

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	RL78
Core Size	16-Bit
Speed	24MHz
Connectivity	CSI, I²C, UART/USART
Peripherals	LVD, POR, WDT
Number of I/O	13
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	1.5K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 8x10b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	16-SSOP (0.173", 4.40mm Width)
Supplier Device Package	16-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f1054aasp-30

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

• 24-pin plastic HWQFN (4 × 4 mm, 0.5 mm pitch)

- Caution Connect the REGC pin to Vss pin via a capacitor (0.47 to 1 μ F).
- Remark 1. For pin identification, see 1.4 Pin Identification.
- Remark 2. It is recommended to connect an exposed die pad to Vss.
- **Remark 3.** Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register 0 to 3 (PIOR0 to PIOR3).

2.2 Oscillator Characteristics

2.2.1 X1 characteristics

(TA = -40 to +85°C, 1.6 V \leq VDD \leq 5.5 V, Vss = 0 V)

Resonator	Resonator	Conditions	MIN.	TYP.	MAX.	Unit
X1 clock oscillation frequency (fx) Note	Ceramic resonator/	$2.7~V \leq V \text{DD} \leq 5.5~V$	1.0		20.0	MHz
	crystal resonator	$2.4~V \leq V \text{DD} < 2.7~V$	1.0		16.0	
		$1.8 \ V \leq V \text{DD} < 2.4 \ V$	1.0		8.0	
		$1.6~V \leq V \text{DD} < 1.8~V$	1.0		4.0	

Note Indicates only permissible oscillator frequency ranges. Refer to 2.4 AC Characteristics for instruction execution time. Request evaluation by the manufacturer of the oscillator circuit mounted on a board to check the oscillator characteristics.

Caution Since the CPU is started by the high-speed on-chip oscillator clock after a reset release, check the X1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user. Determine the oscillation stabilization time of the OSTC register and the oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.

Remark When using the X1 oscillator, refer to 6.4 System Clock Oscillator in the RL78/G11 User's Manual.

2.2.2 On-chip oscillator characteristics

(TA = -40 to +85°C, 1.6 V \leq VDD \leq 5.5 V, Vss = 0 V)

Oscillators	Parameters		Conditions	MIN.	TYP.	MAX.	Unit
High-speed on-chip oscillator clock frequency Notes 1, 2	fін	$2.7~V \leq V_{DD} \leq$	5.5 V	1		24	MHz
		$2.4~V \leq V_{DD} \leq$	5.5 V	1		16	
		$1.8~V \leq V_{DD} \leq$	5.5 V	1		8	
		$1.6~V \leq V_{DD} \leq$	5.5 V	1		4	
High-speed on-chip oscillator clock frequency accuracy		TA = -20 to	$1.8~V \leq V_{DD} \leq 5.5~V$	-1		1	%
		+85°C	$1.6~V \leq V_{DD} < 1.8~V$	-5		5	
	$T_A = -40$ to	$1.8~V \leq V_{DD} \leq 5.5~V$	-1.5		1.5	%	
		-20°C	$1.6~V \leq V \text{dd} < 1.8~V$	-5.5		5.5	
Middle-speed on-chip oscillator oscillation frequency Note 2	fім			1		4	MHz
Middle-speed on-chip oscillator oscillation frequency accuracy				-12		+12	%
Temperature drift of Middle-speed on-chip oscillator oscillation frequency accuracy	DIMT				0.008		%/°C
Voltage drift of Middle-speed on-chip oscillator oscillation	Ым∨	TA = 25°C	$2.1~V \leq V_{DD} \leq 5.5~V$		0.02		%/V
frequency accuracy			$2.0~V \leq V_{DD} < 2.1~V$		-12		1
			$1.6~V \leq V_{DD} < 2.0~V$		10		
Low-speed on-chip oscillator clock frequency Note 2	fı∟				15		kHz
Low-speed on-chip oscillator clock frequency accuracy				-15		+15	%

Note 1. High-speed on-chip oscillator frequency is selected with bits 0 to 3 of the option byte (000C2H) and bits 0 to 2 of the HOCODIV register.

Note 2. This only indicates the oscillator characteristics. Refer to 2.4 AC Characteristics for instruction execution time.

