E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	e200z6
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	CANbus, EBI/EMI, Ethernet, SCI, SPI
Peripherals	DMA, POR, PWM, WDT
Number of I/O	192
Program Memory Size	1MB (1M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	64K x 8
Voltage - Supply (Vcc/Vdd)	1.35V ~ 1.65V
Data Converters	A/D 34x12b
Oscillator Type	External
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	208-BGA
Supplier Device Package	208-BGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/spc5534mvm80

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Overview

The MPC5500 family of parts contains many new features coupled with high performance CMOS technology to provide significant performance improvement over the MPC565.

The host processor core of the MPC5534 also includes an instruction set enhancement allowing variable length encoding (VLE). This allows optional encoding of mixed 16- and 32-bit instructions. With this enhancement, it is possible to significantly reduce the code size footprint.

The MPC5534 has a single-level memory hierarchy consisting of 64-kilobytes (KB) on-chip SRAM and one megabyte (MB) of internal flash memory. Both the SRAM and the flash memory can hold instructions and data. The external bus interface (EBI) supports most standard memories used with the MPC5xx family.

The MPC5534 does not support arbitration with other masters on the external bus. The MPC5534 must be the only master on the external bus, or act as a slave-only device.

The complex input/output timer functions of the MPC5534 are performed by an enhanced time processor unit (eTPU) engine. The eTPU engine controls 32 hardware channels. The eTPU has been enhanced over the TPU by providing: 24-bit timers, double-action hardware channels, variable number of parameters per channel, angle clock hardware, and additional control and arithmetic instructions. The eTPU is programmed using a high-level programming language.

The less complex timer functions of the MPC5534 are performed by the enhanced modular input/output system (eMIOS). The eMIOS' 24 hardware channels are capable of single-action, double-action, pulse-width modulation (PWM), and modulus-counter operations. Motor control capabilities include edge-aligned and center-aligned PWM.

Off-chip communication is performed by a suite of serial protocols including controller area networks (FlexCANs), enhanced deserial/serial peripheral interfaces (DSPIs), and enhanced serial communications interfaces (eSCIs).

The MCU has an on-chip enhanced queued dual analog-to-digital converter (eQADC) with a 5 V conversion range. The 324 package has 40-channels; the 208 package has 34 channels.

The system integration unit (SIU) performs several chip-wide configuration functions. Pad configuration and general-purpose input and output (GPIO) are controlled from the SIU. External interrupts and reset control are also determined by the SIU. The internal multiplexer sub-block (IMUX) provides multiplexing of eQADC trigger sources and external interrupt signal multiplexing.

Ordering Information 2

M = Fully spec. qualified, general market flow

Note: Not all options are available on all devices. Refer to Table 1. S = Fully spec. gualified, automotive flow

Figure 1. MPC5500 Family Part Number Example

Unless noted in this data sheet, all specifications apply from T_{L} to T_{H} .

Freescale Part Number	Package Description	Spee	Speed (MHz)		Operating Temperature ¹	
	Package Description	Nominal	Max. ² (f _{MAX})	Min. (T _L)	Max. (T _H)	
MPC5534MVZ80	· · · · · · · · · · · · · · · · · · ·	80	82			
MPC5534MVZ66	MPC5534 324 package Lead-free (PbFree)	66	68	–40° C	125° C	
MPC5534MVZ40		40	42			
MPC5534MVM80		80	82			
MPC5534MVM66	MPC5534 208 package	66	68	–40° C	125° C	
MPC5534MVM40		40	42			
MPC5534MZQ80		80	82			
MPC5534MZQ66	MPC5534 324 package Leaded (SnPb)	66	68	-40° C	125° C	
MPC5534MZQ40		40	42			
MPC5534MVF80		80	82			
MPC5534MVF66	MPC5534 208 package	66	68	–40° C	125° C	
MPC5534MVF40		40	42			

Table 1. Orderable Part Numbers

1 The lowest ambient operating temperature is referenced by T_I; the highest ambient operating temperature is referenced by T_H.

2 Speed is the nominal maximum frequency. Max. speed is the maximum speed allowed including frequency modulation (FM). 42 MHz parts allow for 40 MHz system clock + 2% FM; 68 MHz parts allow for 66 MHz system clock + 2% FM, and 82 MHz parts allow for 80 MHz system clock + 2% FM.

Spec	Characte	Symbol	Min.	Max.	Units	
9	Absolute value of slew rate on power supply pins		—	_	50	V/ms
	Required gain at Tj:	– 40° C		35	_	
10	$I_{DD} \div I_{VRCCTL} (@ f_{sys} = f_{MAX})$	25° C	BETA ¹⁰	40		—
	6, 7, 8, 9	150° C		50	500	—

Table 6. V_{RC} and POR Electrical Specifications (continued)

¹ The internal POR signals are V_{POR15}, V_{POR33}, and V_{POR5}. On power up, assert RESET before the internal POR negates. RESET must remain asserted until the power supplies are within the operating conditions as specified in Table 9 DC Electrical Specifications. On power down, assert RESET before any power supplies fall outside the operating conditions and until the internal POR asserts.

 $^2~V_{IL_S}$ (Table 9, Spec15) is guaranteed to scale with V_{DDEH6} down to $V_{POR5}.$

³ Supply full operating current for the 1.5 V supply when the 3.3 V supply reaches this range.

⁴ It is possible to reach the current limit during ramp up—do not treat this event as short circuit current.

⁵ At peak current for device.

