

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Not For New Designs
Core Processor	e200z6
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	CANbus, EBI/EMI, Ethernet, SCI, SPI
Peripherals	DMA, POR, PWM, WDT
Number of I/O	192
Program Memory Size	1MB (1M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	64K x 8
Voltage - Supply (Vcc/Vdd)	1.35V ~ 1.65V
Data Converters	A/D 34x12b
Oscillator Type	External
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	208-BGA
Supplier Device Package	208-BGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mpc5534mvm80

Overview

The MPC5500 family of parts contains many new features coupled with high performance CMOS technology to provide significant performance improvement over the MPC565.

The host processor core of the MPC5534 also includes an instruction set enhancement allowing variable length encoding (VLE). This allows optional encoding of mixed 16- and 32-bit instructions. With this enhancement, it is possible to significantly reduce the code size footprint.

The MPC5534 has a single-level memory hierarchy consisting of 64-kilobytes (KB) on-chip SRAM and one megabyte (MB) of internal flash memory. Both the SRAM and the flash memory can hold instructions and data. The external bus interface (EBI) supports most standard memories used with the MPC5xx family.

The MPC5534 does not support arbitration with other masters on the external bus. The MPC5534 must be the only master on the external bus, or act as a slave-only device.

The complex input/output timer functions of the MPC5534 are performed by an enhanced time processor unit (eTPU) engine. The eTPU engine controls 32 hardware channels. The eTPU has been enhanced over the TPU by providing: 24-bit timers, double-action hardware channels, variable number of parameters per channel, angle clock hardware, and additional control and arithmetic instructions. The eTPU is programmed using a high-level programming language.

The less complex timer functions of the MPC5534 are performed by the enhanced modular input/output system (eMIOS). The eMIOS' 24 hardware channels are capable of single-action, double-action, pulse-width modulation (PWM), and modulus-counter operations. Motor control capabilities include edge-aligned and center-aligned PWM.

Off-chip communication is performed by a suite of serial protocols including controller area networks (FlexCANs), enhanced deserial/serial peripheral interfaces (DSPIs), and enhanced serial communications interfaces (eSCIs).

The MCU has an on-chip enhanced queued dual analog-to-digital converter (eQADC) with a 5 V conversion range. The 324 package has 40-channels; the 208 package has 34 channels.

The system integration unit (SIU) performs several chip-wide configuration functions. Pad configuration and general-purpose input and output (GPIO) are controlled from the SIU. External interrupts and reset control are also determined by the SIU. The internal multiplexer sub-block (IMUX) provides multiplexing of eQADC trigger sources and external interrupt signal multiplexing.

This section contains detailed information on power considerations, DC/AC electrical characteristics, and AC timing specifications for the MCU.

3.1 Maximum Ratings

Table 2. Absolute Maximum Ratings ¹

Spec	Characteristic	Symbol	Min.	Max.	Unit
1	1.5 V core supply voltage ²	V_{DD}	-0.3	1.7	V
2	Flash program/erase voltage	V_{PP}	-0.3	6.5	V
4	Flash read voltage	V _{FLASH}	-0.3	4.6	V
5	SRAM standby voltage	V _{STBY}	-0.3	1.7	V
6	Clock synthesizer voltage	V _{DDSYN}	-0.3	4.6	V
7	3.3 V I/O buffer voltage	V _{DD33}	-0.3	4.6	V
8	Voltage regulator control input voltage	V _{RC33}	-0.3	4.6	V
9	Analog supply voltage (reference to V _{SSA})	V_{DDA}	-0.3	5.5	V
10	I/O supply voltage (fast I/O pads) ³	V_{DDE}	-0.3	4.6	V
11	I/O supply voltage (slow and medium I/O pads) ³	V_{DDEH}	-0.3	6.5	V
12	DC input voltage ⁴ V _{DDEH} powered I/O pads V _{DDE} powered I/O pads	V _{IN}	-1.0 ⁵ -1.0 ⁵	6.5 ⁶ 4.6 ⁷	V
13	Analog reference high voltage (reference to V _{RL})	V _{RH}	-0.3	5.5	V
14	V _{SS} to V _{SSA} differential voltage	V _{SS} – V _{SSA}	-0.1	0.1	V
15	V _{DD} to V _{DDA} differential voltage	$V_{DD} - V_{DDA}$	-V _{DDA}	V_{DD}	V
16	V _{REF} differential voltage	V _{RH} – V _{RL}	-0.3	5.5	V
17	V_{RH} to V_{DDA} differential voltage	$V_{RH} - V_{DDA}$	-5.5	5.5	V
18	V _{RL} to V _{SSA} differential voltage	V _{RL} – V _{SSA}	-0.3	0.3	V
19	V _{DDEH} to V _{DDA} differential voltage	V _{DDEH} – V _{DDA}	-V _{DDA}	V _{DDEH}	V
20	V_{DDF} to V_{DD} differential voltage	$V_{DDF} - V_{DD}$	-0.3	0.3	V
21	V_{RC33} to V_{DDSYN} differential voltage spec has been moved to	Table 9 DC Electric	al Specificatio	ons, Spec 43a.	
22	V _{SSSYN} to V _{SS} differential voltage	V _{SSSYN} – V _{SS}	-0.1	0.1	V
23	V _{RCVSS} to V _{SS} differential voltage	V _{RCVSS} – V _{SS}	-0.1	0.1	V
24	Maximum DC digital input current ⁸ (per pin, applies to all digital pins) ⁴	I _{MAXD}	-2	2	mA
25	Maximum DC analog input current ⁹ (per pin, applies to all analog pins)	I _{MAXA}	-3	3	mA
26	Maximum operating temperature range ¹⁰ Die junction temperature	ТЈ	T _L	150.0	°C
27	Storage temperature range	T _{STG}	-55.0	150.0	°C

3.2.1 General Notes for Specifications at Maximum Junction Temperature

An estimation of the device junction temperature, T₁, can be obtained from the equation:

$$T_{J} = T_{A} + (R_{\theta JA} \times P_{D})$$

where:

 T_A = ambient temperature for the package (${}^{o}C$)

 $R_{\theta IA}$ = junction to ambient thermal resistance (${}^{\circ}C/W$)

 P_D = power dissipation in the package (W)

The thermal resistance values used are based on the JEDEC JESD51 series of standards to provide consistent values for estimations and comparisons. The difference between the values determined for the single-layer (1s) board compared to a four-layer board that has two signal layers, a power and a ground plane (2s2p), demonstrate that the effective thermal resistance is not a constant. The thermal resistance depends on the:

- Construction of the application board (number of planes)
- Effective size of the board which cools the component
- Quality of the thermal and electrical connections to the planes
- Power dissipated by adjacent components

Connect all the ground and power balls to the respective planes with one via per ball. Using fewer vias to connect the package to the planes reduces the thermal performance. Thinner planes also reduce the thermal performance. When the clearance between the vias leave the planes virtually disconnected, the thermal performance is also greatly reduced.

As a general rule, the value obtained on a single-layer board is within the normal range for the tightly packed printed circuit board. The value obtained on a board with the internal planes is usually within the normal range if the application board has:

- One oz. (35 micron nominal thickness) internal planes
- Components are well separated
- Overall power dissipation on the board is less than 0.02 W/cm²

The thermal performance of any component depends on the power dissipation of the surrounding components. In addition, the ambient temperature varies widely within the application. For many natural convection and especially closed box applications, the board temperature at the perimeter (edge) of the package is approximately the same as the local air temperature near the device. Specifying the local ambient conditions explicitly as the board temperature provides a more precise description of the local ambient conditions that determine the temperature of the device.

⁶ The thermal characterization parameter indicates the temperature difference between the package top and the junction temperature per JEDEC JESD51-2.

At a known board temperature, the junction temperature is estimated using the following equation:

$$T_{J} = T_{B} + (R_{\theta JB} \times P_{D})$$
 where:
$$T_{J} = \text{junction temperature (}^{o}\text{C}\text{)}$$

$$T_{B} = \text{board temperature at the package perimeter (}^{o}\text{C/W}\text{)}$$

$$R_{\theta JB} = \text{junction-to-board thermal resistance (}^{o}\text{C/W}\text{) per JESD51-8}$$

$$P_{D} = \text{power dissipation in the package (W)}$$

When the heat loss from the package case to the air does not factor into the calculation, an acceptable value for the junction temperature is predictable. Ensure the application board is similar to the thermal test condition, with the component soldered to a board with internal planes.

The thermal resistance is expressed as the sum of a junction-to-case thermal resistance plus a case-to-ambient thermal resistance:

$$\begin{split} R_{\theta JA} &= R_{\theta JC} + R_{\theta CA} \\ \text{where:} \\ R_{\theta JA} &= \text{junction-to-ambient thermal resistance (°C/W)} \\ R_{\theta JC} &= \text{junction-to-case thermal resistance (°C/W)} \\ R_{\theta CA} &= \text{case-to-ambient thermal resistance (°C/W)} \end{split}$$

 $R_{\theta JC}$ is device related and is not affected by other factors. The thermal environment can be controlled to change the case-to-ambient thermal resistance, $R_{\theta CA}$. For example, change the air flow around the device, add a heat sink, change the mounting arrangement on the printed circuit board, or change the thermal dissipation on the printed circuit board surrounding the device. This description is most useful for packages with heat sinks where 90% of the heat flow is through the case to heat sink to ambient. For most packages, a better model is required.

A more accurate two-resistor thermal model can be constructed from the junction-to-board thermal resistance and the junction-to-case thermal resistance. The junction-to-case thermal resistance describes when using a heat sink or where a substantial amount of heat is dissipated from the top of the package. The junction-to-board thermal resistance describes the thermal performance when most of the heat is conducted to the printed circuit board. This model can be used to generate simple estimations and for computational fluid dynamics (CFD) thermal models.

To determine the junction temperature of the device in the application on a prototype board, use the thermal characterization parameter (Ψ_{JT}) to determine the junction temperature by measuring the temperature at the top center of the package case using the following equation:

$$T_{J} = T_{T} + (\Psi_{JT} \times P_{D})$$
 where:
$$T_{T} = \text{thermocouple temperature on top of the package (°C)}$$

$$\Psi_{JT} = \text{thermal characterization parameter (°C/W)}$$

$$P_{D} = \text{power dissipation in the package (W)}$$

The thermal characterization parameter is measured in compliance with the JESD51-2 specification using a 40-gauge type T thermocouple epoxied to the top center of the package case. Position the thermocouple so that the thermocouple junction rests on the package. Place a small amount of epoxy on the thermocouple junction and approximately 1 mm of wire extending from the junction. Place the thermocouple wire flat against the package case to avoid measurement errors caused by the cooling effects of the thermocouple wire.

References:

Semiconductor Equipment and Materials International 3081 Zanker Rd.
San Jose, CA., 95134
(408) 943-6900

MIL-SPEC and EIA/JESD (JEDEC) specifications are available from Global Engineering Documents at 800-854-7179 or 303-397-7956.

JEDEC specifications are available on the web at http://www.jedec.org.

- 1. C.E. Triplett and B. Joiner, "An Experimental Characterization of a 272 PBGA Within an Automotive Engine Controller Module," Proceedings of SemiTherm, San Diego, 1998, pp. 47–54.
- 2. G. Kromann, S. Shidore, and S. Addison, "Thermal Modeling of a PBGA for Air-Cooled Applications," Electronic Packaging and Production, pp. 53–58, March 1998.
- 3. B. Joiner and V. Adams, "Measurement and Simulation of Junction to Board Thermal Resistance and Its Application in Thermal Modeling," Proceedings of SemiTherm, San Diego, 1999, pp. 212–220.

3.3 Package

The MPC5534 is available in packaged form. Read the package options in Section 2, "Ordering Information." Refer to Section 4, "Mechanicals," for pinouts and package drawings.

