

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	e200z6
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	CANbus, EBI/EMI, Ethernet, SCI, SPI
Peripherals	DMA, POR, PWM, WDT
Number of I/O	192
Program Memory Size	1MB (1M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	64K x 8
Voltage - Supply (Vcc/Vdd)	1.35V ~ 1.65V
Data Converters	A/D 40x12b
Oscillator Type	External
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	324-BBGA
Supplier Device Package	324-PBGA (23x23)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mpc5534mzq80

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Overview

The MPC5500 family of parts contains many new features coupled with high performance CMOS technology to provide significant performance improvement over the MPC565.

The host processor core of the MPC5534 also includes an instruction set enhancement allowing variable length encoding (VLE). This allows optional encoding of mixed 16- and 32-bit instructions. With this enhancement, it is possible to significantly reduce the code size footprint.

The MPC5534 has a single-level memory hierarchy consisting of 64-kilobytes (KB) on-chip SRAM and one megabyte (MB) of internal flash memory. Both the SRAM and the flash memory can hold instructions and data. The external bus interface (EBI) supports most standard memories used with the MPC5xx family.

The MPC5534 does not support arbitration with other masters on the external bus. The MPC5534 must be the only master on the external bus, or act as a slave-only device.

The complex input/output timer functions of the MPC5534 are performed by an enhanced time processor unit (eTPU) engine. The eTPU engine controls 32 hardware channels. The eTPU has been enhanced over the TPU by providing: 24-bit timers, double-action hardware channels, variable number of parameters per channel, angle clock hardware, and additional control and arithmetic instructions. The eTPU is programmed using a high-level programming language.

The less complex timer functions of the MPC5534 are performed by the enhanced modular input/output system (eMIOS). The eMIOS' 24 hardware channels are capable of single-action, double-action, pulse-width modulation (PWM), and modulus-counter operations. Motor control capabilities include edge-aligned and center-aligned PWM.

Off-chip communication is performed by a suite of serial protocols including controller area networks (FlexCANs), enhanced deserial/serial peripheral interfaces (DSPIs), and enhanced serial communications interfaces (eSCIs).

The MCU has an on-chip enhanced queued dual analog-to-digital converter (eQADC) with a 5 V conversion range. The 324 package has 40-channels; the 208 package has 34 channels.

The system integration unit (SIU) performs several chip-wide configuration functions. Pad configuration and general-purpose input and output (GPIO) are controlled from the SIU. External interrupts and reset control are also determined by the SIU. The internal multiplexer sub-block (IMUX) provides multiplexing of eQADC trigger sources and external interrupt signal multiplexing.

Ordering Information 2

M = Fully spec. qualified, general market flow

Note: Not all options are available on all devices. Refer to Table 1. S = Fully spec. gualified, automotive flow

Figure 1. MPC5500 Family Part Number Example

Unless noted in this data sheet, all specifications apply from T_{L} to T_{H} .

Freescale Part Number	Package Description	Spee	ed (MHz)	Operating Temperature ¹		
	Package Description	Nominal	Max. ² (f _{MAX})	Min. (T _L)	Max. (T _H)	
MPC5534MVZ80		80	82			
MPC5534MVZ66	MPC5534 324 package	66	68	–40° C	125° C	
MPC5534MVZ40		40	42			
MPC5534MVM80		80	82	–40° C		
MPC5534MVM66	MPC5534 208 package	66	68		125° C	
MPC5534MVM40		40	42			
MPC5534MZQ80		80	82	–40° C		
MPC5534MZQ66	MPC5534 324 package Leaded (SnPb)	66	68		125° C	
MPC5534MZQ40		40	42			
MPC5534MVF80		80	82			
MPC5534MVF66	MPC5534 208 package Leaded (SnPb)	66	68	–40° C	125° C	
MPC5534MVF40		40	42			

Table 1. Orderable Part Numbers

1 The lowest ambient operating temperature is referenced by T_I; the highest ambient operating temperature is referenced by T_H.

2 Speed is the nominal maximum frequency. Max. speed is the maximum speed allowed including frequency modulation (FM). 42 MHz parts allow for 40 MHz system clock + 2% FM; 68 MHz parts allow for 66 MHz system clock + 2% FM, and 82 MHz parts allow for 80 MHz system clock + 2% FM.

The thermal characterization parameter is measured in compliance with the JESD51-2 specification using a 40-gauge type T thermocouple epoxied to the top center of the package case. Position the thermocouple so that the thermocouple junction rests on the package. Place a small amount of epoxy on the thermocouple junction and approximately 1 mm of wire extending from the junction. Place the thermocouple wire flat against the package case to avoid measurement errors caused by the cooling effects of the thermocouple wire.

References:

Semiconductor Equipment and Materials International 3081 Zanker Rd. San Jose, CA., 95134 (408) 943-6900

MIL-SPEC and EIA/JESD (JEDEC) specifications are available from Global Engineering Documents at 800-854-7179 or 303-397-7956.