⁶ Requires compliance with Freescale's recommended board requirements and transistor recommendations. Board signal traces/routing from the V_{RCCTL} package signal to the base of the external pass transistor and between the emitter of the pass transistor to the V_{DD} package signals must have a maximum of 100 nH inductance and minimal resistance (less than 1 Ω). V_{RCCTL} must have a nominal 1 μ F phase compensation capacitor to ground. V_{DD} must have a 20 μ F (nominal) bulk capacitor (greater than 4 μ F over all conditions, including lifetime). Place high-frequency bypass capacitors consisting of

eight 0.01 μ F, two 0.1 μ F, and one 1 μ F capacitors around the package on the V_{DD} supply signals.

 7 I_{VRCCTL} is measured at the following conditions: V_{DD} = 1.35 V, V_{RC33} = 3.1 V, V_{VRCCTL} = 2.2 V.

⁸ Refer to Table 1 for the maximum operating frequency.

 9 Values are based on I_{DD} from high-use applications as explained in the I_{DD} Electrical Specification.

¹⁰ BETA represents the worst-case external transistor. It is measured on a per-part basis and calculated as (I_{DD} ÷ I_{VRCCTL}).

3.7 Power-Up/Down Sequencing

Power sequencing between the 1.5 V power supply and V_{DDSYN} or the RESET power supplies is required if using an external 1.5 V power supply with V_{RC33} tied to ground (GND). To avoid power-sequencing, V_{RC33} must be powered up within the specified operating range, even if the on-chip voltage regulator controller is not used. Refer to Section 3.7.2, "Power-Up Sequence (VRC33 Grounded)," and Section 3.7.3, "Power-Down Sequence (VRC33 Grounded)."

Power sequencing requires that V_{DD33} must reach a certain voltage where the values are read as ones before the POR signal negates. Refer to Section 3.7.1, "Input Value of Pins During POR Dependent on VDD33."

Although power sequencing is not required between V_{RC33} and V_{DDSYN} during power up, V_{RC33} must not lead V_{DDSYN} by more than 600 mV or lag by more than 100 mV for the V_{RC} stage turn-on to operate within specification. Higher spikes in the emitter current of the pass transistor occur if V_{RC33} leads or lags V_{DDSYN} by more than these amounts. The value of that higher spike in current depends on the board power supply circuitry and the amount of board level capacitance.

Furthermore, when all of the PORs negate, the system clock starts to toggle, adding another large increase of the current consumed by V_{RC33} . If V_{RC33} lags V_{DDSYN} by more than 100 mV, the increase in current consumed can drop V_{DD} low enough to assert the 1.5 V POR again. Oscillations are possible when the 1.5 V POR asserts and stops the system clock, causing the voltage on V_{DD} to rise until the 1.5 V POR negates again. All oscillations stop when V_{RC33} is powered sufficiently.

When powering down, V_{RC33} and V_{DDSYN} have no delta requirement to each other, because the bypass capacitors internal and external to the device are already charged. When not powering up or down, no delta between V_{RC33} and V_{DDSYN} is required for the V_{RC} to operate within specification.

There are no power up/down sequencing requirements to prevent issues such as latch-up, excessive current spikes, and so on. Therefore, the state of the I/O pins during power up and power down varies depending on which supplies are powered.

Table 7 gives the pin state for the sequence cases for all pins with pad type pad_fc (fast type).

V _{DDE}	V _{DD33}	V _{DD}	POR	Pin Status for Fast Pad Output Driver pad_fc (fast)
Low	_	_	Asserted	Low
V _{DDE}	Low	Low	Asserted	High
V _{DDE}	Low	V _{DD}	Asserted	High
V _{DDE}	V _{DD33}	Low	Asserted	High impedance (Hi-Z)
V _{DDE}	V _{DD33}	V _{DD}	Asserted	Hi-Z
V _{DDE}	V _{DD33}	V _{DD}	Negated	Functional

Table 7. Pin Status for Fast Pads During the Power Sequence

Table 8 gives the pin state for the sequence cases for all pins with pad type pad_mh (medium type) and pad_sh (slow type).

Table 8. Pin Status for Medium and Slow Pads During the Power Sequence

V _{DDEH}	V _{DD}	POR	Pin Status for Medium and Slow Pad Output Driver pad_mh (medium) pad_sh (slow)
Low	—	Asserted	Low
V _{DDEH}	Low	Asserted	High impedance (Hi-Z)
V _{DDEH}	V _{DD}	Asserted	Hi-Z
V _{DDEH}	V _{DD}	Negated	Functional

The values in Table 7 and Table 8 do not include the effect of the weak-pull devices on the output pins during power up.

Before exiting the internal POR state, the pins go to a high-impedance state until POR negates. When the internal POR negates, the functional state of the signal during reset applies and the weak-pull devices (up or down) are enabled as defined in the device reference manual. If V_{DD} is too low to correctly propagate the logic signals, the weak-pull devices can pull the signals to V_{DDE} and V_{DDEH} .

To avoid this condition, minimize the ramp time of the V_{DD} supply to a time period less than the time required to enable the external circuitry connected to the device outputs.

During initial power ramp-up, when vstby is 0.6v or above. a typical current of 1-3mA and maximum of 4mA may be seen until V_{DD} is applied. This current will not reoccur until V_{stby} is lowered below V_{stby} min specification.

