

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	50MHz
Connectivity	I ² C, IrDA, SPI, UART/USART
Peripherals	DMA, I ² S, LVD, POR, PWM, WDT
Number of I/O	64
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	64K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 3.6V
Data Converters	A/D 24x16b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	121-LFBGA
Supplier Device Package	121-MAPBGA (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mk11dn512avmc5

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Terminology and guidelines

Field	Description	Values
Q	Qualification status	 M = Fully qualified, general market flow P = Prequalification
С	Speed	• G = 50 MHz
F	Flash memory configuration	 G = 128 KB + Flex H = 256 KB + Flex 9 = 512 KB
Т	Temperature range (°C)	• V = -40 to 105
PP	Package identifier	• MC = 121 MAPBGA

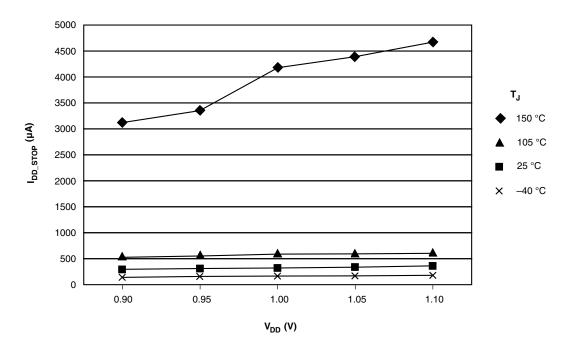
This tables lists some examples of small package marking along with the original part numbers:

Original part number	Alternate part number
MK11DX128VLK5	M11GGVLK
MK11DX256VMC5	M11GHVMC

3 Terminology and guidelines

3.1 Definition: Operating requirement

An *operating requirement* is a specified value or range of values for a technical characteristic that you must guarantee during operation to avoid incorrect operation and possibly decreasing the useful life of the chip.


3.1.1 Example

This is an example of an operating requirement:

Symbol	Description	Min.	Max.	Unit
V _{DD}	1.0 V core supply voltage	0.9	1.1	V

3.9 Typical value conditions

Typical values assume you meet the following conditions (or other conditions as specified):

Symbol	Description	Value	Unit
T _A	Ambient temperature	25	C°
V _{DD}	3.3 V supply voltage	3.3	V

4 Ratings

4.1 Thermal handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
T _{STG}	Storage temperature	-55	150	°C	1
T _{SDR}	Solder temperature, lead-free	_	260	°C	2

1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life.

2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices.

4.2 Moisture handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
MSL	Moisture sensitivity level	_	3	—	1

1. Determined according to IPC/JEDEC Standard J-STD-020, *Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices*.

4.3 ESD handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
V _{HBM}	Electrostatic discharge voltage, human body model	-2000	+2000	V	1
V _{CDM}	Electrostatic discharge voltage, charged-device model	-500	+500	V	2
I _{LAT}	Latch-up current at ambient temperature of 105°C	-100	+100	mA	3

- 1. Determined according to JEDEC Standard JESD22-A114, *Electrostatic Discharge (ESD) Sensitivity Testing Human Body Model (HBM)*.
- 2. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components.
- 3. Determined according to JEDEC Standard JESD78, IC Latch-Up Test.

4.4 Voltage and current operating ratings

Symbol	Description	Min.	Max.	Unit
V _{DD}	Digital supply voltage	-0.3	3.8	V
I _{DD}	Digital supply current		155	mA
V _{DIO}	Digital input voltage (except RESET, EXTAL, and XTAL)	-0.3		V
V _{AIO}	Analog ¹ , RESET, EXTAL, and XTAL input voltage	-0.3	V _{DD} + 0.3	V
I _D	Maximum current single pin limit (applies to all digital pins)	-25	25	mA
V _{DDA}	Analog supply voltage	V _{DD} – 0.3	V _{DD} + 0.3	V
VREGIN	USB regulator input	-0.3	6.0	V
V _{BAT}	RTC battery supply voltage	-0.3	3.8	V

1. Analog pins are defined as pins that do not have an associated general purpose I/O port function.

5 General

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
I _{DD_RUN}	Run mode current — all peripheral clocks enabled, code executing from flash					3, 4
	• @ 1.8 V		17.04	19.3	mA	
	• @ 3.0 V		17.04	10.0		
	• @ 25°C		17.01	18.9	mA	
	• @ 125°C		19.8	21.3	mA	
I _{DD_WAIT}	Wait mode high frequency current at 3.0 V — all peripheral clocks disabled		7.95	9.5	mA	2
I _{DD_WAIT}	Wait mode reduced frequency current at 3.0 V — all peripheral clocks disabled	_	5.88	7.4	mA	5
I _{DD_STOP}	Stop mode current at 3.0 V		320	436	μA	
	 @ -40 to 25°C @ 50°C 		360	489		
	• @ 70°C		410	620		
	• @ 105°C		610	1100		
I _{DD_VLPR}	Very-low-power run mode current at 3.0 V — all		754		μA	6
'DD_VLFN	peripheral clocks disabled				P	
I _{DD_VLPR}	Very-low-power run mode current at 3.0 V — all peripheral clocks enabled	—	1.1		mA	7
I _{DD_VLPW}	Very-low-power wait mode current at 3.0 V		437	_	μA	8
I _{DD_VLPS}	Very-low-power stop mode current at 3.0 V	—	7.33	24.2	μA	
	 @ −40 to 25°C @ 50°C 		14	32		
	• @ 70°C		28	48		
	• @ 105°C		110	280		
I _{DD_LLS}	Low leakage stop mode current at 3.0 V		3.14	4.8	μA	
	 @ -40 to 25°C @ 50°C 		6.48	28.3		
	• @ 70°C		13.85	44.6		
	• @ 105°C		55.53	71.3		
I _{DD_VLLS3}	Very low-leakage stop mode 3 current at 3.0 V				μA	
	• @ –40 to 25°C	—	2.19	3.4		
	• @ 50°C		4.35	4.35		
	● @ 70°C ● @ 105°C		8.92	24.6		
			35.33	45.3		
I _{DD_VLLS2}	Very low-leakage stop mode 2 current at 3.0 V • @ -40 to 25°C	_	1.77	3.1	μA	
	• @ 50°C		2.81	13.8		
	● @ 70°C ● @ 105°C		5.20	22.3		
			19.88	34.2		