3.4 EMI (Electromagnetic Interference) Characteristics

Table 4. EMI Testing Specifications ¹

Spec	Characteristic	Minimum	Typical	Maximum	Unit
1	Scan range	0.15	_	1000	MHz
2	Operating frequency	_	_	f _{MAX}	MHz
3	V _{DD} operating voltages	_	1.5	_	V
4	$V_{\text{DDSYN}}, V_{\text{RC33}}, V_{\text{DD33}}, V_{\text{FLASH}}, V_{\text{DDE}}$ operating voltages	_	3.3	_	٧
5	V_{PP} V_{DDEH} , V_{DDA} operating voltages	_	5.0	_	٧
6	Maximum amplitude	_	_	14 ² 32 ³	dBuV
7	Operating temperature		_	25	°C

¹ EMI testing and I/O port waveforms per SAE J1752/3 issued 1995-03. Qualification testing was performed on the MPC5554 and applied to the MPC5500 family as generic EMI performance data.

² Measured with the single-chip EMI program.

³ Measured with the expanded EMI program.

3.5 ESD (Electromagnetic Static Discharge) Characteristics

Table 5. ESD Ratings 1, 2

Characteristic	Symbol	Value	Unit
ESD for human body model (HBM)		2000	V
LIDM sixquit description	R1	1500	Ω
HBM circuit description	С	100	pF
ESD for field induced charge model (EDCM)		500 (all pins)	
ESD for field induced charge model (FDCM)		750 (corner pins)	V
Number of pulses per pin: Positive pulses (HBM) Negative pulses (HBM)	=	1 1	_ _
Interval of pulses	_	1	second

All ESD testing conforms to CDF-AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits.

3.6 Voltage Regulator Controller (V_{RC}) and Power-On Reset (POR) Electrical Specifications

The following table lists the V_{RC} and POR electrical specifications:

Table 6. V_{RC} and POR Electrical Specifications

Spec	Charact	eristic	Symbol	Min.	Max.	Units
1	1.5 V (V _{DD}) POR ¹	Negated (ramp up) Asserted (ramp down)	V _{POR15}	1.1 1.1	1.35 1.35	V
2	3.3 V (V _{DDSYN}) POR ¹	Asserted (ramp up) Negated (ramp up) Asserted (ramp down) Negated (ramp down)	V _{POR33}	0.0 2.0 2.0 0.0	0.30 2.85 2.85 0.30	V
3	RESET pin supply (V _{DDEH6}) POR ^{1, 2}	Negated (ramp up) Asserted (ramp down)	VDODE		2.85 2.85	V
4		Before V _{RC} allows the pass transistor to start turning on	V _{TRANS_START}	1.0	2.0	V
5	V _{RC33} voltage	When V _{RC} allows the pass transistor to completely turn on ^{3, 4}	V _{TRANS_ON}	2.0	2.85	V
6		When the voltage is greater than the voltage at which the V_{RC} keeps the 1.5 V supply in regulation 5,6	V _{VRC33REG}	3.0	_	V
	Current can be sourced	−40° C		11.0	_	mA
7	by V _{RCCTL} at Tj:	25° C	I _{VRCCTL} 7	9.0	_	mA
		150° C		7.5	_	mA
8	Voltage differential during power up su V_{DD33} can lag V_{DDSYN} or V_{DDEH6} before V_{POR33} and V_{POR5} minimums respect	V _{DD33_LAG}	_	1.0	V	

Device failure is defined as: 'If after exposure to ESD pulses, the device does not meet the device specification requirements, which includes the complete DC parametric and functional testing at room temperature and hot temperature.

3.7.1 Input Value of Pins During POR Dependent on V_{DD33}

When powering up the device, V_{DD33} must not lag the latest V_{DDSYN} or \overline{RESET} power pin (V_{DDEH6}) by more than the V_{DD33} lag specification listed in Table 6, spec 8. This avoids accidentally selecting the bypass clock mode because the internal versions of PLLCFG[0:1] and \overline{RSTCFG} are not powered and therefore cannot read the default state when POR negates. V_{DD33} can lag V_{DDSYN} or the \overline{RESET} power pin (V_{DDEH6}), but cannot lag both by more than the V_{DD33} lag specification. This V_{DD33} lag specification applies during power up only. V_{DD33} has no lead or lag requirements when powering down.

3.7.2 Power-Up Sequence (V_{RC33} Grounded)

The 1.5 V V_{DD} power supply must rise to 1.35 V before the 3.3 V V_{DDSYN} power supply and the \overline{RESET} power supply rises above 2.0 V. This ensures that digital logic in the PLL for the 1.5 V power supply does not begin to operate below the specified operation range lower limit of 1.35 V. Because the internal 1.5 V POR is disabled, the internal 3.3 V POR or the \overline{RESET} power POR must hold the device in reset. Since they can negate as low as 2.0 V, V_{DD} must be within specification before the 3.3 V POR and the \overline{RESET} POR negate.

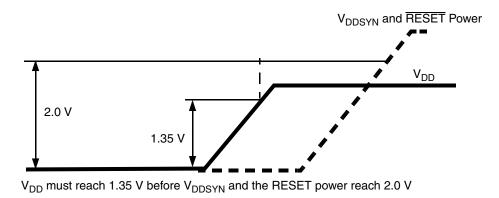


Figure 3. Power-Up Sequence (V_{RC33} Grounded)

3.7.3 Power-Down Sequence (V_{RC33} Grounded)

The only requirement for the power-down sequence with V_{RC33} grounded is if V_{DD} decreases to less than its operating range, V_{DDSYN} or the \overline{RESET} power must decrease to less than 2.0 V before the V_{DD} power increases to its operating range. This ensures that the digital 1.5 V logic, which is reset only by an ORed POR and can cause the 1.5 V supply to decrease less than its specification value, resets correctly. See Table 6, footnote 1.