JEDEC specifications are available on the web at http://www.jedec.org.

- 1. C.E. Triplett and B. Joiner, "An Experimental Characterization of a 272 PBGA Within an Automotive Engine Controller Module," Proceedings of SemiTherm, San Diego, 1998, pp. 47–54.
- 2. G. Kromann, S. Shidore, and S. Addison, "Thermal Modeling of a PBGA for Air-Cooled Applications," Electronic Packaging and Production, pp. 53–58, March 1998.
- 3. B. Joiner and V. Adams, "Measurement and Simulation of Junction to Board Thermal Resistance and Its Application in Thermal Modeling," Proceedings of SemiTherm, San Diego, 1999, pp. 212–220.

3.3 Package

The MPC5534 is available in packaged form. Read the package options in Section 2, "Ordering Information." Refer to Section 4, "Mechanicals," for pinouts and package drawings.

3.4 EMI (Electromagnetic Interference) Characteristics

Spec	Characteristic	Minimum	Typical	Maximum	Unit
1	Scan range	0.15	—	1000	MHz
2	Operating frequency	_	—	f _{MAX}	MHz
3	V _{DD} operating voltages		1.5		V
4	V_{DDSYN} , V_{RC33} , V_{DD33} , V_{FLASH} , V_{DDE} operating voltages	_	3.3	_	V
5	V _{PP} V _{DDEH} , V _{DDA} operating voltages	_	5.0	—	V
6	Maximum amplitude	_	—	14 ² 32 ³	dBuV
7	Operating temperature		—	25	°C

Table 4. EMI Testing Specifications ¹

¹ EMI testing and I/O port waveforms per SAE J1752/3 issued 1995-03. Qualification testing was performed on the MPC5554 and applied to the MPC5500 family as generic EMI performance data.

² Measured with the single-chip EMI program.

³ Measured with the expanded EMI program.

Spec	Characte	Symbol	Min.	Max.	Units	
9	Absolute value of slew rate on power s	—	_	50	V/ms	
	Required gain at Tj:	– 40° C		35	_	
10	$I_{DD} \div I_{VRCCTL} (@ f_{sys} = f_{MAX})$	25° C	BETA ¹⁰	40		—
	6, 7, 8, 9	150° C		50	500	—

Table 6. V_{RC} and POR Electrical Specifications (continued)

¹ The internal POR signals are V_{POR15}, V_{POR33}, and V_{POR5}. On power up, assert RESET before the internal POR negates. RESET must remain asserted until the power supplies are within the operating conditions as specified in Table 9 DC Electrical Specifications. On power down, assert RESET before any power supplies fall outside the operating conditions and until the internal POR asserts.

 $^2~V_{IL_S}$ (Table 9, Spec15) is guaranteed to scale with V_{DDEH6} down to $V_{POR5}.$

³ Supply full operating current for the 1.5 V supply when the 3.3 V supply reaches this range.

⁴ It is possible to reach the current limit during ramp up—do not treat this event as short circuit current.

⁵ At peak current for device.

⁶ Requires compliance with Freescale's recommended board requirements and transistor recommendations. Board signal traces/routing from the V_{RCCTL} package signal to the base of the external pass transistor and between the emitter of the pass transistor to the V_{DD} package signals must have a maximum of 100 nH inductance and minimal resistance (less than 1 Ω). V_{RCCTL} must have a nominal 1 μ F phase compensation capacitor to ground. V_{DD} must have a 20 μ F (nominal) bulk capacitor (greater than 4 μ F over all conditions, including lifetime). Place high-frequency bypass capacitors consisting of

eight 0.01 μ F, two 0.1 μ F, and one 1 μ F capacitors around the package on the V_{DD} supply signals.

 7 I_{VRCCTL} is measured at the following conditions: V_{DD} = 1.35 V, V_{RC33} = 3.1 V, V_{VRCCTL} = 2.2 V.

⁸ Refer to Table 1 for the maximum operating frequency.

 9 Values are based on I_{DD} from high-use applications as explained in the I_{DD} Electrical Specification.

¹⁰ BETA represents the worst-case external transistor. It is measured on a per-part basis and calculated as (I_{DD} ÷ I_{VRCCTL}).

3.7 Power-Up/Down Sequencing

Power sequencing between the 1.5 V power supply and V_{DDSYN} or the RESET power supplies is required if using an external 1.5 V power supply with V_{RC33} tied to ground (GND). To avoid power-sequencing, V_{RC33} must be powered up within the specified operating range, even if the on-chip voltage regulator controller is not used. Refer to Section 3.7.2, "Power-Up Sequence (VRC33 Grounded)," and Section 3.7.3, "Power-Down Sequence (VRC33 Grounded)."