Table 6. Power consumption operating behaviors (continued)

Table continues on the next page...

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
I _{DD_VLLS1}	Very low-leakage stop mode 1 current at 3.0 V • @ -40 to 25°C	—	1.03	1.8	μA	
	• @ 50°C		1.92	7.5		
	• @ 70°C • @ 105°C		4.03	15.9		
			17.43	28.7		
I _{DD_VLLS0}	Very low-leakage stop mode 0 current at 3.0 V with POR detect circuit enabled	_	0.543	1.1	μA	
	 @ -40 to 25°C 		1.36	7.58		
	• @ 50°C • @ 70°C		3.39	14.3		
	• @ 105°C		16.52	24.1		
I _{DD_VLLS0}	Very low-leakage stop mode 0 current at 3.0 V with POR detect circuit disabled	—	0.359	0.95	μA	
	 @ -40 to 25°C 		1.03	6.8		
	• @ 50°C • @ 70°C		2.87	15.4		
	• @ 105°C		15.20	25.3		
I _{DD_VBAT}	Average current when CPU is not accessing RTC registers at 3.0 V		0.91	1.1	μA	9
	• @ –40 to 25°C		1.1	1.35		
	• @ 50°C • @ 70°C		1.5	1.85		
	• @ 105°C		4.3	5.7		

 Table 6. Power consumption operating behaviors (continued)

- 1. The analog supply current is the sum of the active or disabled current for each of the analog modules on the device. See each module's specification for its supply current.
- 50 MHz core and system clock, 25 MHz bus clock, and 25 MHz flash clock. MCG configured for FEI mode. All peripheral clocks disabled.
- 3. 50 MHz core and system clock, 25 MHz bus clock, and 25 MHz flash clock. MCG configured for FEI mode. All peripheral clocks enabled, and peripherals are in active operation.
- 4. Max values are measured with CPU executing DSP instructions
- 5. 25 MHz core and system clock, 25 MHz bus clock, and 12.5 MHz flash clock. MCG configured for FEI mode.
- 6. 4 MHz core, system, and bus clock and 1 MHz flash clock. MCG configured for BLPE mode. All peripheral clocks disabled. Code executing from flash.
- 7. 4 MHz core, system, and bus clock and 1 MHz flash clock. MCG configured for BLPE mode. All peripheral clocks enabled but peripherals are not in active operation. Code executing from flash.
- 8. 4 MHz core, system, and bus clock and 1 MHz flash clock. MCG configured for BLPE mode. All peripheral clocks disabled.
- 9. Includes 32 kHz oscillator current and RTC operation.

5.2.5.1 Diagram: Typical IDD_RUN operating behavior

The following data was measured under these conditions:

- MCG in FBE mode
- USB regulator disabled
- No GPIOs toggled
- Code execution from flash with cache enabled
- For the ALLOFF curve, all peripheral clocks are disabled except FTFL

General

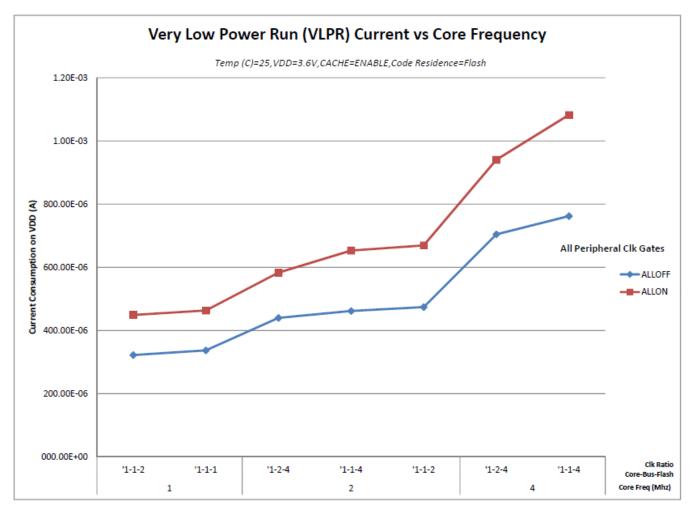


Figure 3. VLPR mode supply current vs. core frequency

5.2.6 EMC radiated emissions operating behaviors Table 7. EMC radiated emissions operating behaviors 1

Symbol	Description	Frequency band (MHz)	Тур.	Unit	Notes
V _{RE1}	Radiated emissions voltage, band 1	0.15–50	19	dBµV	2, 3
V _{RE2}	Radiated emissions voltage, band 2	50–150	21	dBµV	
V _{RE3}	Radiated emissions voltage, band 3	150–500	19	dBµV	
V _{RE4}	Radiated emissions voltage, band 4	500–1000	11	dBµV	
V _{RE_IEC}	IEC level	0.15–1000	L	—	3, 4