Table 9. DC Electrical Specifications ($T_A = T_L \text{ to } T_H$) (continued)

Spec	Characteristic	Symbol	Min	Max.	Unit
31	Fast I/O weak pullup current ²¹ 1.62–1.98 V 2.25–2.75 V 3.00–3.60 V		10 20 20	110 130 170	μ Α μ Α μ Α
	Fast I/O weak pulldown current ²¹ 1.62–1.98 V 2.25–2.75 V 3.00–3.60 V	- I _{ACT_F}	10 20 20	100 130 170	μΑ μΑ μΑ
32	Slow and medium I/O weak pullup/down current ²¹ 3.0–3.6 V 4.5–5.5 V	I _{ACT_S}	10 20	150 170	μ Α μ Α
33	I/O input leakage current ²²	I _{INACT_D}	-2.5	2.5	μА
34	DC injection current (per pin)	I _{IC}	-2.0	2.0	mA
35	Analog input current, channel off ²³	I _{INACT_} A	-150	150	nA
35a	Analog input current, shared analog / digital pins (AN[12], AN[13], AN[14], AN[15])	I _{INACT_AD}	-2.5	2.5	μА
36	V _{SS} to V _{SSA} differential voltage ²⁴	V _{SS} – V _{SSA}	-100	100	mV
37	Analog reference low voltage	V_{RL}	V _{SSA} - 0.1	V _{SSA} + 0.1	V
38	V _{RL} differential voltage	V _{RL} – V _{SSA}	-100	100	mV
39	Analog reference high voltage	V_{RH}	V _{DDA} – 0.1	V _{DDA} + 0.1	V
40	V _{REF} differential voltage	$V_{RH} - V_{RL}$	4.5	5.25	V
41	V _{SSSYN} to V _{SS} differential voltage	V _{SSSYN} – V _{SS}	-50	50	mV
42	V _{RCVSS} to V _{SS} differential voltage	V _{RCVSS} – V _{SS}	-50	50	mV
43	$V_{ m DDF}$ to $V_{ m DD}$ differential voltage	$V_{DDF} - V_{DD}$	-100	100	mV
43a	V _{RC33} to V _{DDSYN} differential voltage	V _{RC33} – V _{DDSYN}	-0.1	0.1 ²⁵	V
44	Analog input differential signal range (with common mode 2.5 V)	V _{IDIFF}	-2.5	2.5	V
45	Operating temperature range, ambient (packaged)	$T_A = (T_L \text{ to } T_H)$	T _L	T _H	οС
46	Slew rate on power-supply pins	_	_	50	V/ms

V_{DDE2} and V_{DDE3} are limited to 2.25–3.6 V only if SIU_ECCR[EBTS] = 0; V_{DDE2} and V_{DDE3} have a range of 1.6–3.6 V if SIU_ECCR[EBTS] = 1.

 $^{^{2}}$ | $V_{DDA0} - V_{DDA1}$ | must be < 0.1 V.

 $^{^{3}}$ V_{PP} can drop to 3.0 V during read operations.

⁴ If standby operation is not required, connect V_{STBY} to ground.

⁵ Applies to CLKOUT, external bus pins, and Nexus pins.

⁶ Maximum average RMS DC current.

 $^{^{7}}$ Figure 2 shows an illustration of the I_{DD_STBY} values interpolated for these temperature values.

⁸ Average current measured on Automotive benchmark.

⁹ Peak currents can be higher on specialized code.

¹⁰ High use current measured while running optimized SPE assembly code with all channels of the eMIOS and eTPU running autonomously, plus the eDMA transferring data continuously from SRAM to SRAM.

- ¹¹ Power requirements for the V_{DD33} supply depend on the frequency of operation, load of all I/O pins, and the voltages on the I/O segments. Refer to Table 11 for values to calculate power dissipation for specific operation.
- ¹² Power requirements for each I/O segment are dependent on the frequency of operation and load of the I/O pins on a particular I/O segment, and the voltage of the I/O segment. Refer to Table 10 for values to calculate power dissipation for specific operation. The total power consumption of an I/O segment is the sum of the individual power consumptions for each pin on the segment.
- ¹³ Maximum average RMS DC current.
- ¹⁴ Figure 2 shows an illustration of the IDD_STBY values interpolated for these temperature values.
- ¹⁵ Average current measured on automotive benchmark.
- ¹⁶ Peak currents can be higher on specialized code.
- ¹⁷ High use current measured while running optimized SPE assembly code with all channels of the eMIOS and eTPU running autonomously, plus the eDMA transferring data continuously from SRAM to SRAM.
- ¹⁸ Figure 2 shows that the current specification relates to average standby operation after SRAM has been loaded with data. For power up current see Section 3.7, "Power-Up/Down Sequencing.
- ¹⁹ Power requirements for the V_{DD33} supply depend on the frequency of operation, load of all I/O pins, and the voltages on the I/O segments. Refer to Table 11 for values to calculate the power dissipation for a specific operation.
- Power requirements for each I/O segment are dependent on the frequency of operation and load of the I/O pins on a particular I/O segment, and the voltage of the I/O segment. Refer to Table 10 for values to calculate power dissipation for specific operation. The total power consumption of an I/O segment is the sum of the individual power consumptions for each pin on the segment.
- 21 Absolute value of current, measured at V_{IL} and V_{IH} .
- ²² Weak pullup/down inactive. Measured at V_{DDE} = 3.6 V and V_{DDEH} = 5.25 V. Applies to pad types: pad_fc, pad_sh, and pad_mh.
- ²³ Maximum leakage occurs at maximum operating temperature. Leakage current decreases by approximately one-half for each 8 °C to 12 °C, in the ambient temperature range of 50 °C to 125 °C. Applies to pad types: pad_a and pad_ae.
- 24 V_{SSA} refers to both V_{SSA0} and V_{SSA1}. | V_{SSA0} V_{SSA1} | must be < 0.1 V.
- ²⁵ Up to 0.6 V during power up and power down.