Power sequencing requires that V_{DD33} must reach a certain voltage where the values are read as ones before the POR signal negates. Refer to Section 3.7.1, "Input Value of Pins During POR Dependent on VDD33."

Although power sequencing is not required between V_{RC33} and V_{DDSYN} during power up, V_{RC33} must not lead V_{DDSYN} by more than 600 mV or lag by more than 100 mV for the V_{RC} stage turn-on to operate within specification. Higher spikes in the emitter current of the pass transistor occur if V_{RC33} leads or lags V_{DDSYN} by more than these amounts. The value of that higher spike in current depends on the board power supply circuitry and the amount of board level capacitance.

Furthermore, when all of the PORs negate, the system clock starts to toggle, adding another large increase of the current consumed by V_{RC33} . If V_{RC33} lags V_{DDSYN} by more than 100 mV, the increase in current consumed can drop V_{DD} low enough to assert the 1.5 V POR again. Oscillations are possible when the 1.5 V POR asserts and stops the system clock, causing the voltage on V_{DD} to rise until the 1.5 V POR negates again. All oscillations stop when V_{RC33} is powered sufficiently.

When powering down, V_{RC33} and V_{DDSYN} have no delta requirement to each other, because the bypass capacitors internal and external to the device are already charged. When not powering up or down, no delta between V_{RC33} and V_{DDSYN} is required for the V_{RC} to operate within specification.

There are no power up/down sequencing requirements to prevent issues such as latch-up, excessive current spikes, and so on. Therefore, the state of the I/O pins during power up and power down varies depending on which supplies are powered.

Table 7 gives the pin state for the sequence cases for all pins with pad type pad_fc (fast type).

V _{DDE}	V _{DD33}	V _{DD}	POR	Pin Status for Fast Pad Output Driver pad_fc (fast)
Low	_	_	Asserted	Low
V _{DDE}	Low	Low	Asserted	High
V _{DDE}	Low	V _{DD}	Asserted	High
V _{DDE}	V _{DD33}	Low	Asserted	High impedance (Hi-Z)
V _{DDE}	V _{DD33}	V _{DD}	Asserted	Hi-Z
V _{DDE}	V _{DD33}	V _{DD}	Negated	Functional

 Table 7. Pin Status for Fast Pads During the Power Sequence

Table 8 gives the pin state for the sequence cases for all pins with pad type pad_mh (medium type) and pad_sh (slow type).

Table 8. Pin Status for Medium and Slow Pads During the Power Sequence

V _{DDEH}	V _{DD}	POR	Pin Status for Medium and Slow Pad Output Driver pad_mh (medium) pad_sh (slow)
Low	—	Asserted	Low
V _{DDEH}	Low	Asserted	High impedance (Hi-Z)
V _{DDEH}	V _{DD}	Asserted	Hi-Z
V _{DDEH}	V _{DD}	Negated	Functional

The values in Table 7 and Table 8 do not include the effect of the weak-pull devices on the output pins during power up.

Before exiting the internal POR state, the pins go to a high-impedance state until POR negates. When the internal POR negates, the functional state of the signal during reset applies and the weak-pull devices (up or down) are enabled as defined in the device reference manual. If V_{DD} is too low to correctly propagate the logic signals, the weak-pull devices can pull the signals to V_{DDE} and V_{DDEH} .

To avoid this condition, minimize the ramp time of the V_{DD} supply to a time period less than the time required to enable the external circuitry connected to the device outputs.

During initial power ramp-up, when vstby is 0.6v or above. a typical current of 1-3mA and maximum of 4mA may be seen until V_{DD} is applied. This current will not reoccur until V_{stby} is lowered below V_{stby} min specification.

Figure 2 shows an approximate interpolation of the I_{STBY} worst-case specification to estimate values at different voltages and temperatures. The vertical lines shown at 25 °C, 60 °C, and 150 °C in Figure 2 are the actual I_{DD_STBY} specifications (27d) listed in Table 9