1. This data was collected on a MK20DN128VLH5 64pin LQFP device.

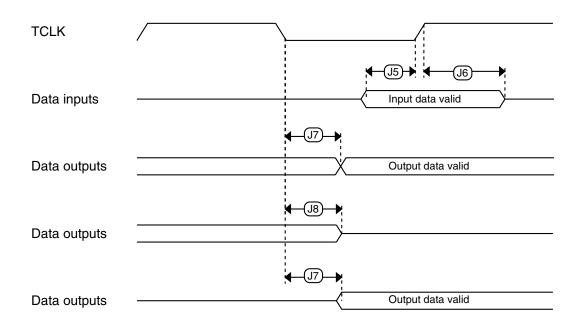
2. Determined according to IEC Standard 61967-1, Integrated Circuits - Measurement of Electromagnetic Emissions, 150 kHz to 1 GHz Part 1: General Conditions and Definitions and IEC Standard 61967-2, Integrated Circuits - Measurement of Electromagnetic Emissions, 150 kHz to 1 GHz Part 2: Measurement of Radiated Emissions – TEM Cell and Wideband TEM Cell Method. Measurements were made while the microcontroller was running basic application code. The reported emission level is the value of the maximum measured emission, rounded up to the next whole number, from among the measured orientations in each frequency range.

K11 Sub-Family Data Sheet, Rev. 4, 08/2013.

General

1. The frequency limitations in VLPR mode here override any frequency specification listed in the timing specification for any other module.

5.3.2 General switching specifications


These general purpose specifications apply to all pins configured for:

- GPIO signaling
- Other peripheral module signaling not explicitly stated elsewhere


Symbol	Description	Min.	Max.	Unit	Notes
	GPIO pin interrupt pulse width (digital glitch filter disabled) — Synchronous path	1.5	_	Bus clock cycles	1, 2
	GPIO pin interrupt pulse width (digital glitch filter disabled, analog filter enabled) — Asynchronous path	100	_	ns	3
	GPIO pin interrupt pulse width (digital glitch filter disabled, analog filter disabled) — Asynchronous path	50	_	ns	3
	External reset pulse width (digital glitch filter disabled)	100	—	ns	3
	Port rise and fall time (high drive strength)				4
	Slew disabled				
	• $1.71 \le V_{DD} \le 2.7V$	—	13	ns	
	• $2.7 \le V_{DD} \le 3.6V$	—	7	ns	
	Slew enabled				
	• $1.71 \le V_{DD} \le 2.7V$	—	36	ns	
	• $2.7 \le V_{DD} \le 3.6V$	—	24	ns	
	Port rise and fall time (low drive strength)				5
	Slew disabled				
	• $1.71 \le V_{DD} \le 2.7V$	—	12	ns	
	• $2.7 \le V_{DD} \le 3.6V$	—	6	ns	
	Slew enabled				
	• $1.71 \le V_{DD} \le 2.7V$	_	36	ns	
	• $2.7 \le V_{DD} \le 3.6V$	_	24	ns	

 Table 10.
 General switching specifications

- 1. This is the minimum pulse width that is guaranteed to pass through the pin synchronization circuitry. Shorter pulses may or may not be recognized. In Stop, VLPS, LLS, and VLLSx modes, the synchronizer is bypassed so shorter pulses can be recognized in that case.
- 2. The greater synchronous and asynchronous timing must be met.
- 3. This is the minimum pulse width that is guaranteed to be recognized as a pin interrupt request in Stop, VLPS, LLS, and VLLSx modes.
- 4. 75 pF load
- 5. 15 pF load

K11 Sub-Family Data Sheet, Rev. 4, 08/2013.