Table 12. FMPLL Electrical Specifications (continued)

 $(V_{DDSYN} = 3.0-3.6 \text{ V}; V_{SS} = V_{SSSYN} = 0.0 \text{ V}; T_A = T_L \text{ to } T_H)$

Spec	Characteristic	Symbol	Minimum	Maximum	Unit
19	CLKOUT period jitter, measured at f _{SYS} max: ^{13, 14} Peak-to-peak jitter (clock edge to clock edge) Long term jitter (averaged over a 2 ms interval)	C _{JITTER}		5.0 0.01	% f _{CLKOUT}
20	Frequency modulation range limit ¹⁵ (do not exceed f _{sys} maximum)	C _{MOD}	0.8	2.4	%f _{SYS}
21	ICO frequency $f_{ico} = [f_{ref_crystal} \times (MFD + 4)] \div (PREDIV + 1)^{16} f_{ico} = [f_{ref_ext} \times (MFD + 4)] \div (PREDIV + 1)$	f _{ico}	48	80 ¹⁷	MHz
22	Predivider output frequency (to PLL)	f _{PREDIV}	4	20 ¹⁸	MHz

Nominal crystal and external reference values are worst-case not more than 1%. The device operates correctly if the frequency remains within ± 5% of the specification limit. This tolerance range allows for a slight frequency drift of the crystals over time. The designer must thoroughly understand the drift margin of the source clock.

² All internal registers retain data at 0 Hz.

³ Up to the maximum frequency rating of the device (refer to Table 1).

Loss of reference frequency is defined as the reference frequency detected internally, which transitions the PLL into self-clocked mode.

The PLL operates at self-clocked mode (SCM) frequency when the reference frequency falls below f_{LOR}. SCM frequency is measured on the CLKOUT ball with the divider set to divide-by-two of the system clock.
NOTE: In SCM, the MFD and PREDIV have no effect and the RFD is bypassed.

⁶ Use the EXTAL input high voltage parameter when using the FlexCAN oscillator in crystal mode (no quartz crystals or resonators). (V_{extal} − V_{xtal}) must be ≥ 400 mV for the oscillator's comparator to produce the output clock.

Use the EXTAL input low voltage parameter when using the FlexCAN oscillator in crystal mode (no quartz crystals or resonators). (V_{xtal} − V_{extal}) must be ≥ 400 mV for the oscillator's comparator to produce the output clock.

⁸ I_{xtal} is the oscillator bias current out of the XTAL pin with both EXTAL and XTAL pins grounded.

 $^{^{9}}$ C_{PCB EXTAL} and C_{PCB XTAL} are the measured PCB stray capacitances on EXTAL and XTAL, respectively.

This specification applies to the period required for the PLL to relock after changing the MFD frequency control bits in the synthesizer control register (SYNCR). From power up with crystal oscillator reference, the lock time also includes the crystal startup time.

¹¹ PLL is operating in 1:1 PLL mode.

 $^{^{12}}$ V_{DDF} = 3.0–3.6 V.

¹³ Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum f_{sys}. Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise injected into the PLL circuitry via V_{DDSYN} and V_{SSSYN} and variation in crystal oscillator frequency increase the jitter percentage for a given interval. CLKOUT divider is set to divide-by-two.

¹⁴ Values are with frequency modulation disabled. If frequency modulation is enabled, jitter is the sum of (jitter + Cmod).

 $^{^{15}}$ Modulation depth selected must not result in $f_{\rm svs}$ value greater than the $f_{\rm svs}$ maximum specified value.

 $^{^{16}} f_{SVS} = f_{iCO} \div (2^{RFD}).$

¹⁷ The ICO frequency can be higher than the maximum allowable system frequency. For this case, set the FMPLL synthesizer control register reduced frequency divider (FMPLL_SYNCR[RFD]) to divide-by-two (RFD = 0b001). Therefore, for a 40 MHz maximum device (system frequency), program the FMPLL to generate 80 MHz at the ICO output and then divide-by-two the RFD to provide the 40 MHz clock.

¹⁸ Maximum value for dual controller (1:1) mode is $(f_{MAX} \div 2)$ with the predivider set to 1 (FMPLL_SYNCR[PREDIV] = 0b001).

Table 17. Pad AC Specifications ($V_{DDEH} = 5.0 \text{ V}, V_{DDE} = 1.8 \text{ V}$) ¹ (continued)

Spec	Pad	SRC / DSC (binary)	Out Delay ^{2, 3, 4} (ns)	Rise / Fall ^{4, 5} (ns)	Load Drive (pF)
		11	16	8	50
	Medium high voltage (MH)		43	30	200
2		01	34	15	50
۷			61	35	200
		00	192	100	50
		00	239	125	200
		00		2.7	10
3	Fast	01	3.1	2.5	20
3	rasi	10	3.1	2.4	30
		11		2.3	50
4	Pullup/down (3.6 V max)	_	_	7500	50
5	Pullup/down (5.5 V max)	_	_	9000	50

These are worst-case values that are estimated from simulation (not tested). The values in the table are simulated at: $V_{DD} = 1.35-1.65 \text{ V}$; $V_{DDE} = 1.62-1.98 \text{ V}$; $V_{DDEH} = 4.5-5.25 \text{ V}$; V_{DD33} and $V_{DDSYN} = 3.0-3.6 \text{ V}$; and $V_{DDSYN} = 1.00$.

Table 18. Derated Pad AC Specifications ($V_{DDEH} = 3.3 \text{ V}, V_{DDE} = 3.3 \text{ V}$)¹

Spec	Pad	SRC/DSC (binary)	Out Delay ^{2, 3, 4} (ns)	Rise / Fall ^{3, 5} (ns)	Load Drive (pF)
		11	39	23	50
	Slow high voltage (SH)	11	120	87	200
1		01	101	52	50
'		O1	188	111	200
		00	507	248	50
		00	597	312	200
		11	23	12	50
		11	64	44	200
2	Medium high voltage (MH)	01	50	22	50
	wedidiii fiigii voltage (wii i)	O1	90	50	200
		00	261	123	50
		00	305	156	200

² This parameter is supplied for reference and is guaranteed by design (not tested).

The output delay is shown in Figure 4. To calculate the output delay with respect to the system clock, add a maximum of one system clock to the output delay.