Figure 2. fISTBY Worst-case Specifications

Spec	Characteristic	Symbol	Min	Max.	Unit
31	Fast I/O weak pullup current ²¹ 1.62–1.98 V 2.25–2.75 V 3.00–3.60 V		10 20 20	110 130 170	μΑ μΑ μΑ
	Fast I/O weak pulldown current ²¹ 1.62–1.98 V 2.25–2.75 V 3.00–3.60 V	'ACT_F	10 20 20	100 130 170	μΑ μΑ μΑ
32	Slow and medium I/O weak pullup/down current ²¹ 3.0–3.6 V 4.5–5.5 V	I _{ACT_S}	10 20	150 170	μΑ μΑ
33	I/O input leakage current ²²	I _{INACT_D}	-2.5	2.5	μA
34	DC injection current (per pin)	I _{IC}	-2.0	2.0	mA
35	Analog input current, channel off ²³	I _{INACT_A}	-150	150	nA
35a	Analog input current, shared analog / digital pins (AN[12], AN[13], AN[14], AN[15])	I _{INACT_AD}	-2.5	2.5	μA
36	V_{SS} to V_{SSA} differential voltage ²⁴	$V_{SS} - V_{SSA}$	-100	100	mV
37	Analog reference low voltage	V _{RL}	V _{SSA} – 0.1	V _{SSA} + 0.1	V
38	V _{RL} differential voltage	V _{RL} – V _{SSA}	-100	100	mV
39	Analog reference high voltage	V _{RH}	V _{DDA} – 0.1	V _{DDA} + 0.1	V
40	V _{REF} differential voltage	V _{RH} – V _{RL}	4.5	5.25	V
41	V_{SSSYN} to V_{SS} differential voltage	$V_{\rm SSSYN} - V_{\rm SS}$	-50	50	mV
42	V _{RCVSS} to V _{SS} differential voltage	$V_{RCVSS} - V_{SS}$	-50	50	mV
43	V_{DDF} to V_{DD} differential voltage	$V_{DDF} - V_{DD}$	-100	100	mV
43a	V _{RC33} to V _{DDSYN} differential voltage	V _{RC33} – V _{DDSYN}	-0.1	0.1 ²⁵	V
44	Analog input differential signal range (with common mode 2.5 V)	V _{IDIFF}	-2.5	2.5	V
45	Operating temperature range, ambient (packaged)	$T_A = (T_L \text{ to } T_H)$	ΤL	Т _Н	°C
46	Slew rate on power-supply pins	—	_	50	V/ms

Table 9. DC Electrical Specifications ($T_A = T_L$ to T_H) (continued)

 V_{DDE2} and V_{DDE3} are limited to 2.25–3.6 V only if SIU_ECCR[EBTS] = 0; V_{DDE2} and V_{DDE3} have a range of 1.6–3.6 V if SIU_ECCR[EBTS] = 1.

 $^2~$ | V_{DDA0} - V_{DDA1} | must be < 0.1 V.

 3 V_{PP} can drop to 3.0 V during read operations.

⁴ If standby operation is not required, connect V_{STBY} to ground.

⁵ Applies to CLKOUT, external bus pins, and Nexus pins.

⁶ Maximum average RMS DC current.

⁷ Figure 2 shows an illustration of the I_{DD_STBY} values interpolated for these temperature values.

⁸ Average current measured on Automotive benchmark.

⁹ Peak currents can be higher on specialized code.

¹⁰ High use current measured while running optimized SPE assembly code with all channels of the eMIOS and eTPU running autonomously, plus the eDMA transferring data continuously from SRAM to SRAM.

1

3.8.2 I/O Pad V_{DD33} Current Specifications

The power consumption of the V_{DD33} supply dependents on the usage of the pins on all I/O segments. The power consumption is the sum of all input and output pin V_{DD33} currents for all I/O segments. The output pin V_{DD33} current can be calculated from Table 11 based on the voltage, frequency, and load on all fast (pad_fc) pins. The input pin V_{DD33} current can be calculated from Table 11 based on the voltage, frequency, and load on all pad_sh and pad_mh pins. Use linear scaling to calculate pin currents for voltage, frequency, and load parameters that fall outside the values given in Table 11.

Spec	Pad Type	Symbol	Frequency (MHz)	Load ² (pF)	V _{DD33} (V)	V _{DDE} (V)	Drive Select	Current (mA)	
Inputs									
1	Slow	I _{33_SH}	66	0.5	3.6	5.5	NA	0.003	
2	Medium	I _{33_МН}	66	0.5	3.6	5.5	NA	0.003	
				Output	S				
3			66	10	3.6	3.6	00	0.35	
4			66	20	3.6	3.6	01	0.53	
5			66	30	3.6	3.6	10	0.62	
6			66	50	3.6	3.6	11	0.79	
7			66	10	3.6	1.98	00	0.35	
8			66	20	3.6	1.98	01	0.44	
9			66	30	3.6	1.98	10	0.53	
10			66	50	3.6	1.98	11	0.70	
11			56	10	3.6	3.6	00	0.30	
12			56	20	3.6	3.6	01	0.45	
13			56	30	3.6	3.6	10	0.52	
14	Foot		56	50	3.6	3.6	11	0.67	
15	Fasi	'33_FC	56	10	3.6	1.98	00	0.30	
16			56	20	3.6	1.98	01	0.37	
17			56	30	3.6	1.98	10	0.45	
18			56	50	3.6	1.98	11	0.60	
19			40	10	3.6	3.6	00	0.21	
20			40	20	3.6	3.6	01	0.31	
21			40	30	3.6	3.6	10	0.37	
22		40	50	3.6	3.6	11	0.48		
23		40	10	3.6	1.98	00	0.21		
24			40	20	3.6	1.98	01	0.27	
25			40	30	3.6	1.98	10	0.32	
26			40	50	3.6	1.98	11	0.42	

Table 11. V_{DD33} Pad Average DC Current ($T_A = T_L$ to T_H)¹

¹ These values are estimated from simulation and not tested. Currents apply to output pins for the fast pads only and to input pins for the slow and medium pads only.