Figure 2 shows an approximate interpolation of the I_{STBY} worst-case specification to estimate values at different voltages and temperatures. The vertical lines shown at 25 °C, 60 °C, and 150 °C in Figure 2 are the actual I_{DD_STBY} specifications (27d) listed in Table 9

Figure 2. fISTBY Worst-case Specifications

3.8.1 I/O Pad Current Specifications

The power consumption of an I/O segment depends on the usage of the pins on a particular segment. The power consumption is the sum of all output pin currents for a segment. The output pin current can be calculated from Table 10 based on the voltage, frequency, and load on the pin. Use linear scaling to calculate pin currents for voltage, frequency, and load parameters that fall outside the values given in Table 10.

Spec	Pad Type	Symbol	Frequency (MHz)	Load ² (pF)	Voltage (V)	Drive Select / Slew Rate Control Setting	Current (mA)
1			25	50	5.25	11	8.0
2	Clow		10	50	5.25	01	3.2
3	510W	^I DRV_SH	2	50	5.25	00	0.7
4			2	200	5.25	00	2.4
5			50	50	5.25	11	17.3
6	Modium		20	50	5.25	01	6.5
7	weaturn	'DRV_MH	3.33	50	5.25	00	1.1
8			3.33	200	5.25	00	3.9
9			66	10	3.6	00	2.8
10			66	20	3.6	01	5.2
11	-		66	30	3.6	10	8.5
12			66	50	3.6	11	11.0
13			66	10	1.98	00	1.6
14			66	20	1.98	01	2.9
15			66	30	1.98	10	4.2
16			66	50	1.98	11	6.7
17			56	10	3.6	00	2.4
18			56	20	3.6	01	4.4
19			56	30	3.6	10	7.2
20	Fact	I	56	50	3.6	11	9.3
21	1 451	'DRV_FC	56	10	1.98	00	1.3
22			56	20	1.98	01	2.5
23			56	30	1.98	10	3.5
24			56	50	1.98	11	5.7
25			40	10	3.6	00	1.7
26		40	20	3.6	01	3.1	
27		40	30	3.6	10	5.1	
28		40	50	3.6	11	6.6	
29			40	10	1.98	00	1.0
30			40	20	1.98	01	1.8
31			40	30	1.98	10	2.5
32			40	50	1.98	11	4.0

Table 10. I/O Pad Average DC Current $(T_A = T_L \text{ to } T_H)^1$

¹ These values are estimates from simulation and are not tested. Currents apply to output pins only.

² All loads are lumped.

Table 12. FMPLL Electrical Specifications (continued)

Spec	Characteristic	Symbol	Minimum	Maximum	Unit
19	CLKOUT period jitter, measured at f _{SYS} max: ^{13, 14} Peak-to-peak jitter (clock edge to clock edge) Long term jitter (averaged over a 2 ms interval)	C _{JITTER}		5.0 0.01	% f _{CLKOUT}
20	Frequency modulation range limit ¹⁵ (do not exceed f _{sys} maximum)	C _{MOD}	0.8	2.4	%f _{SYS}
21	$ \begin{array}{l} \text{ICO frequency} \\ \mathfrak{f}_{ico} = \left[\begin{array}{c} \mathfrak{f}_{ref_crystal} \times (\text{MFD} + 4) \end{array} \right] \div \left(\text{PREDIV} + 1 \right) \\ \mathfrak{f}_{ico} = \left[\begin{array}{c} \mathfrak{f}_{ref_ext} \times (\text{MFD} + 4) \end{array} \right] \div \left(\text{PREDIV} + 1 \right) \end{array} $	f _{ico}	48	80 ¹⁷	MHz
22	Predivider output frequency (to PLL)	f _{PREDIV}	4	20 ¹⁸	MHz

$(V_{DDSYN} = 3.0-3.6 \text{ V}; V_{SS} = V_{SSSYN} = 0.0 \text{ V}; T_A = T_L \text{ to } T_H)$

¹ Nominal crystal and external reference values are worst-case not more than 1%. The device operates correctly if the frequency remains within ± 5% of the specification limit. This tolerance range allows for a slight frequency drift of the crystals over time. The designer must thoroughly understand the drift margin of the source clock.

² All internal registers retain data at 0 Hz.

³ Up to the maximum frequency rating of the device (refer to Table 1).

⁴ Loss of reference frequency is defined as the reference frequency detected internally, which transitions the PLL into self-clocked mode.

⁵ The PLL operates at self-clocked mode (SCM) frequency when the reference frequency falls below f_{LOR}. SCM frequency is measured on the CLKOUT ball with the divider set to divide-by-two of the system clock. NOTE: In SCM, the MFD and PREDIV have no effect and the RFD is bypassed.

⁶ Use the EXTAL input high voltage parameter when using the FlexCAN oscillator in crystal mode (no quartz crystals or resonators). (V_{extal} – V_{xtal}) must be ≥ 400 mV for the oscillator's comparator to produce the output clock.

⁷ Use the EXTAL input low voltage parameter when using the FlexCAN oscillator in crystal mode (no quartz crystals or resonators). (V_{xtal} – V_{extal}) must be ≥ 400 mV for the oscillator's comparator to produce the output clock.

⁸ I_{xtal} is the oscillator bias current out of the XTAL pin with both EXTAL and XTAL pins grounded.

⁹ C_{PCB EXTAL} and C_{PCB XTAL} are the measured PCB stray capacitances on EXTAL and XTAL, respectively.

¹⁰ This specification applies to the period required for the PLL to relock after changing the MFD frequency control bits in the synthesizer control register (SYNCR). From power up with crystal oscillator reference, the lock time also includes the crystal startup time.

¹¹ PLL is operating in 1:1 PLL mode.

