details, see the *UltraScale Architecture SelectIO Resources User Guide* (<u>UG571</u>).

Table 21: DC Output Levels for Single-ended and Differential POD10 and POD12 Standards⁽¹⁾⁽²⁾

Symbol	Description	V _{OUT}	Min	Тур	Max	Units
R _{OL}	Pull-down resistance.	V _{OM_DC} (as described in Table 22)	36	40	44	Ω
R _{OH}	Pull-up resistance.	V _{OM_DC} (as described in Table 22)	36	40	44	Ω

Notes:

1. Tested according to relevant specifications.

 Standards specified using the default I/O standard configuration. For details, see the UltraScale Architecture SelectIO Resources User Guide (UG571).

Table 22: Table 21 Definitions for DC Output Levels for POD Standards

Symbol	Description	All Speed Grades	Units
V _{OM_DC}	DC output Mid measurement level (for IV curve linearity).	0.8 x V _{CCO}	V

^{1.} Tested according to relevant specifications.