² All loads are lumped.

Table 16 shows the FLASH_BIU settings versus frequency of operation. Refer to the device reference manual for definitions of these bit fields.

Target Maximum Frequency (MHz)	APC	RWSC	WWSC	DPFEN ²	IPFEN ²	PFLIM ³	BFEN ²
Up to and including 27 MHz ^{4, 5}	0b000	0b000	0b01	0b0 0b1	0b0 0b1	0b000 to 0b010	0b0 0b1
Up to and including 52 MHz ⁶	0b001	0b001	0b01	0b0 0b1	0b0 0b1	0b000 to 0b010	0b0 0b1
Up to and including 77 MHz ⁷	0b010	0b010	0b01	0b0 0b1	0b0 0b1	0b000 to 0b010	0b0 0b1
Up to and including 82 MHz ⁸	0b011 ⁹	0b011 ⁹	0b01	0b0 0b1	0b0 0b1	0b000 to 0b010	0b0 0b1
Reset values:	0b111	0b111	0b11	0b0	0b0	0b000	0b0

Table 16. FLASH_BIU Settings vs. Frequency of Operation¹

¹ Illegal combinations exist. Use entries from the same row in this table.

² For maximum flash performance, set to 0b1.

³ For maximum flash performance, set to 0b010.

⁴ 27 MHz parts allow for 25 MHz system clock + 2% frequency modulation (FM).

⁵ The APC, RWSC, and WWSC combination requires setting the PRD bit to 1 in the flash MCR register.

⁶ 52 MHz parts allow for 50 MHz system clock + 2% FM.

⁷ 77 MHz parts allow for 75 MHz system clock + 2% FM.

⁸ 82 MHz parts allow for 80 MHz system clock + 2% FM.

⁹ For frequencies up to and including 80 MHz, if VDD is within $\pm 5\%$ of 1.5 V, then APC = RWSC = 0b010 is a valid setting.

3.12 AC Specifications

3.12.1 Pad AC Specifications

Table 17. Pad AC Specifications (V_{DDEH} = 5.0 V, V_{DDE} = 1.8 V) 1

Spec	Pad	SRC / DSC (binary)	Out Delay ^{2, 3, 4} (ns)	Rise / Fall ^{4, 5} (ns)	Load Drive (pF)
	1 Slow high voltage (SH)	11	26	15	50
			82	60	200
- 1		01	75	40	50
I			137	80	200
		00	377	200	50
			476	260	200

Spec	Pad	SRC / DSC (binary)	Out Delay ^{2, 3, 4} (ns)	Rise / Fall ^{4, 5} (ns)	Load Drive (pF)
		11	16	8	50
			43	30	200
2	Medium biab voltage (MH)	01	34	15	50
2	wedium nigh voltage (win)	01	61	35	200
		00 -	192	100	50
			239	125	200
		00		2.7	10
2	Fact	01	0.1	2.5	20
5	rasi	10	5.1	2.4	30
		11		2.3	50
4	Pullup/down (3.6 V max)	—	_	7500	50
5	Pullup/down (5.5 V max)	_	_	9000	50

Table 17. Pad AC Specifications ((V _{DDEH} = 5.0 V, V _{DDE} = 1.8 V)	¹ (continued)
-----------------------------------	---	--------------------------

¹ These are worst-case values that are estimated from simulation (not tested). The values in the table are simulated at:

 V_{DD} = 1.35–1.65 V; V_{DDE} = 1.62–1.98 V; V_{DDEH} = 4.5–5.25 V; V_{DD33} and V_{DDSYN} = 3.0–3.6 V; and T_A = T_L to T_H .

² This parameter is supplied for reference and is guaranteed by design (not tested).

³ The output delay is shown in Figure 4. To calculate the output delay with respect to the system clock, add a maximum of one system clock to the output delay.

 $^4\,$ The output delay and rise and fall are measured to 20% or 80% of the respective signal.

⁵ This parameter is guaranteed by characterization rather than 100% tested.