Symbol	Description		Min.	Тур.	Max.	Unit	Notes
		FL	L				
f _{fll_ref}	FLL reference free	uency range	31.25	_	39.0625	kHz	
f _{dco}	DCO output frequency range	Low range (DRS=00) 640 × f _{fll ref}	20	20.97	25	MHz	3, 4
		Mid range (DRS=01) 1280 × f _{fll_ref}	40	41.94	50	MHz	-
		Mid-high range (DRS=10) 1920 × f _{fll ref}	60	62.91	75	MHz	
		High range (DRS=11) 2560 × f _{fll ref}	80	83.89	100	MHz	
dco_t_DMX32	DCO output frequency	Low range (DRS=00) 732 × f _{fll_ref}		23.99	-	MHz	5, 6
		Mid range (DRS=01) 1464 × f _{fll_ref}		47.97	_	MHz	
		Mid-high range (DRS=10) 2197 × f _{fll_ref}	_	71.99	_	MHz	
		High range (DRS=11) 2929 × f _{fll_ref}	_	95.98	-	MHz	
J _{cyc_fll}	FLL period jitter			180	_	ps	
	 f_{DCO} = 48 M f_{DCO} = 98 M 		_	150	_		
t _{fll_acquire}	FLL target frequer	cy acquisition time	_		1	ms	7
		PI	L				
f _{vco}	VCO operating fre	quency	48.0	_	100	MHz	
I _{pll}	PLL operating curr PLL @ 96 M 2 MHz, VDI	rent IHz (f _{osc_hi_1} = 8 MHz, f _{pll_ref} = / multiplier = 48)	_	1060	_	μΑ	8
I _{pll}	PLL operating curi PLL @ 48 M 2 MHz, VDIV	rent IHz (f _{osc_hi_1} = 8 MHz, f _{pll_ref} = / multiplier = 24)	_	600	_	μA	8
f _{pll_ref}	PLL reference free	luency range	2.0	_	4.0	MHz	
J _{cyc_pll}	PLL period jitter (F	RMS)					9
	• f _{vco} = 48 MH	z	_	120	_	ps	
	• f _{vco} = 100 M	Hz	_	50	_	ps	
J _{acc_pll}	PLL accumulated	jitter over 1µs (RMS)					9
	• f _{vco} = 48 MH	z	_	1350	_	ps	
	• f _{vco} = 100 M		—	600		ps	
D _{lock}	Lock entry frequer	ncy tolerance	± 1.49		± 2.98	%	
D _{unl}	Lock exit frequenc	v tolerance	± 4.47	_	± 5.97	%	1

Table 14. MCG specifications (continued)

Table continues on the next page...

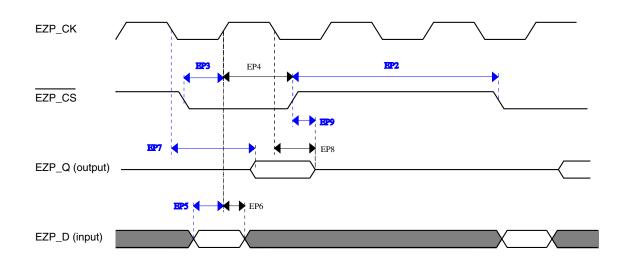


Figure 8. EzPort Timing Diagram

6.5 Security and integrity modules

6.5.1 Drylce Tamper Electrical Specifications

Information about security-related modules is not included in this document and is available only after a nondisclosure agreement (NDA) has been signed. To request an NDA, please contact your local Freescale sales representative.

6.6 Analog

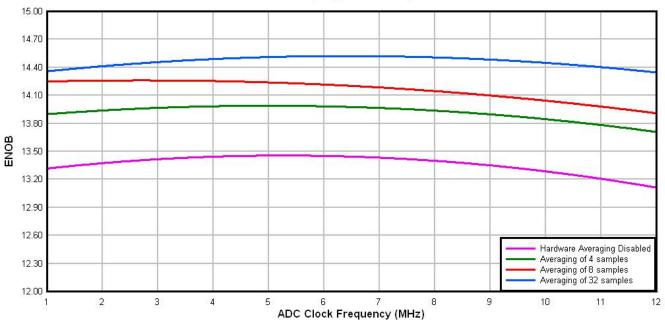
6.6.1 ADC electrical specifications

The 16-bit accuracy specifications listed in Table 24 and Table 25 are achievable on the differential pins ADCx_DP0, ADCx_DM0.

All other ADC channels meet the 13-bit differential/12-bit single-ended accuracy specifications.

6.6.1.1 16-bit ADC operating conditions Table 24. 16-bit ADC operating conditions

Symbol	Description	Conditions	Min.	Typ. ¹	Max.	Unit	Notes
V_{DDA}	Supply voltage	Absolute	1.71	—	3.6	V	
ΔV_{DDA}	Supply voltage	Delta to V _{DD} (V _{DD} – V _{DDA})	-100	0	+100	mV	2
ΔV_{SSA}	Ground voltage	Delta to V _{SS} (V _{SS} – V _{SSA})	-100	0	+100	mV	2
V _{REFH}	ADC reference voltage high		1.13	V _{DDA}	V _{DDA}	V	
V _{REFL}	ADC reference voltage low		V _{SSA}	V _{SSA}	V _{SSA}	V	
V _{ADIN}	Input voltage	16-bit differential mode	VREFL		31/32 * VREFH	V	
		All other modes	VREFL	—	VREFH		
C _{ADIN}	Input capacitance	16-bit mode	_	8	10	pF	
		 8-bit / 10-bit / 12-bit modes 	_	4	5		
R _{ADIN}	Input resistance			2	5	kΩ	
R _{AS}	Analog source resistance	13-bit / 12-bit modes f _{ADCK} < 4 MHz			5	kΩ	3
f _{ADCK}	ADC conversion clock frequency	≤ 13-bit mode	1.0		18.0	MHz	4
f _{ADCK}	ADC conversion clock frequency	16-bit mode	2.0		12.0	MHz	4
C _{rate}	ADC conversion rate	≤ 13-bit modes			040.000		5
		No ADC hardware averaging Continuous conversions enabled, subsequent conversion time	20.000		818.330	Ksps	
C _{rate}	ADC conversion rate	16-bit mode No ADC hardware averaging Continuous conversions enabled, subsequent conversion time	37.037	_	461.467	Ksps	5


1. Typical values assume V_{DDA} = 3.0 V, Temp = 25 °C, f_{ADCK} = 1.0 MHz, unless otherwise stated. Typical values are for reference only, and are not tested in production.