⁴ The output delay and rise and fall are measured to 20% or 80% of the respective signal.

⁵ This parameter is guaranteed by characterization rather than 100% tested.

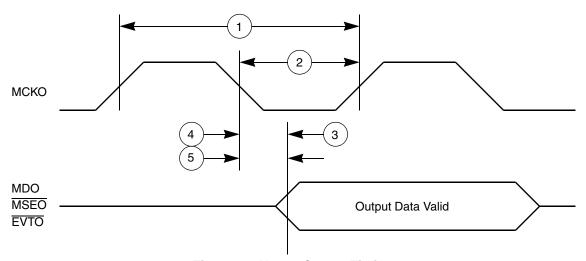

3.13.3 Nexus Timing

Table 21. Nexus Debug Port Timing ¹

Spec	Characteristic	Symbol	Min.	Max.	Unit
1	MCKO cycle time	t _{MCYC}	1 ²	8	t _{CYC}
2	MCKO duty cycle	t _{MDC}	40	60	%
3	MCKO low to MDO data valid ³	t _{MDOV}	-1.5	3.0	ns
4	MCKO low to MSEO data valid ³	t _{MSEOV}	-1.5	3.0	ns
5	MCKO low to EVTO data valid ³	t _{EVTOV}	-1.5	3.0	ns
6	EVTI pulse width	t _{EVTIPW}	4.0	_	t _{TCYC}
7	EVTO pulse width	t _{EVTOPW}	1	_	t _{MCYC}
8	TCK cycle time	t _{TCYC}	4 ⁴	_	t _{CYC}
9	TCK duty cycle	t _{TDC}	40	60	%
10	TDI, TMS data setup time	t _{NTDIS} , t _{NTMSS}	8	_	ns
11	TDI, TMS data hold time	t _{NTDIH} , t _{NTMSH}	5	_	ns
	TCK low to TDO data valid	t _{JOV}			
12	$V_{DDE} = 2.25 - 3.0 \text{ V}$		0	12	ns
	$V_{DDE} = 3.0-3.6 \text{ V}$		0	10	ns
13	RDY valid to MCKO ⁵	_	_	_	_

JTAG specifications apply when used for debug functionality. All Nexus timing relative to MCKO is measured from 50% of MCKO and 50% of the respective signal. Nexus timing specified at $V_{DD} = 1.35-1.65 \text{ V}$, $V_{DDE} = 2.25-3.6 \text{ V}$, V_{DD33} and $V_{DDSYN} = 3.0-3.6 \text{ V}$, $V_{A} = V_{A}$ to $V_{A} = V_{A}$, and $V_{A} = V_{A}$ to $V_{A} = V_{A}$ to $V_{A} = V_{A}$ to $V_{A} = V_{A}$ and $V_{A} = V_{A}$ to $V_{A} = V$

⁵ The RDY pin timing is asynchronous to MCKO and is guaranteed by design to function correctly.

Figure 10. Nexus Output Timing

² The Nexus AUX port runs up to 82 MHz.

 $^{^3\,}$ MDO, $\overline{\text{MSEO}},$ and $\overline{\text{EVTO}}$ data is held valid until the next MCKO low cycle occurs.

Limit the maximum frequency to approximately 16 MHz (V_{DDE} = 2.25–3.0 V) or 20 MHz (V_{DDE} = 3.0–3.6 V) to meet the timing specification for t_{JOV} of [0.2 x t_{JCYC}] as outlined in the IEEE-ISTO 5001-2003 specification.

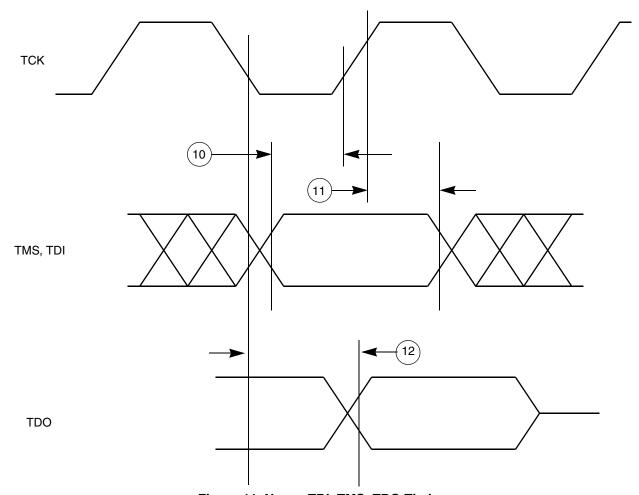


Figure 11. Nexus TDI, TMS, TDO Timing

Table 22. External Bus Operation Timing^{1, 2} (continued)

	Characteristic			External Bus Frequency ³						
Spec	and	Symbol	20 l	ИНz	33 1	ИНz	40 N	40 MHz		Notes
	Description		Min.	Max	Min.	Max	Min.	Max		
6a ⁵	CLKOUT positive edge to output signal valid (output delay) Calibration bus interface CAL_CS[0, 2:3] CAL_ADDR[10:30] CAL_DATA[0:15] CAL_RD_WR CAL_WE[0:1] CAL_OE CAL_TS	[†] ccov	_	11.0 ⁶ 12.0	_	11.0 ⁶ 12.0	_	11.0 ⁶ 12.0	ns	EBTS = 0 EBTS = 1 Output valid time selectable via SIU_ECCR [EBTS] bit.
7 ⁵	Input signal valid to CLKOUT positive edge (setup time) External bus interface ADDR[8:31] DATA[0:15] RD_WR TS TA	^t CIS	10.0		10.0		10.0	_	ns	
5	Input signal valid to CLKOUT positive edge (setup time) Calibration bus interface CAL_ADDR[10:30] CAL_DATA[0:15] CAL_RD_WR CAL_TS	t _{CCIS}	11.0		11.0		11.0	_	ns	
85	CLKOUT positive edge to input signal invalid (hold time) External bus interface ADDR[8:31] DATA[0:15] RD_WR TS TA	[†] CIH	1.0	_	1.0		1.0	_	ns	
5	Calibration bus interface CAL_ADDR[10:30] CAL_DATA[0:15] CAL_RD_WR CAL_TS	t _{CCIH}	1.0	_	1.0	_	1.0	_	ns	

¹ EBI timing specified at V_{DDE} = 1.6–3.6 V (unless stated otherwise), T_A = T_L to T_H, and CL = 30 pF with DSC = 0b10.
2 The external is limited to half the speed of the internal bus.