Table 18. Derated Pad AC Specifications ($V_{DDEH} = 3.3 V$, $V_{DDE} = 3.3 V$)	Specifications ($V_{DDEH} = 3.3 \text{ V}, V_{DDE} = 3.3 \text{ V}$) ¹
--	---

Spec	Pad	SRC/DSC (binary)	Out Delay ^{2, 3, 4} (ns)	Rise / Fall ^{3, 5} (ns)	Load Drive (pF)
		11	39	23	50
1			120	87	200
	Slow high voltage (SH)	01	101	52	50
	Slow high voltage (SH)	01	188	111	200
		00	507	248	50
		00	597	312	200
		11	23	12	50
			64	44	200
2	Medium high voltage (MH)	01	50	22	50
2	Medium nigh voltage (Min)	01	90	50	200
		00	261	123	50
		00	305	156	200

Spec	Characteristic	Symbol	Min.	Max.	Unit
3	PLLCFG, BOOTCFG, WKPCFG, RSTCFG setup time to RSTOUT valid	t _{RCSU}	10		t _{CYC}
4	PLLCFG, BOOTCFG, WKPCFG, RSTCFG hold time from RSTOUT valid	t _{RCH}	0		t _{CYC}

Table 19. Reset and	Configuration Pin	Timing	¹ (continued)
---------------------	--------------------------	--------	--------------------------

¹ Reset timing specified at: $V_{DDEH} = 3.0-5.25$ V and $T_A = T_L$ to T_H .

Figure 5. Reset and Configuration Pin Timing

3.13.2 IEEE 1149.1 Interface Timing

Table 20. JTAG Pin AC Electrical Characteristics ¹

Spec	Characteristic	Symbol	Min.	Max.	Unit
1	TCK cycle time	tJCYC	100	_	ns
2	TCK clock pulse width (measured at $V_{DDE} \div 2$)	t _{JDC}	40	60	ns
3	TCK rise and fall times (40% to 70%)	t _{TCKRISE}	_	3	ns
4	TMS, TDI data setup time	t _{TMSS,} t _{TDIS}	5	-	ns
5	TMS, TDI data hold time	t _{TMSH} , t _{TDIH}	25		ns
6	TCK low to TDO data valid	t _{TDOV}	_	20	ns
7	TCK low to TDO data invalid	t _{TDOI}	0	-	ns
8	TCK low to TDO high impedance	t _{TDOHZ}		20	ns
9	JCOMP assertion time	t _{JCMPPW}	100		ns
10	JCOMP setup time to TCK low	t _{JCMPS}	40	-	ns
11	TCK falling-edge to output valid	t _{BSDV}	_	50	ns

Electrical Characteristics

Figure 9. JTAG Boundary Scan Timing

3.13.3 Nexus Timing

Spec	Characteristic	Symbol	Min.	Max.	Unit
1	MCKO cycle time	t _{MCYC}	1 ²	8	t _{CYC}
2	MCKO duty cycle	t _{MDC}	40	60	%
3	MCKO low to MDO data valid ³	t _{MDOV}	-1.5	3.0	ns
4	MCKO low to MSEO data valid ³	t _{MSEOV}	-1.5	3.0	ns
5	MCKO low to EVTO data valid ³	t _{EVTOV}	-1.5	3.0	ns
6	EVTI pulse width	t _{EVTIPW}	4.0	—	t _{TCYC}
7	EVTO pulse width	t _{EVTOPW}	1	—	t _{MCYC}
8	TCK cycle time	t _{TCYC}	4 ⁴	—	t _{CYC}
9	TCK duty cycle	t _{TDC}	40	60	%
10	TDI, TMS data setup time	t _{NTDIS} , t _{NTMSS}	8	—	ns
11	TDI, TMS data hold time	t _{NTDIH} , t _{NTMSH}	5	—	ns
	TCK low to TDO data valid	t _{JOV}			
12	V _{DDE} = 2.25–3.0 V		0	12	ns
	V _{DDE} = 3.0–3.6 V		0	10	ns
13	RDY valid to MCKO ⁵	—	_	—	—

Table 21. Nexus Debug Port Timing ¹

¹ JTAG specifications apply when used for debug functionality. All Nexus timing relative to MCKO is measured from 50% of MCKO and 50% of the respective signal. Nexus timing specified at V_{DD} = 1.35–1.65 V, V_{DDE} = 2.25–3.6 V, V_{DD33} and V_{DDSYN} = 3.0–3.6 V, T_A = T_L to T_H, and CL = 30 pF with DSC = 0b10.

² The Nexus AUX port runs up to 82 MHz.

 3 MDO, $\overline{\text{MSEO}}$, and $\overline{\text{EVTO}}$ data is held valid until the next MCKO low cycle occurs.

- ⁴ Limit the maximum frequency to approximately 16 MHz (V_{DDE} = 2.25–3.0 V) or 20 MHz (V_{DDE} = 3.0–3.6 V) to meet the timing specification for t_{JOV} of [0.2 x t_{JCYC}] as outlined in the IEEE-ISTO 5001-2003 specification.
- ⁵ The RDY pin timing is asynchronous to MCKO and is guaranteed by design to function correctly.