- 2. DC potential difference.
- 3. This resistance is external to MCU. To achieve the best results, the analog source resistance must be kept as low as possible. The results in this data sheet were derived from a system that had < 8 Ω analog source resistance. The R_{AS}/C_{AS} time constant should be kept to < 1 ns.
- 4. To use the maximum ADC conversion clock frequency, CFG2[ADHSC] must be set and CFG1[ADLPC] must be clear.
- 5. For guidelines and examples of conversion rate calculation, download the ADC calculator tool.

rempheral operating requirements and behaviors

8. ADC conversion clock < 3 MHz

Typical ADC 16-bit Differential ENOB vs ADC Clock 100Hz, 90% FS Sine Input

Figure 10. Typical ENOB vs. ADC_CLK for 16-bit differential mode

Typical ADC 16-bit Single-Ended ENOB vs ADC Clock 100Hz, 90% FS Sine Input

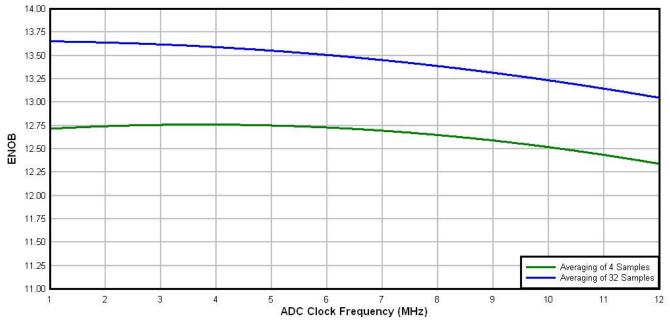


Figure 11. Typical ENOB vs. ADC_CLK for 16-bit single-ended mode

6.6.2 CMP and 6-bit DAC electrical specifications

 Table 26.
 Comparator and 6-bit DAC electrical specifications

Symbol	Description	Min.	Тур.	Max.	Unit
V _{DD}	Supply voltage	1.71		3.6	V
I _{DDHS}	Supply current, High-speed mode (EN=1, PMODE=1)	_		200	μA
IDDLS	Supply current, low-speed mode (EN=1, PMODE=0)	—	_	20	μA
V _{AIN}	Analog input voltage	V _{SS} – 0.3	_	V _{DD}	V
V _{AIO}	Analog input offset voltage	_	_	20	mV
V _H	Analog comparator hysteresis ¹				
	• CR0[HYSTCTR] = 00	_	5	_	mV
	• CR0[HYSTCTR] = 01	_	10	_	mV
	• CR0[HYSTCTR] = 10	_	20	—	mV
	• CR0[HYSTCTR] = 11	—	30	_	mV
V _{CMPOh}	Output high	V _{DD} – 0.5			V
V _{CMPOI}	Output low	_	_	0.5	V
t _{DHS}	Propagation delay, high-speed mode (EN=1, PMODE=1)	20	50	200	ns
t _{DLS}	Propagation delay, low-speed mode (EN=1, PMODE=0)	80	250	600	ns
	Analog comparator initialization delay ²	_	_	40	μs
I _{DAC6b}	6-bit DAC current adder (enabled)		7	—	μA
INL	6-bit DAC integral non-linearity	-0.5		0.5	LSB ³
DNL	6-bit DAC differential non-linearity	-0.3	_	0.3	LSB

1. Typical hysteresis is measured with input voltage range limited to 0.6 to V_{DD}-0.6 V.

 Comparator initialization delay is defined as the time between software writes to change control inputs (Writes to CMP_DACCR[DACEN], CMP_DACCR[VRSEL], CMP_DACCR[VOSEL], CMP_MUXCR[PSEL], and CMP_MUXCR[MSEL]) and the comparator output settling to a stable level.

3. 1 LSB = $V_{reference}/64$

Num	Description	Min.	Max.	Unit
DS10	DSPI_SCK input high/low time	(t _{SCK} /2) – 2	(t _{SCK} /2) + 2	ns
DS11	DSPI_SCK to DSPI_SOUT valid	—	10	ns
DS12	DSPI_SCK to DSPI_SOUT invalid	0	_	ns
DS13	DSPI_SIN to DSPI_SCK input setup	2	—	ns
DS14	DSPI_SCK to DSPI_SIN input hold	7	—	ns
DS15	DSPI_SS active to DSPI_SOUT driven	_	14	ns
DS16	DSPI_SS inactive to DSPI_SOUT not driven		14	ns

Table 34. Slave mode DSPI timing (limited voltage range) (continued)

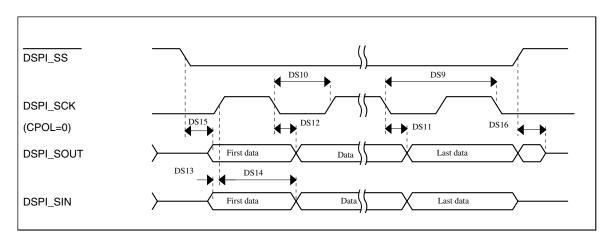


Figure 17. DSPI classic SPI timing — slave mode

6.8.2 DSPI switching specifications (full voltage range)

The DMA Serial Peripheral Interface (DSPI) provides a synchronous serial bus with master and slave operations. Many of the transfer attributes are programmable. The tables below provides DSPI timing characteristics for classic SPI timing modes. Refer to the DSPI chapter of the Reference Manual for information on the modified transfer formats used for communicating with slower peripheral devices.