 12 V_{DDE} = 3.0–3.6 V.

¹³ Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum f_{sys}. Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise injected into the PLL circuitry via V_{DDSYN} and V_{SSSYN} and variation in crystal oscillator frequency increase the jitter percentage for a given interval. CLKOUT divider is set to divide-by-two.

¹⁴ Values are with frequency modulation disabled. If frequency modulation is enabled, jitter is the sum of (jitter + Cmod).

 15 Modulation depth selected must not result in f_{svs} value greater than the f_{sys} maximum specified value.

¹⁶ $f_{SVS} = f_{ICO} \div (2^{RFD}).$

¹⁷ The ICO frequency can be higher than the maximum allowable system frequency. For this case, set the FMPLL synthesizer control register reduced frequency divider (FMPLL_SYNCR[RFD]) to divide-by-two (RFD = 0b001). Therefore, for a 40 MHz maximum device (system frequency), program the FMPLL to generate 80 MHz at the ICO output and then divide-by-two the RFD to provide the 40 MHz clock.

¹⁸ Maximum value for dual controller (1:1) mode is (f_{MAX} ÷ 2) with the predivider set to 1 (FMPLL_SYNCR[PREDIV] = 0b001).

3.10 eQADC Electrical Characteristics

Spec	Characteristic	Symbol	Minimum	Maximum	Unit
1	ADC clock (ADCLK) frequency ¹	F _{ADCLK}	1	12	MHz
2	Conversion cycles Differential Single ended	CC	13 + 2 (15) 14 + 2 (16)	13 + 128 (141) 14 + 128 (142)	ADCLK cycles
3	Stop mode recovery time ²	T _{SR}	10	—	μS
4	Resolution ³	—	1.25	—	mV
5	INL: 6 MHz ADC clock	INL6	-4	4	Counts ³
6	INL: 12 MHz ADC clock	INL12	-8	8	Counts
7	DNL: 6 MHz ADC clock	DNL6	-3 ⁴	3 ⁴	Counts
8	DNL: 12 MHz ADC clock	DNL12	-6 ⁴	6 ⁴	Counts
9	Offset error with calibration	OFFWC	-4 ⁵	4 ⁵	Counts
10	Full-scale gain error with calibration	GAINWC	-8 ⁶	8 ⁶	Counts
11	Disruptive input injection current ^{7, 8, 9, 10}	I _{INJ}	-1	1	mA
12	Incremental error due to injection current. All channels are 10 k Ω < Rs <100 k Ω Channel under test has Rs = 10 k Ω , $I_{INJ} = I_{INJMAX}$, I_{INJMIN}	E _{INJ}	-4	4	Counts
13	Total unadjusted error (TUE) for single ended conversions with calibration ^{11, 12, 13, 14, 15}	TUE	-4	4	Counts

Table 13. eQADC Conversion Specifications ($T_A = T_L$ to T_H)

Conversion characteristics vary with F_{ADCLK} rate. Reduced conversion accuracy occurs at maximum F_{ADCLK} rate. The maximum value is based on 800 KS/s and the minimum value is based on 20 MHz oscillator clock frequency divided by a maximum 16 factor.

- ² Stop mode recovery time begins when the ADC control register enable bits are set until the ADC is ready to perform conversions.
- 3 At V_{RH} V_{RL} = 5.12 V, one least significant bit (LSB) = 1.25, mV = one count.
- ⁴ Guaranteed 10-bit mono tonicity.
- ⁵ The absolute value of the offset error without calibration \leq 100 counts.
- ⁶ The absolute value of the full scale gain error without calibration \leq 120 counts.
- ⁷ Below disruptive current conditions, the channel being stressed has conversion values of: 0x3FF for analog inputs greater than V_{RH} , and 0x000 for values less than V_{RL} . This assumes that $V_{RH} \le V_{DDA}$ and $V_{RL} \ge V_{SSA}$ due to the presence of the sample amplifier. Other channels are not affected by non-disruptive conditions.
- ⁸ Exceeding the limit can cause a conversion error on both stressed and unstressed channels. Transitions within the limit do not affect device reliability or cause permanent damage.
- ⁹ Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values using $V_{POSCLAMP} = V_{DDA} + 0.5$ V and $V_{NEGCLAMP} = -0.3$ V, then use the larger of the calculated values.
- ¹⁰ This condition applies to two adjacent pads on the internal pad.
- ¹¹ The TUE specification is always less than the sum of the INL, DNL, offset, and gain errors due to canceling errors.
- ¹² TUE does not apply to differential conversions.
- ¹³ Measured at 6 MHz ADC clock. TUE with a 12 MHz ADC clock is: -16 counts < TUE < 16 counts.
- ¹⁴ TUE includes all internal device errors such as internal reference variation (75% Ref, 25% Ref).
- ¹⁵ Depending on the input impedance, the analog input leakage current (Table 9. DC Electrical Specifications, spec 35a) can affect the actual TUE measured on analog channels AN[12], AN[13], AN[14], AN[15].

Spec	Pad	SRC / DSC (binary)	Out Delay ^{2, 3, 4} (ns)	Rise / Fall ^{4, 5} (ns)	Load Drive (pF)
			16	8	50
			43	30	200
2	Medium biab voltage (MH)	01	34	15	50
2	Neulum nigh voltage (IVIH)	01	61	35	200
		00	192	100	50
			239	125	200
	Fast	00		2.7	10
2		01	3.1	2.5	20
5	rasi	10		2.4	30
		11		2.3	50
4	Pullup/down (3.6 V max)	—	_	7500	50
5	Pullup/down (5.5 V max)	_	_	9000	50

Table 17. Pad AC Specifications ((V _{DDEH} = 5.0 V, V _{DDE} = 1.8 V)	¹ (continued)
-----------------------------------	---	--------------------------

¹ These are worst-case values that are estimated from simulation (not tested). The values in the table are simulated at:

 V_{DD} = 1.35–1.65 V; V_{DDE} = 1.62–1.98 V; V_{DDEH} = 4.5–5.25 V; V_{DD33} and V_{DDSYN} = 3.0–3.6 V; and T_A = T_L to T_H .