Figure 10. Nexus Output Timing

	Characteristic		External Bus Frequency ³															
Spec	and	Symbol	20	MHz	33	MHz	40 I	40 MHz		40 MHz		40 MHz		40 MHz		40 MHz		Notes
	Description		Min.	Max	Min.	Мах	Min.	Max										
6a ⁵	CLKOUT positive edge to output signal valid (output delay) Calibration bus interface CAL_CS[0, 2:3] CAL_ADDR[10:30] CAL_DATA[0:15] CAL_DATA[0:15] CAL_RD_WR CAL_WE[0:1] CAL_OE CAL_TS	tccov		11.0 ⁶ 12.0		11.0 ⁶ 12.0		11.0 ⁶ 12.0	ns	EBTS = 0 EBTS = 1 Output valid time selectable via SIU_ECCR [EBTS] bit.								
7 ⁵	Input signal valid to CLKOUT positive edge (setup time) External bus interface ADDR[8:31] DATA[0:15] RD_WR TS TA	t _{CIS}	10.0		10.0	_	10.0	_	ns									
5	Input signal valid to CLKOUT positive edge (setup time) Calibration bus interface CAL_ADDR[10:30] CAL_DATA[0:15] CAL_RD_WR CAL_TS	tccis	11.0	_	11.0	_	11.0	_	ns									
8 ⁵	CLKOUT positive edge to input signal invalid (hold time) External bus interface ADDR[8:31] DATA[0:15] RD_WR TS TA	t _{СІН}	1.0		1.0		1.0		ns									
5	Calibration bus interface CAL_ADDR[10:30] CAL_DATA[0:15] CAL_RD_WR CAL_TS	^t ссін	1.0	_	1.0	_	1.0	_	ns									

Table 22. External Bus Operation Timing^{1, 2} (continued)

¹ EBI timing specified at $V_{DDE} = 1.6-3.6$ V (unless stated otherwise), $T_A = T_L$ to T_H , and CL = 30 pF with DSC = 0b10. ² The external is limited to half the speed of the internal bus.

Figure 22. DSPI Modified Transfer Format Timing—Master, CPHA = 0

Figure 23. DSPI Modified Transfer Format Timing—Master, CPHA = 1

3.13.9 eQADC SSI Timing

Spec	Rating	Symbol	Minimum	Typical	Maximum	Unit
2	FCK period ($t_{FCK} = 1 \div f_{FCK}$) ^{1, 2}	t _{FCK}	2	—	17	t_{SYS_CLK}
3	Clock (FCK) high time	t _{FCKHT}	t _{SYS_CLK} – 6.5	—	$9 \times (t_{SYS_CLK} + 6.5)$	ns
4	Clock (FCK) low time	t _{FCKLT}	t _{SYS_CLK} – 6.5	—	$8 \times (t_{SYS_CLK} + 6.5)$	ns
5	SDS lead / lag time	t _{SDS_LL}	-7.5	—	+7.5	ns
6	SDO lead / lag time	t _{SDO_LL}	-7.5	—	+7.5	ns
7	EQADC data setup time (inputs)	t _{EQ_SU}	22	_	_	ns
8	EQADC data hold time (inputs)	t _{EQ_HO}	1	_	—	ns

Table 27. EQADC SSI Timing Characteristics

¹ \overline{SS} timing specified at V_{DDEH} = 3.0–5.25 V, T_A = T_L to T_H, and CL = 25 pF with SRC = 0b11. Maximum operating frequency varies depending on track delays, master pad delays, and slave pad delays.

 2 FCK duty cycle is not 50% when it is generated through the division of the system clock by an odd number.

Figure 27. EQADC SSI Timing

4 Mechanicals

4.1 MPC5534 208 MAP BGA Pinout

Figure 28 is a pinout for the MPC5534 208 MAP BGA package.

NOTES

 V_{DDEH10} and V_{DDEH6} are connected internally on the 208-ball package and are listed as $V_{DDEH6}.$