Num	Description	Min.	Max.	Unit	Notes
	Operating voltage	1.71	3.6	V	1
	Frequency of operation	_	12.5	MHz	
DS1	DSPI_SCK output cycle time	4 x t _{BUS}	_	ns	
DS2	DSPI_SCK output high/low time	(t _{SCK} /2) - 4	(t _{SCK/2)} + 4	ns	
DS3	DSPI_PCSn valid to DSPI_SCK delay	(t _{BUS} x 2) – 4	_	ns	2

 Table 35.
 Master mode DSPI timing (full voltage range)

Table continues on the next page ...

Peripheral operating requirements and behaviors

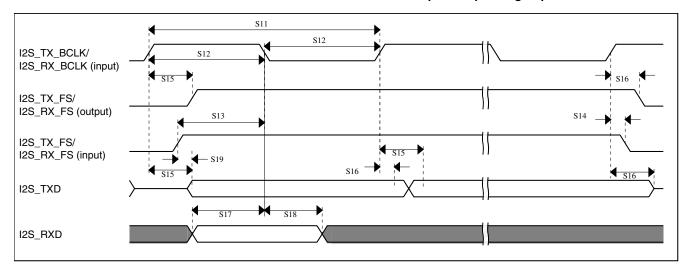


Figure 21. I2S/SAI timing — slave modes

6.8.6 VLPR, VLPW, and VLPS mode performance over the full operating voltage range

This section provides the operating performance over the full operating voltage for the device in VLPR, VLPW, and VLPS modes.

Table 39. I2S/SAI master mode timing in VLPR, VLPW, and VLPS modes(full voltage range)

Num.	Characteristic	Min.	Max.	Unit
	Operating voltage	1.71	3.6	V
S1	I2S_MCLK cycle time	62.5	—	ns
S2	I2S_MCLK pulse width high/low	45%	55%	MCLK period
S3	I2S_TX_BCLK/I2S_RX_BCLK cycle time (output)	250	—	ns
S4	I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low	45%	55%	BCLK period
S5	I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/ I2S_RX_FS output valid	—	45	ns
S6	I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/ I2S_RX_FS output invalid	0	-	ns
S7	I2S_TX_BCLK to I2S_TXD valid	—	45	ns
S8	I2S_TX_BCLK to I2S_TXD invalid	0	—	ns
S9	I2S_RXD/I2S_RX_FS input setup before I2S_RX_BCLK	75	-	ns
S10	I2S_RXD/I2S_RX_FS input hold after I2S_RX_BCLK	0	—	ns

NOTE

- The analog input signals ADC0_SE10, ADC0_SE11, ADC0_DP1, and ADC0_DM1 are available only for K11, K12, K21, and K22 devices and are not present on K10 and K20 devices.
- The TRACE signals on PTE0, PTE1, PTE2, PTE3, and PTE4 are available only for K11, K12, K21, and K22 devices and are not present on K10 and K20 devices.
- If the VBAT pin is not used, the VBAT pin should be left floating. Do not connect VBAT pin to VSS.
- The FTM_CLKIN signals on PTB16 and PTB17 are available only for K11, K12, K21, and K22 devices and is not present on K10 and K20 devices. For K22D devices this signal is on ALT4, and for K22F devices, this signal is on ALT7.
- The FTM0_CH2 signal on PTC5/LLWU_P9 is available only for K11, K12, K21, and K22 devices and is not present on K10 and K20 devices.
- The I2C0_SCL signal on PTD2/LLWU_P13 and I2C0_SDA signal on PTD3 are available only for K11, K12, K21, and K22 devices and are not present on K10 and K20 devices.

121 Map Bga	Default	ALTO	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7	EzPort
E4	ADC0_SE10	ADC0_SE10	PTE0	SPI1_PCS1	UART1_TX		TRACE_CLKOUT	I2C1_SDA	RTC_CLKOUT	
E3	ADC0_SE11	ADC0_SE11	PTE1/ LLWU_P0	SPI1_SOUT	UART1_RX		TRACE_D3	I2C1_SCL	SPI1_SIN	
E2	ADC0_DP1	ADC0_DP1	PTE2/ LLWU_P1	SPI1_SCK	UART1_CTS_b		TRACE_D2			
F4	ADC0_DM1	ADC0_DM1	PTE3	SPI1_SIN	UART1_RTS_b		TRACE_D1		SPI1_SOUT	
H7	DISABLED		PTE4/ LLWU_P2	SPI1_PCS0	UART3_TX		TRACE_D0			
G4	DISABLED		PTE5	SPI1_PCS2	UART3_RX					
E6	VDD	VDD								
G7	VSS	VSS								
K3	ADC0_SE4a	ADC0_SE4a	PTE16	SPI0_PCS0	UART2_TX	FTM_CLKIN0		FTM0_FLT3		
H4	ADC0_SE5a	ADC0_SE5a	PTE17	SPI0_SCK	UART2_RX	FTM_CLKIN1		LPTMR0_ALT3		
A11	ADC0_SE6a	ADC0_SE6a	PTE18	SPI0_SOUT	UART2_CTS_b	I2C0_SDA				
A10	ADC0_SE7a	ADC0_SE7a	PTE19	SPI0_SIN	UART2_RTS_b	I2C0_SCL				
L6	VSS	VSS								
K1	ADC0_DP0	ADC0_DP0								
K2	ADC0_DM0	ADC0_DM0								