² This parameter is supplied for reference and is guaranteed by design (not tested).

³ The output delay is shown in Figure 4. To calculate the output delay with respect to the system clock, add a maximum of one system clock to the output delay.

 $^4\,$ The output delay and rise and fall are measured to 20% or 80% of the respective signal.

⁵ This parameter is guaranteed by characterization rather than 100% tested.

Table 18. Derated Pad AC Specifications ($V_{DDEH} = 3.3 V$, $V_{DDE} = 3.3 V$)	cifications ($V_{DDEH} = 3.3 \text{ V}, V_{DDE} = 3.3 \text{ V}$) ¹
--	--

Spec	Pad	SRC/DSC (binary)	Out Delay ^{2, 3, 4} (ns)	Rise / Fall ^{3, 5} (ns)	Load Drive (pF)
		11	39	23	50
1			120	87	200
	Slow high voltage (SH)	01	101	52	50
	Slow high voltage (SH)	01	188	111	200
		00	507	248	50
			597	312	200
		11	23	12	50
			64	44	200
2		01	50	22	50
2	Medium nigh voltage (Min)	01	90	50	200
		00	261	123	50
		00	305	156	200

Spec	Characteristic	Symbol	Min.	Max.	Unit
3	PLLCFG, BOOTCFG, WKPCFG, RSTCFG setup time to RSTOUT valid	t _{RCSU}	10		t _{CYC}
4	PLLCFG, BOOTCFG, WKPCFG, RSTCFG hold time from RSTOUT valid	t _{RCH}	0		t _{CYC}

Table 19. Reset and	Configuration Pin	Timing	¹ (continued)
---------------------	--------------------------	--------	--------------------------

¹ Reset timing specified at: $V_{DDEH} = 3.0-5.25$ V and $T_A = T_L$ to T_H .

Figure 5. Reset and Configuration Pin Timing

3.13.2 IEEE 1149.1 Interface Timing

Table 20. JTAG Pin AC Electrical Characteristics ¹

Spec	Characteristic	Symbol	Min.	Max.	Unit
1	TCK cycle time	tJCYC	100	_	ns
2	TCK clock pulse width (measured at $V_{DDE} \div 2$)	t _{JDC}	40	60	ns
3	TCK rise and fall times (40% to 70%)	t _{TCKRISE}	_	3	ns
4	TMS, TDI data setup time	t _{TMSS,} t _{TDIS}	5	-	ns
5	TMS, TDI data hold time	t _{TMSH} , t _{TDIH}	25		ns
6	TCK low to TDO data valid	t _{TDOV}	_	20	ns
7	TCK low to TDO data invalid	t _{TDOI}	0	-	ns
8	TCK low to TDO high impedance	t _{TDOHZ}		20	ns
9	JCOMP assertion time	t _{JCMPPW}	100		ns
10	JCOMP setup time to TCK low	t _{JCMPS}	40	-	ns
11	TCK falling-edge to output valid	t _{BSDV}	_	50	ns

Electrical Characteristics

Figure 9. JTAG Boundary Scan Timing

3.13.4 External Bus Interface (EBI) Timing

Table 22 lists the timing information for the external bus interface (EBI).

	Characteristic		External Bus Frequency ³								
Spec	spec and Syr		20 MHz		33 MHz		40 MHz		Unit	Notes	
	Description		Min.	Max	Min.	Max	Min.	Max	-		
1	CLKOUT period	т _с	24.4	_	17.5	_	14.9	_	ns	Signals are measured at 50% V _{DDE} .	
2	CLKOUT duty cycle	t _{CDC}	45%	55%	45%	55%	45%	55%	Т _С		
3	CLKOUT rise time	t _{CRT}	—	4	_	—	_	4	ns		
4	CLKOUT fall time	t _{CFT}	_	_4	_	_4	_	_4	ns		
5 ⁵	CLKOUT positive edge to output signal <i>invalid</i> or Hi-Z (hold time) External bus interface CS[0:3] ADDR[8:31] DATA[0:15] RD WR	t _{СОН}	1.0 ⁶ 1.5	_	1.0 ⁶ 1.5	_	1.0 ⁶ 1.5	_	ns	EBTS = 0 EBTS = 1 Hold time selectable via SIU_ECCR [EBTS] bit.	
	BDIP WE/BE[0:1] OE TS TA										
5	Calibration bus interface CAL_CS[0, 2:3] CAL_ADDR[10:30] CAL_DATA[0:15] CAL_RD_WR CAL_RD_WR CAL_WE[0:1] CAL_OE CAL_TS	tссон	1.0 ⁶ 1.5	_	1.0 ⁶ 1.5	_	1.0 ⁶ 1.5	_	ns	EBTS = 0 EBTS = 1 Hold time selectable via SIU_ECCR [EBTS] bit.	
6 ⁵	CLKOUT positive edge to output signal <i>valid</i> (output delay) External bus interface CS[0:3] ADDR[8:31] DATA[0:15] RD_WR BDIP WE/BE[0:1] OE TS TA	t _{COV}		10.0 ⁶ 11.0		10.0 ⁶ 11.0		10.0 ⁶ 11.0	ns	EBTS = 0 EBTS = 1 Output valid time selectable via SIU_ECCR [EBTS] bit.	