The MPC5500 devices are pin compatible for software portability and use the primary function names to label the pins in the BGA diagram. Although some devices do not support all the primary functions shown in the BGA diagram, the muxed and GPIO signals on those pins remain available. See the signals chapter in the device reference manual for the signal muxing.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	
A	VSS	AN9	AN11	VDDA1	VSSA1	AN1	AN5	VRH	VRL	AN27	VSSA0	AN12	MDO2	MDO0	VDD33	VSS	А
В	VDD	VSS	AN38	AN21	AN0	AN4	REF BYPC	AN22	AN25	AN28	VDDA0	AN13	MDO3	MDO1	VSS	VDD	В
С	VSTBY	VDD	VSS	AN17	AN34	AN16	AN3	AN7	AN23	AN32	AN33	AN14	AN15	VSS	MSEO0	тск	С
D	VDD33	AN39	VDD	VSS	AN18	AN2	AN6	AN24	AN30	AN31	AN35	VDDEH 9	VSS	TMS	EVTO	TEST	D
Е	ETPUA 30	ETPUA 31	AN37	VDD									VDDE7	TDI	EVTI	MSEO1	Е
F	ETPUA 28	ETPUA 29	ETPUA 26	AN36									VDDEH 6	TDO	МСКО	JCOMP	F
G	ETPUA 24	ETPUA 27	ETPUA 25	ETPUA 21			VSS	VSS	VSS	VSS			SOUTB	PCSB3	SINB	PCSB0	G
н	ETPUA 23	ETPUA 22	ETPUA 17	ETPUA 18			VSS	VSS	VSS	VSS			PCSA3	PCSB4	PCSB2	PCSB1	н
J	ETPUA 20	ETPUA 19	ETPUA 14	ETPUA 13			VSS	VSS	VSS	VSS			PCSB5	TXDA	PCSA2	SCKB	J
к	ETPUA 16	ETPUA 15	ETPUA 7	VDDEH 1			VSS	VSS	VSS	VSS			CNTXC	RXDA	RSTOUT	VPP	к
L	ETPUA 12	ETPUA 11	ETPUA 6	TCRCLK A									TXDB	CNRXC	WKP CFG	RESET	L
М	ETPUA 10	ETPUA 9	ETPUA 1	ETPUA 5									RXDB	PLL CFG0	BOOT CFG1	VSS SYN	М
Ν	ETPUA 8	ETPUA 4	ETPUA 0	VSS	VDD	VDD33	EMIOS 2	EMIOS 10	VDDEH 4	EMIOS 12	EMIOS 21	VDD33	VSS	VRC CTL	PLL CFG1	EXTAL	N
Ρ	ETPUA 3	ETPUA 2	VSS	VDD	GPIO 207	VDDE2	EMIOS 6	EMIOS 8	EMIOS 16	EMIOS 17	EMIOS 22	CNTXA	VDD	VSS	VRC33	XTAL	Ρ
R	CS0	VSS	VDD	GPIO 206	EMIOS 4	EMIOS 3	EMIOS 9	EMIOS 11	EMIOS 14	EMIOS 19	EMIOS 23	CNRXA	CNRXB	VDD	VSS	VDD SYN	R
Т	VSS	VDD	OE	EMIOS 0	EMIOS 1	EMIOS 5	EMIOS 7	EMIOS 13	EMIOS 15	EMIOS 18	EMIOS 20	CNTXB	VDDE5	ENG CLK	VDD	VSS	Т
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	
						Fig	ure 28.	MPC	5534 20	08 Pac	kage						

MPC5534 Microcontroller Data Sheet, Rev. 6

Mechanicals

4.4 MPC5534 324-Pin Package Dimensions

The package drawings of the MPC5534 324-pin TEPBGA package are shown in Figure 31.

Figure 31. MPC5534 324 TEPBGA Package

MPC5534 Microcontroller Data Sheet, Rev. 6

Revision History for the MPC5534 Data Sheet

Table 28. Text Changes Between Rev. 4.0 and 5.0 (continued)

Location	Description of Changes					
Section 3.7, "Power-Up/Down Sequencing						
	Last paragraph: Changed the first sentence FROM the voltage on the pins goes to high-impedance until TO the pins go to a high-impedance state until					

5.3 Changes Between Revisions 3.0 and 4.0

The following table lists the substantive text changes made to paragraphs.

Table 29. Text Changes Between Rev. 3.0 and 4.0

Location	Description of Changes
Title Page:	
	Changed the Revision number from 3.0 to 4.0. Changed the date format to DD MMM YYYY. Made the same changes in the lower left corner of the back page.
Section 1, '	Overview":
	Added the sentence directly preceding Table 1: 'Unless noted in this data sheet, all specifications apply from T_L to T_H .'
Sections 3.	7.1, 3.7.2 and 3.7.3: Reordered sections resulting in the following order and section renumbering:
	 Section 3.7.1, "Input Value of Pins During POR Dependent on VDD33," then Section 3.7.2, "Power-Up Sequence (VRC33 Grounded)," then Section 3.7.3, "Power-Down Sequence (VRC33 Grounded).
Section 3.7	.1, "Input Value of Pins During POR Dependent on VDD33:"
	Added the following text directly before this section and after Table 8 <i>Pin Status for Medium and Slow Pads During the Power-on Sequence</i> : 'The values in Table 7 and Table 8 do not include the effect of the weak pull devices on the output pins during power up.
	Before exiting the internal POR state, the voltage on the pins goes to high-impedance until POR negates. When the internal POR negates, the functional state of the signal during reset applies and the weak pull devices (up or down) are enabled as defined in the device <i>Reference Manual</i> . If V_{DD} is too low to correctly propagate the logic signals, the weak-pull devices can pull the signals to V_{DDE} and V_{DDEH} .
	To avoid this condition, minimize the ramp time of the V _{DD} supply to a time period less than the time required to enable the external circuitry connected to the device outputs.
Section 3.7	.3, "Power-Down Sequence (VRC33 Grounded)" Deleted the underscore in ORed_POR to become ORed POR.

Revision History for the MPC5534 Data Sheet