121 Map Bga	Default	ALTO	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7	EzPort
L1	ADC0_DP3	ADC0_DP3								
L2	ADC0_DM3	ADC0_DM3								
F5	VDDA	VDDA								
G5	VREFH	VREFH								
G6	VREFL	VREFL								
F6	VSSA	VSSA								
L3	VREF_OUT/ CMP1_IN5/ CMP0_IN5	VREF_OUT/ CMP1_IN5/ CMP0_IN5								
K5	DAC0_OUT/ CMP1_IN3/ ADC0_SE23	DAC0_OUT/ CMP1_IN3/ ADC0_SE23								
L7	TAMPER0/ RTC_WAKEUP_ B	TAMPER0/ RTC_WAKEUP_ B								
H5	TAMPER1	TAMPER1								
J5	TAMPER2	TAMPER2								
L4	XTAL32	XTAL32								
L5	EXTAL32	EXTAL32								
K6	VBAT	VBAT								
J6	JTAG_TCLK/ SWD_CLK/ EZP_CLK		PTA0	UART0_CTS_b/ UART0_COL_b	FTM0_CH5				JTAG_TCLK/ SWD_CLK	EZP_CLK
H8	JTAG_TDI/ EZP_DI		PTA1	UART0_RX	FTM0_CH6				JTAG_TDI	EZP_DI
J7	JTAG_TDO/ TRACE_SWO/ EZP_DO		PTA2	UART0_TX	FTM0_CH7				JTAG_TDO/ TRACE_SWO	EZP_DO
H9	JTAG_TMS/ SWD_DIO		PTA3	UART0_RTS_b	FTM0_CH0				JTAG_TMS/ SWD_DIO	
J8	NMI_b/ EZP_CS_b		PTA4/ LLWU_P3		FTM0_CH1				NMI_b	EZP_CS_b
K7	DISABLED		PTA5		FTM0_CH2			I2S0_TX_BCLK	JTAG_TRST_b	
K8	DISABLED		PTA12		FTM1_CH0			I2S0_TXD0	FTM1_QD_PHA	
L8	DISABLED		PTA13/ LLWU_P4		FTM1_CH1			I2S0_TX_FS	FTM1_QD_PHB	
K9	DISABLED		PTA14	SPI0_PCS0	UART0_TX			I2S0_RX_BCLK	I2S0_TXD1	
L9	DISABLED		PTA15	SPI0_SCK	UART0_RX			I2S0_RXD0		
J10	DISABLED		PTA16	SPI0_SOUT	UART0_CTS_b/ UART0_COL_b			I2S0_RX_FS	I2S0_RXD1	
H10	DISABLED		PTA17	SPI0_SIN	UART0_RTS_b			I2S0_MCLK		
L10	VDD	VDD								
K10	VSS	VSS								
L11	EXTAL0	EXTAL0	PTA18		FTM0_FLT2	FTM_CLKIN0				
K11	XTALO	XTALO	PTA19		FTM1_FLT0	FTM_CLKIN1		LPTMR0_ALT1		

K11 Sub-Family Data Sheet, Rev. 4, 08/2013.