Table 26. DSPI Timing 1, 2 (continued)

Spec	Characteristic	Symbol	40	MHz	66 N	/IHz	80 N	ЛНz	Unit
Spec	Onaracteristic	Symbol	Min.	Max	Min.	Max	Min.	Max	
8	PCSS to PCSx time	t _{PASC}	5	_	5	_	5	_	ns
9	Data setup time for inputs Master (MTFE = 0) Slave Master (MTFE = 1, CPHA = 0) ⁷ Master (MTFE = 1, CPHA = 1)	t _{SUI}	20 2 -4 20	_ _ _ _	20 2 6 20	_ _ _ _	20 2 8 20	_ _ _ _	ns ns ns ns
10	Data hold time for inputs Master (MTFE = 0) Slave Master (MTFE = 1, CPHA = 0) ⁷ Master (MTFE = 1, CPHA = 1)	t _{HI}	-4 7 45 -4	_ _ _ _	-4 7 25 -4	_ _ _ _	-4 7 21 -4	_ _ _ _	ns ns ns ns
11	Data valid (after SCK edge) Master (MTFE = 0) Slave Master (MTFE = 1, CPHA = 0) Master (MTFE = 1, CPHA = 1)	t _{SUO}	_ _ _ _	5 25 45 5	_ _ _ _	5 25 25 5	_ _ _ _	5 25 21 5	ns ns ns ns
12	Data hold time for outputs Master (MTFE = 0) Slave Master (MTFE = 1, CPHA = 0) Master (MTFE = 1, CPHA = 1)	tно	-5 5.5 8 -5	_ _ _ _	-5 5.5 4 -5	_ _ _ _	-5 5.5 3 -5	_ _ _ _	ns ns ns ns

All DSPI timing specifications use the fastest slew rate (SRC = 0b11) on pad type M or MH. DSPI signals using pad types of S or SH have an additional delay based on the slew rate. DSPI timing is specified at $V_{DDEH} = 3.0-5.25 \text{ V}$, $T_A = T_L$ to T_H , and CL = 50 pF with SRC = 0b11.

Speed is the nominal maximum frequency. Max speed is the maximum speed allowed including frequency modulation (FM).
42 MHz parts allow for 40 MHz system clock + 2% FM; 68 MHz parts allow for a 66 MHz system clock + 2% FM, and
82 MHz parts allow for 80 MHz system clock + 2% FM.

³ The minimum SCK cycle time restricts the baud rate selection for the given system clock rate. These numbers are calculated based on two MPC55xx devices communicating over a DSPI link.

⁴ The actual minimum SCK cycle time is limited by pad performance.

⁵ The maximum value is programmable in DSPI_CTARx[PSSCK] and DSPI_CTARx[CSSCK].

⁶ The maximum value is programmable in DSPI_CTARx[PASC] and DSPI_CTARx[ASC].

⁷ This number is calculated using the SMPL_PT field in DSPI_MCR set to 0b10.