<R>

(TA = -40 to +85°C, 1.6 V \leq EVDD \leq VDD \leq 5.5 V, Vss = 0 V)

(3/5)

(, ,					1
Items	Symbol	Conditions	3	MIN.	TYP.	MAX.	Unit
Input voltage, high	VIH1	P00, P01, P30 to P33, P40, and P51 to P56	Normal mode	0.8 EVDD		EVdd	V
	VIH2	P00, P30 to P32, P40, P51 to P56	TTL mode $4.0 \text{ V} \le \text{EV}_{\text{DD}} \le 5.5 \text{ V}$	2.2		EVdd	V
			TTL mode 3.3 V ≤ EV _{DD} < 4.0 V	2.0		EVDD	V
			TTL mode 1.6 V ≤ EV _{DD} < 3.3 V	1.5		EVDD	V
	VIH3	P20 to P23 (digital input)		0.7 Vdd		Vdd	V
	VIH4	P121, P122, P125, P137, EXCL	0.8 Vdd		Vdd	V	
Input voltage, low	VIL1	P00, P01, P30 to P33, P40, and Normal mode P51 to P56		0		0.2 EVDD	V
	VIL2	P00, P30 to P32, P40, P51 to P56	TTL mode $4.0 \text{ V} \le \text{EV}_{\text{DD}} \le 5.5 \text{ V}$	0		0.8	V
			TTL mode 3.3 V ≤ EV _{DD} < 4.0 V	0		0.5	V
			TTL mode 1.6 V ≤ EV _{DD} < 3.3 V	0		0.32	V
	Vінз	P20 to P23 (digital input)		0		0.3 Vdd	V
	VIH4	P121, P122, P125, P137, EXCL	K, RESET	0		0.2 Vdd	V

Caution The maximum value of VIH of pins P00, P01, P20, P30 to P33, P40 and P51 to P56 is VDD or EVDD, even in the N-ch open-drain mode.

(P20: VDD

P00, P01, P30 to P33, P40, P51 to P56: EVDD)

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

2.5 Peripheral Functions Characteristics

AC Timing Test Points

Vін/Vон VIH/VOH Test points ~ VIL/VOL VIL/VOL -

RL78/G11

(5) During communication at same potential (simplified I²C mode)