Table 22. External Bus Operation Timing^{1, 2}

- ³ Speed is the nominal maximum frequency. Max speed is the maximum speed allowed including frequency modulation (FM). 42 MHz parts allow for 40 MHz system clock + 2% FM; 68 MHz parts allow for a 66 MHz system clock + 2% FM, and 82 MHz parts allow for 80 MHz system clock + 2% FM.
- ⁴ Refer to fast pad timing in Table 17 and Table 18 (different values for 1.8 V and 3.3 V).
- ⁵ Available on the 324 package only; not available on the 208 package.
- ⁶ EBTS = 0 timings are tested and valid at V_{DDE} = 2.25–3.6 V only; EBTS = 1 timings are tested and valid at V_{DDE} = 1.6–3.6 V.

Figure 12. CLKOUT Timing

Figure 13. Synchronous Output Timing

NOTES:					
1. ALL DIMENSIONS IN MILLIMETERS.					
2. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.					
3. MAXIMUM SOLDER BALL DIAMETER MEASURED PARALLEL TO DATUM A.					
4. DATUM A, THE SEATING PLANE, IS DETERMIN SOLDER BALLS.	NED BY THE SPI	HERICAL CROWNS OF	THE		
5. PARALLELISM MEASUREMENT SHALL EXCLUDE OF PACKAGE.	E ANY EFFECT (OF MARK ON TOP SUR	FACE		
© FREESCALE SEMICONDUCTOR, INC.	L OUTLINE	PRINT VERSION NO	T TO SCALE		
TITLE: PBGA, 324 1/0.	DOCUMENT NO	: 98ASS23840W	REV: D		
23 X 23 PKG,	CASE NUMBER	: 1158–03	26 APR 2006		
1 MM PITCH (OMPAC)	STANDARD: JEDEC MS-034 AAJ-1				

Figure 31. MPC5534 324 TEPBGA Package (continued)

MPC5534 Microcontroller Data Sheet, Rev. 6

Table 28. Text Changes Between Rev. 4.0 and 5.0 (continued)

Location	Description of Changes		
Section 3.7, "Power-Up/Down Sequencing			
	Last paragraph: Changed the first sentence FROM the voltage on the pins goes to high-impedance until TO the pins go to a high-impedance state until		

5.3 Changes Between Revisions 3.0 and 4.0

The following table lists the substantive text changes made to paragraphs.

Table 29. Text Changes Between Rev. 3.0 and 4.0

Location	Description of Changes
Title Page:	
	Changed the Revision number from 3.0 to 4.0. Changed the date format to DD MMM YYYY. Made the same changes in the lower left corner of the back page.
Section 1, '	Overview":
	Added the sentence directly preceding Table 1: 'Unless noted in this data sheet, all specifications apply from T_L to T_H .'
Sections 3.	7.1, 3.7.2 and 3.7.3: Reordered sections resulting in the following order and section renumbering:
	 Section 3.7.1, "Input Value of Pins During POR Dependent on VDD33," then Section 3.7.2, "Power-Up Sequence (VRC33 Grounded)," then Section 3.7.3, "Power-Down Sequence (VRC33 Grounded).
Section 3.7	.1, "Input Value of Pins During POR Dependent on VDD33:"
	Added the following text directly before this section and after Table 8 <i>Pin Status for Medium and Slow Pads During the Power-on Sequence</i> : 'The values in Table 7 and Table 8 do not include the effect of the weak pull devices on the output pins during power up.
	Before exiting the internal POR state, the voltage on the pins goes to high-impedance until POR negates. When the internal POR negates, the functional state of the signal during reset applies and the weak pull devices (up or down) are enabled as defined in the device <i>Reference Manual</i> . If V_{DD} is too low to correctly propagate the logic signals, the weak-pull devices can pull the signals to V_{DDE} and V_{DDEH} .
	To avoid this condition, minimize the ramp time of the V _{DD} supply to a time period less than the time required to enable the external circuitry connected to the device outputs.
Section 3.7	.3, "Power-Down Sequence (VRC33 Grounded)" Deleted the underscore in ORed_POR to become ORed POR.

The following table describes the changes made to information in tables and figures, and is presented in sequential page number order.