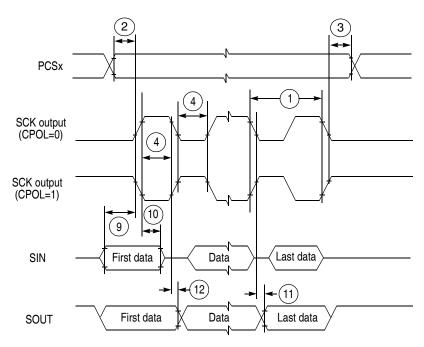


Figure 18. DSPI Classic SPI Timing—Master, CPHA = 0

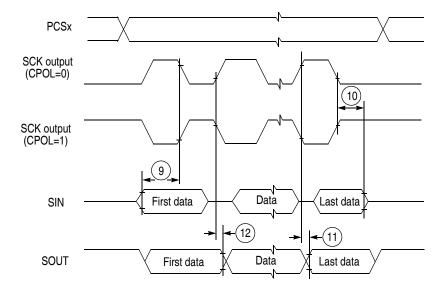


Figure 19. DSPI Classic SPI Timing—Master, CPHA = 1

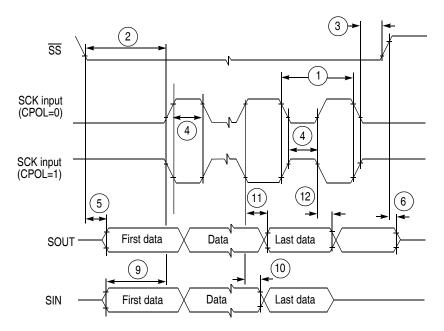


Figure 24. DSPI Modified Transfer Format Timing—Slave, CPHA = 0

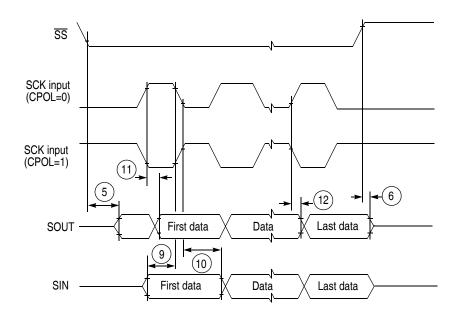


Figure 25. DSPI Modified Transfer Format Timing—Slave, CPHA = 1

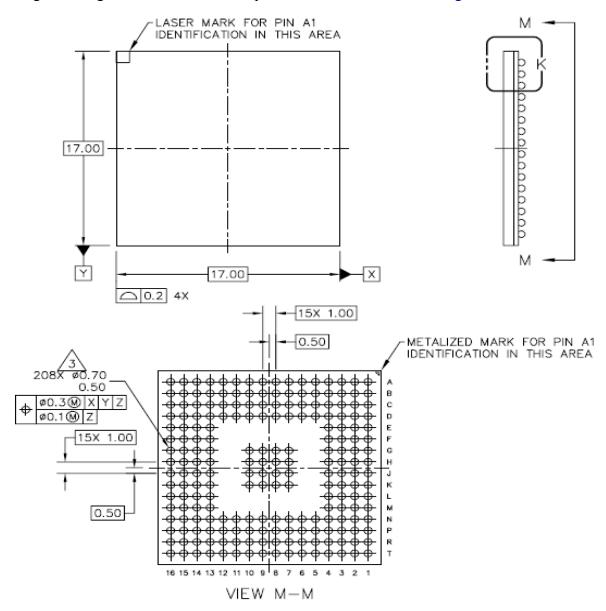


Figure 26. DSPI PCS Strobe (PCSS) Timing

MPC5534 Microcontroller Data Sheet, Rev. 6

4.3 MPC5534 208-Pin Package Dimensions

The package drawings of the MPC5534 208-pin MAP BGA are shown in Figure 30.

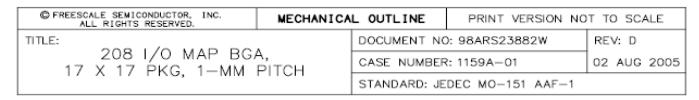


Figure 30. MPC5534 208-Pin Package

NOTES:

1. ALL DIMENSIONS IN MILLIMETERS.

2. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.

MAXIMUM SOLDER BALL DIAMETER MEASURED PARALLEL TO DATUM A.

DATUM A, THE SEATING PLANE, IS DETERMINED BY THE SPHERICAL CROWNS OF THE SOLDER BALLS.

PARALLELISM MEASUREMENT SHALL EXCLUDE ANY EFFECT OF MARK ON TOP SURFACE OF PACKAGE.

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICAL OUTLINE	PRINT VERSION NO	T TO SCALE
TITLE: PBGA, 324 I/0), DOCUMENT N	D: 98ASS23840W	REV: D
23 X 23 PKG		R: 1158-03	26 APR 2006
1 MM PITCH (OMF	PAC) STANDARD: J	EDEC MS-034 AAJ-1	

Figure 31. MPC5534 324 TEPBGA Package (continued)

Revision History for the MPC5534 Data Sheet

The following table describes the changes made to information in tables and figures, and is presented in sequential page number order.

Table 30. Table and Figure Changes Between Rev. 3.0 and 4.0

Location

Description of Changes

Figure 1, MPC5500 Family Part Numbers:

- Removed the 2 in the tape and reel designator in both the graphic and in the Tape and Reel Status text.
- Changed Qualification Status by adding ', general market flow' to the M designator, and added an 'S' designator with the description of 'Fully spec. qualified, automotive flow.

Table 1. Orderable Part Numbers:

- Footnote 1 added that reads: All devices are PPC5534, rather than MPC5534 or SPC5534, until product qualifications are complete. Not all configurations are available in the PPC parts.
- Reordered rows to group devices by lead-free package types in descending frequency order, and leaded package types.
- Footnote 2 added that reads:'The lowest ambient operating temperature is referenced by T_L; the highest ambient operating temperature is referenced by T_H.'
- Footnote 3 added that reads: 'Speed is the nominal maximum frequency. Max speed is the maximum speed allowed including frequency modulation (FM). 42 MHz parts allow for 40 MHz system clock + 2% FM; 68 MHz parts allow for 66 MHz system clock + 2% FM, and 82 MHz parts allow for 80 MHz system clock + 2% FM.'

Table 2, Absolute Maximum Ratings:

- Deleted Spec 3, "Flash core voltage."
- Spec 12 "DC Input Voltage": Deleted from second line'. . .except for eTPUB[15] and SINB (DSPI_B_SIN)' leaving V_{DDEH} powered I/O pads. Deleted third line 'V_{DDEH} powered by I/O pads (eTPUB[15] and SINB), including the min. and max values of -0.3 and 6.5 respectively, and deleted old footnote 7.
- Spec 12 "DC Input Voltage": Added footnote 8 to second line "V_{DDE} powered I/O pads" that reads: 'Internal structures hold the input voltage less than the maximum voltage on all pads powered by the V_{DDE} supplies, if the maximum injection current specification is met (s mA for all pins) and V_{DDE} is within the operating voltage specifications.
- $\bullet\,$ Spec 14, column 2, changed: 'V_SS differential voltage' to 'V_SS to V_SSA differential voltage.'
- Spec 15, column 2, changed: 'V_{DD} differential voltage' to 'V_{DD} to V_{DDA} differential voltage.'
- Spec 21, Added the name of the spec, 'V_{RC33} to V_{DDSYN} differential voltage,' as well as the name and cross reference to Table 9, DC Electrical Specifications, to which the Spec was moved.
- Spec 28 "Maximum Solder Temperature": Added two lines:
 Lead free (PbFree) and Leaded (SnPb) with maximum values of 260 C and 245 C respectively.
- Footnote 1, added: 'any of' between 'beyond' and 'the listed maxima.'
- Deleted footnote 2: 'Absolute maximum voltages are currently maximum burn-in voltages. Absolute maximum specifications for device stress have not yet been determined.' Spec 26 "Maximum Operating Temperature Range": replaced -40 C with.
- Footnote 6 (now footnote 5): Changed the end of the last sentence as follows; "Internal structures hold the input voltage greater than -1.0 V if the injection current limit of 2 mA is met. Keep the negative DC voltage greater than -0.6 V on eTPU[15] and on SINB during the internal power-on reset (POR) state."

Table 3, MPC5534 Thermal Characteristics:

Changed for production purposes, footnote 1 from:

Junction temperature is a function of on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other *components on the board*, and board thermal resistance.

to:

Junction temperature is a function of on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other *board components*, and board thermal resistance.