rmout

121 Map Bga	Default	ALTO	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7	EzPort
J11	RESET_b	RESET_b								
G11	ADC0_SE8	ADC0_SE8	PTB0/ LLWU_P5	I2C0_SCL	FTM1_CH0			FTM1_QD_PHA		
G10	ADC0_SE9	ADC0_SE9	PTB1	I2C0_SDA	FTM1_CH1			FTM1_QD_PHB		
G9	ADC0_SE12	ADC0_SE12	PTB2	I2C0_SCL	UART0_RTS_b			FTM0_FLT3		
G8	ADC0_SE13	ADC0_SE13	PTB3	I2C0_SDA	UART0_CTS_b/ UART0_COL_b			FTM0_FLT0		
D10	DISABLED		PTB10	SPI1_PCS0	UART3_RX			FTM0_FLT1		
C10	DISABLED		PTB11	SPI1_SCK	UART3_TX			FTM0_FLT2		
B11	DISABLED		PTB12	UART3_RTS_b	FTM1_CH0	FTM0_CH4		FTM1_QD_PHA		
C11	DISABLED		PTB13	UART3_CTS_b	FTM1_CH1	FTM0_CH5		FTM1_QD_PHB		
B10	DISABLED		PTB16	SPI1_SOUT	UARTO_RX			EWM_IN	FTM_CLKIN0	
E9	DISABLED		PTB17	SPI1_SIN	UART0_TX			EWM_OUT_b	FTM_CLKIN1	
D9	DISABLED		PTB18		FTM2_CH0	I2S0_TX_BCLK				
C9	DISABLED		PTB19		FTM2_CH1	I2S0_TX_FS				
B9	ADC0_SE14	ADC0_SE14	PTC0	SPI0_PCS4	PDB0_EXTRG			I2S0_TXD1		
D8	ADC0_SE15	ADC0_SE15	PTC1/ LLWU_P6	SPI0_PCS3	UART1_RTS_b	FTM0_CH0		I2S0_TXD0		
C8	ADC0_SE4b/ CMP1_IN0	ADC0_SE4b/ CMP1_IN0	PTC2	SPI0_PCS2	UART1_CTS_b	FTM0_CH1		I2S0_TX_FS		
B8	CMP1_IN1	CMP1_IN1	PTC3/ LLWU_P7	SPI0_PCS1	UART1_RX	FTM0_CH2	CLKOUT	I2S0_TX_BCLK		
G3	VSS	VSS								
E5	VDD	VDD								
A8	DISABLED		PTC4/ LLWU_P8	SPI0_PCS0	UART1_TX	FTM0_CH3		CMP1_OUT		
D7	DISABLED		PTC5/ LLWU_P9	SPI0_SCK	LPTMR0_ALT2	I2S0_RXD0		CMP0_OUT	FTM0_CH2	
C7	CMP0_IN0	CMP0_IN0	PTC6/ LLWU_P10	SPI0_SOUT	PDB0_EXTRG	I2S0_RX_BCLK		I2S0_MCLK		
B7	CMP0_IN1	CMP0_IN1	PTC7	SPI0_SIN		I2S0_RX_FS				
A7	CMP0_IN2	CMP0_IN2	PTC8			I2S0_MCLK				
D6	CMP0_IN3	CMP0_IN3	PTC9			I2S0_RX_BCLK		FTM2_FLT0		
C6	DISABLED		PTC10	I2C1_SCL		I2S0_RX_FS				
C5	DISABLED		PTC11/ LLWU_P11	I2C1_SDA		I2S0_RXD1				
B6	DISABLED		PTC12							
A6	DISABLED		PTC13							
D5	DISABLED		PTC16		UART3_RX					
C4	DISABLED		PTC17		UART3_TX					
D4	DISABLED		PTD0/ LLWU_P12	SPI0_PCS0	UART2_RTS_b					
D3	ADC0_SE5b	ADC0_SE5b	PTD1	SPI0_SCK	UART2_CTS_b					

121 Map Bga	Default	ALTO	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7	EzPort
C3	DISABLED		PTD2/ LLWU_P13	SPI0_SOUT	UART2_RX	I2C0_SCL				
B3	DISABLED		PTD3	SPI0_SIN	UART2_TX	I2C0_SDA				
A3	ADC0_SE21	ADC0_SE21	PTD4/ LLWU_P14	SPI0_PCS1	UART0_RTS_b	FTM0_CH4		EWM_IN		
A2	ADC0_SE6b	ADC0_SE6b	PTD5	SPI0_PCS2	UART0_CTS_b/ UART0_COL_b	FTM0_CH5		EWM_OUT_b		
B2	ADC0_SE7b	ADC0_SE7b	PTD6/ LLWU_P15	SPI0_PCS3	UART0_RX	FTM0_CH6		FTM0_FLT0		
A1	ADC0_SE22	ADC0_SE22	PTD7	CMT_IRO	UART0_TX	FTM0_CH7		FTM0_FLT1		
F3	NC	NC								
H1	NC	NC								
H2	NC	NC								
J1	NC	NC								
J2	NC	NC								
J3	NC	NC								
H3	NC	NC								
K4	NC	NC								
H6	NC	NC								
J9	NC	NC								
J4	NC	NC								
H11	NC	NC								
F11	NC	NC								
E11	NC	NC								
D11	NC	NC								
E10	NC	NC								
F10	NC	NC								
F9	NC	NC								
F8	NC	NC								
E8	NC	NC	1							
E7	NC	NC	1							
F7	NC	NC								
A5	NC	NC								
B5	NC	NC		1						
B4	NC	NC	1							
A4	NC	NC	1				1			
A9	NC	NC								
B1	NC	NC								
C2	NC	NC								
C1	NC	NC								
D2	NC	NC								

9 Revision History

The following table provides a revision history for this document.

Rev. No.	Date	Substantial Changes
1	6/2012	Alpha customer release.
1.1	6/2012	In Table 6, "Power consumption operating behaviors", changed the units of I_{DD_VLLS2} , I_{DD_VLLS1} , I_{DD_VLLS0} , and I_{DD_VBAT} from nA to μ A.
2	7/2012	 Updated section "Power consumption operating behaviors". Updated section "Flash timing specifications — program and erase". Updated section "Flash timing specifications — commands". Removed the 32K ratio from "Write endurance" in section "Reliability specifications". Updated IDDstby maximum value in section "VREG electrical specifications". Added the charts in section "Diagram: Typical IDD_RUN operating behavior".
3	8/2012	 Updated section "Power consumption operating behaviors". Updated section "EMC radiated emissions operating behaviors". Updated section "MCG specifications". Added applicable notes in section "Signal Multiplexing and Pin Assignments".
4	8/2013	 Updated section "Power consumption operating behaviors" Updated section "MCG specifications" Updated section "16-bit ADC operating conditions" Added section "Small package marking"

Table 41. Revision History