Location	Description of Changes				
Figure 1, M	igure 1, MPC5500 Family Part Numbers:				
	 Removed the 2 in the tape and reel designator in both the graphic and in the Tape and Reel Status text. Changed Qualification Status by adding ', general market flow' to the M designator, and added an 'S' designator with the description of 'Fully spec. qualified, automotive flow. 				
Table 1, Or	derable Part Numbers:				
	 Footnote 1 added that reads: All devices are PPC5534, rather than MPC5534 or SPC5534, until product qualifications are complete. Not all configurations are available in the PPC parts. Reordered rows to group devices by lead-free package types in descending frequency order, and leaded package types. Footnote 2 added that reads:' The lowest ambient operating temperature is referenced by T_L; the highest ambient operating temperature is referenced by T_H.' Footnote 3 added that reads: 'Speed is the nominal maximum frequency. Max speed is the maximum speed allowed including frequency modulation (FM). 42 MHz parts allow for 40 MHz system clock + 2% FM; 68 MHz parts allow for 66 MHz system clock + 2% FM, and 82 MHz parts allow for 80 MHz system clock + 2% FM.' 				
Table 2, Ab	solute Maximum Ratings:				
	 Deleted Spec 3, "Flash core voltage." Spec 12 "DC Input Voltage": Deleted from second line'except for eTPUB[15] and SINB (DSPI_B_SIN)' leaving V_{DDEH} powered I/O pads. Deleted third line 'V_{DDEH} powered by I/O pads (eTPUB[15] and SINB), including the min. and max values of -0.3 and 6.5 respectively, and deleted old footnote 7. Spec 12 "DC Input Voltage": Added footnote 8 to second line "V_{DDE} powered I/O pads" that reads: 'Internal structures hold the input voltage less than the maximum voltage on all pads powered by the V_{DDE} supplies, if the maximum injection current specification is met (s mA for all pins) and V_{DDE} is within the operating voltage specifications. Spec 14, column 2, changed: 'V_{SS} differential voltage' to 'V_{SS} to V_{SSA} differential voltage'. Spec 15, column 2, changed: 'V_{DD} differential voltage' to 'V_{DD} to V_{DDA} differential voltage.' Spec 12, Added the name of the spec, 'V_{RC33} to V_{DDSYN} differential voltage,' as well as the name and cross reference to Table 9, <i>DC Electrical Specifications</i>, to which the Spec was moved. Spec 28 "Maximum Solder Temperature": Added two lines: Lead free (PbFree) and Leaded (SnPb) with maximum values of 260 C and 245 C respectively. Footnote 1, added: 'any of' between 'beyond' and 'the listed maxima.' Deleted footnote 2: 'Absolute maximum voltages are currently maximum burn-in voltages. Absolute maximum specifications for device stress have not yet been determined.'Spec 26 "Maximum Operating Temperature Range": replaced -40 C with. Footnote 6 (now footnote 5): Changed the end of the last sentence as follows; "Internal structures hold the input voltage greater than -1.0 V if the injection current limit of 2 mA is met. Keep the negative DC voltage greater than -0.6 V on eTPU[15] and on SINB during the internal power-on reset (POR) state." 				
Table 3, MF	C5534 Thermal Characteristics:				
	Changed for production purposes, footnote 1 from: Junction temperature is a function of on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other <i>components on the board</i> , and board thermal resistance. to:				
	temperature, ambient temperature, air flow, power dissipation of other <i>board components</i> , and board thermal				

Table 30. Table and Figure Changes Between Rev. 3.0 and 4.0

resistance.

Table 30. Table and Figure Changes Between Rev. 3.0 and 4.0 (continued)

Location	Description of Changes
Table 12, FI	MPLL Electrical Characteristics:
	 Spec 1, footnote 1 in column 2: '<i>PLL reference frequency range</i>': Added that reads 'Nominal crystal and external reference values are worst-case not more than 1%. The device operates correctly if the frequency remains within ± 5% of the specification limit. This tolerance range allows for a slight frequency drift of the crystals over time. The designer must thoroughly understand the drift margin of the source clock.' Spec 1, footnote 2 in column 1: Changed to: 'The 8–20 MHz crystal or external reference values have PLLCFG[2] pulled low' and applies to spec 1, column 2, crystal reference and external reference. Spec 21, column 2: Changed f_{ref_crystal} to f_{ref} in ICO frequency equation, and added the same equation but substituted f_{ref_ext} for f_{ref} for the external reference clock, giving: f_{ico} = [f_{ref_crystal} × (MFD + 4)] ÷ (PREDIV + 1) f_{ico} = [f_{ref_ext} × (MFD + 4)] ÷ (PREDIV + 1) Spec 21: Changed column 5 from 'f_{SYS}' MHz' to: 'f_{MAX}'. Spec 22: Changed column 4, <i>Max Value</i> from f_{MAX} to 20, and added footnote 17 to read, 'Maximum value for dual controller (1:1) mode is (f_{MAX} ÷ 2) and the predivider set to 1 (FMPLL_SYNCR[PREDIV] = 0b001).'
Table 13, e0	QADC Conversion Specifications: Changed '(Operating)' to ' $(T_A = T_L - T_H)$ ' to the table title.
Table 14, Fl	ash Program and Erase Specifications:
	 Added (T_A = T_L - T_H) to the table title. Spec 8, 128 KB block pre-program and erase time, Max column value from 15,000 to 7,500. Moved footnote 1 from the table title to directly after the 'Typical' in the column 5 header. Footnote 2: Changed from: 'Initial factory condition: ≤ 100 program/erase cycles, 25 °C, typical supply voltage, 80 MHz minimum system frequency.' To: 'Initial factory condition: ≤ 100 program/erase cycles, 25 °C, using a typical supply voltage measured at a minimum system frequency of 80 MHz.'
Table 15, Fl	ash EEPROM Module Life:
	 Replaced (Full Temperature Range) with (T_A = T_L - T_H) in the table title. Spec 1b, Min. column value changed from 10,000 to 1,000.
Table 16, F	Lash BIU Settings vs. Frequency of Operations:
	 'Added footnote 1 to the end of the table title, The footnote reads: 'Illegal combinations exist. Use entries from the same row in this table.' Moved footnote 2:' For maximum flash performance, set to 0b11' to the 'DPFEN' column header. Deleted the x-refs in the 'DPFEN' column for the rows. Created a x-ref for footnote 2 and inserted in the 'IPFEN' column header. Deleted the x-refs in the 'IPFEN' column for the rows. Added to the PFLIM binary values a leading 0 so that 0bxx became 0b0xx. Moved footnote 3:' For maximum flash performance, set to 0b110' to the 'PFLIM' column header. Deleted the x-refs in the 'PFLIM' column for the rows. Moved footnote 4:' For maximum flash performance, set to 0b1' to the 'BFEN' column header. Deleted the x-refs in the 'BFEN' column for the rows. Moved footnote 4:' For maximum flash performance, set to 0b1' to the 'BFEN' column header. Deleted the x-refs in the 'BFEN' column for the rows. Added footnote 4, 6, 7, and 8: footnote 4 27 MHz parts allow for 25 MHz system clock + 2% frequency modulation (FM). footnote 5 52 MHz parts allow for 50 MHz system clock + 2% FM. footnote 6 77 MHz parts allow for 75 MHz system clock + 2% FM.

-- footnote 7 82 MHz parts allow for 80 MHz system clock + 2% FM.

Description of Changes

Table 25, eMIOS Timing:

Location

- Deleted (MTS) from the heading, table, and footnotes.
- Footnote 1: Changed 'V_{DDEH} = 3.0–5.5;' to 'V_{DDEH} = 3.0–5.25;'
- Footnote 1: Deleted ' F_{SYS} = 80 MHz,' ' V_{DD} = 1.35–1.65 V', ' V_{DD33} and V_{DDSYN} = 3.0–3.6 V' and 'and CL = 200 pF with SRC = 0b11.'
- Added Footnote 2: 'This specification does not include the rise and fall times. When calculating the minimum
 eMIOS pulse width, include the rise and fall times defined in the slew rate control fields (SRC) of the pad
 configuration registers (PCR).'

Figure 17, eMIOS Timing: Added figure.

Table 26, DSPI Timing:

- Table Title: Added footnote that reads: Speed is the nominal maximum frequency. Max speed is the maximum speed allowed including frequency modulation (FM). 42 MHz parts allow for 40 MHz system clock + 2% FM; 68 MHz parts allow for 66 MHz system clock + 2% FM, and 82 MHz parts allow for 80 MHz system clock + 2% FM.
- Spec1: SCK Cycle Time: changes to values: 40 MHz, min. = 48.8 ns, max = 5.8 ms; 66 MHz, min. = 28.4 ns, max = 3.5 ms; 80 MHz min. = 24.4 ns, max = 2.9 ms.
- Spec 2: PCS to SCK delay: 40 MHz, min. = 46 ns; 66 MHz, min. = 26 ns; 80 MHz min. = 22 ns.
- Spec 3: After SCK delay: 40 MHz, min. = 45 ns; 66 MHz, min. = 25 ns; 80 MHz min. = 21 ns.
- Spec 9: Data setup time for inputs, Master (MTFE = 1, CPHA = 0): 66 MHz, min. = 6 ns; 80 MHz min. = 8 ns.
- Spec 10: Data hold time for inputs, Master (MTFE = 1, CPHA = 0): 40 MHz, min. = 45 ns; 66 MHz, min. = 25 ns; 80 MHz min. = 21 ns.
- Spec 11: *Data valid (after SCK edge), Master (MTFE = 1, CPHA = 0)*: 40 MHz, max. = 45 ns; 66 MHz, max. = 25 ns; 80 MHz max. = 21 ns.
- Footnote 1: Changed 'V_{DDEH} = 3.0–5.5;' to 'V_{DDEH} = 3.0–5.25;'
- Footnote 1: Added to beginning of footnote 1 'All DSPI timing specifications use the fastest slew rate (SRC = 0b11) on pad type M or MH. DSPI signals using pad types of S or SH have an additional delay based on the slew rate.'
- Footnote 1: Deleted 'V_{DD} = 1.35–1.65 V' and 'V_{DD33} and V_{DDSYN} = 3.0–3.6 V.

Table 27, EQADC SSI Timing Characteristics:

- Footnote 1: Changed 'V_{DDEH} = 3.0–5.5;' to 'V_{DDEH} = 3.0–5.25;'
- Deleted from table title '(Pads at 3.3 V or 5.0 V)'
- Deleted 1st line in table 'CLOAD = 25 pF on all outputs. Pad drive strength set to maximum.'
- Spec 1: FCK frequency -- removed.
- Combined footnotes 1 and 2, and moved the new footnote to Spec 2. Moved old footnote 3 that is now footnote 2 to Spec 2.
- Footnote 1, deleted ' V_{DD} = 1.35–1.65 V' and ' V_{DD33} and V_{DDSYN} = 3.0–3.6V.'
- Changed 'CL = 50 pF' to 'CL = 25 pF.'
- Footnote 2: added 'cycle' after 'duty' to read: FCK duty cycle is not 50% when

Figure 28, MPC5534 208 Package and Figure 29 MPC5534 324 Package: Deleted the version number and date.

Figure 30, MPC5534 208 Package Dimensions and Figure 31 MPC5534 324 Package Dimensions:

Deleted the version number and date.

How to Reach Us:

Home Page: www.freescale.com

Web Support: http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 +1-800-521-6274 or +1-480-768-2130 www.freescale.com/support

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 support.asia@freescale.com

For Literature Requests Only: Freescale Semiconductor Literature Distribution Center 1-800-441-2447 or 303-675-2140 Fax: 303-675-2150 LDCForFreescaleSemiconductor@hibbertgroup.com

Document Number: MPC5534 Rev. 6 4/2012 Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale[™] and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc. 2008-2012. All rights reserved.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free counterparts. For further information, see http://www.freescale.com or contact your Freescale sales representative.

For information on Freescale's Environmental Products program, go to http://www.freescale.com/epp.