Parameter	Symbol	Conditions	HS (high-s Mo	peed main) ode	LS (low-sp Mo	oeed main) ode	LP (Lov main)	v-power mode	LV (low- main)	-voltage Mode	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCLr clock frequency	fscL	$\label{eq:VDD} \begin{array}{l} 2.7 \mbox{ V} \leq EV_{DD} \leq 5.5 \mbox{ V}, \\ C_b = 50 \mbox{ pF, } R_b = 2.7 \mbox{ k}\Omega \end{array}$		1000 Note 1		400 Note 1		250 Note 1		400 Note 1	kHz
		$\label{eq:linear} \begin{array}{l} 1.8 \mbox{ V} \leq EV_{DD} \leq 5.5 \mbox{ V}, \\ C_b = 100 \mbox{ pF}, \mbox{ R}_b = 3 k\Omega \end{array}$		400 Note 1							
		$\label{eq:VDD} \begin{array}{l} 1.8 \mbox{ V} \leq EV_{DD} < 2.7 \mbox{ V}, \\ C_b = 100 \mbox{ pF}, \mbox{ R}_b = 5 \mbox{ k}\Omega \end{array}$		300 Note 1		300 Note 1		250 Note 1		300 Note 1	
		$\label{eq:VDD} \begin{array}{l} 1.7 \mbox{ V} \leq EV_{DD} < 1.8 \mbox{ V}, \\ C_b = 100 \mbox{ pF}, \mbox{ R}_b = 5 \mbox{ k}\Omega \end{array}$		250 Note 1		250 Note 1		250 Note 1		250 Note 1	
		$\label{eq:constraint} \begin{array}{l} 1.6 \mbox{ V} \leq EV_{DD} < 1.8 \mbox{ V}, \\ C_b = 100 \mbox{ pF}, \mbox{ R}_b = 5 \mbox{ k}\Omega \end{array}$		—							
Hold time when SCLr = "L"	tLOW	$\label{eq:constraint} \begin{array}{l} 2.7 \mbox{ V} \leq EV_{DD} \leq 5.5 \mbox{ V}, \\ C_b = 50 \mbox{ pF}, \mbox{ R}_b = 2.7 \mbox{ k}\Omega \end{array}$	475		1150		1150		1150		ns
		$\label{eq:linear} \begin{array}{l} 1.8 \mbox{ V} \leq EV_{DD} \leq 5.5 \mbox{ V}, \\ C_b = 100 \mbox{ pF}, \mbox{ R}_b = 3 k\Omega \end{array}$	1150								
		$\label{eq:VDD} \begin{array}{l} 1.8 \mbox{ V} \leq EV_{\mbox{DD}} < 2.7 \mbox{ V}, \\ C_b = 100 \mbox{ pF}, \mbox{ R}_b = 5 \mbox{ k}\Omega \end{array}$	1550		1550		1550		1550		
		$\label{eq:VDD} \begin{array}{l} 1.7 \mbox{ V} \leq EV_{DD} < 1.8 \mbox{ V}, \\ C_b = 100 \mbox{ pF}, \mbox{ R}_b = 5 \mbox{ k}\Omega \end{array}$	1850		1850		1850		1850		
		$\label{eq:VDD} \begin{array}{l} 1.6 \mbox{ V} \leq EV_{\mbox{DD}} < 1.8 \mbox{ V}, \\ C_b = 100 \mbox{ pF}, \mbox{ R}_b = 5 \mbox{ k}\Omega \end{array}$	—								
Hold time when SCLr = "H"	tнigн	$\label{eq:VDD} \begin{array}{l} 2.7 \ V \leq EV_{\text{DD}} \leq 5.5 \ V, \\ C_b = 50 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	475		1150		1150		1150		ns
		$\label{eq:VDD} \begin{array}{l} 1.8 \mbox{ V} \leq EV_{\mbox{DD}} \leq 5.5 \mbox{ V}, \\ C_b = 100 \mbox{ pF}, \mbox{ R}_b = 3 k\Omega \end{array}$	1150								
		$\label{eq:VDD} \begin{array}{l} 1.8 \mbox{ V} \leq EV_{\mbox{DD}} < 2.7 \mbox{ V}, \\ C_{\mbox{b}} = 100 \mbox{ pF}, \mbox{ R}_{\mbox{b}} = 5 k\Omega \end{array}$	1550		1550		1550		1550		
		$\label{eq:VDD} \begin{array}{l} 1.7 \mbox{ V} \leq EV_{DD} < 1.8 \mbox{ V}, \\ C_b = 100 \mbox{ pF}, \mbox{ R}_b = 5 \mbox{ k}\Omega \end{array}$	1850		1850		1850		1850		
		$\label{eq:VDD} \begin{array}{l} 1.6 \mbox{ V} \leq EV_{\mbox{DD}} < 1.8 \mbox{ V}, \\ C_{\mbox{b}} = 100 \mbox{ pF}, \mbox{ R}_{\mbox{b}} = 5 k\Omega \end{array}$	-								
Data setup time (reception)	tsu: dat	$\label{eq:states} \begin{array}{l} 2.7 \ V \leq EV_{\text{DD}} \leq 5.5 \ V, \\ C_b = 50 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	1/fмск + 85 Note 2		1/fмск + 145 Note 2		1/fмск + 145 Note 2		1/fмск + 145 Note 2		ns
		$\label{eq:VDD} \begin{array}{l} 1.8 \mbox{ V} \leq EV_{DD} \leq 5.5 \mbox{ V}, \\ C_b = 100 \mbox{ pF}, \mbox{ R}_b = 3 \mbox{ k}\Omega \end{array}$	1/fмск + 145 Note 2								
		$\label{eq:Viscous} \begin{array}{l} 1.8 \ V \leq EV_{DD} < 2.7 \ V, \\ C_b = 100 \ pF, \ R_b = 5 \ k\Omega \end{array}$	1/fмск + 230 Note 2		1/fмск + 230 Note 2		1/fмск + 230 Note 2		1/fмск + 230 Note 2		
		$\label{eq:VDD} \begin{array}{l} 1.7 \ V \leq EV_{DD} < 1.8 \ V, \\ C_b = 100 \ pF, \ R_b = 5 \ k\Omega \end{array}$	1/fмск + 290 Note 2		1/fмск + 290 Note 2		1/fмск + 290 Note 2		1/fмск + 290 Note 2		
		$\label{eq:linear} \begin{array}{l} 1.6 \mbox{ V} \leq EV_{DD} < 1.8 \mbox{ V}, \\ C_b = 100 \mbox{ pF}, \mbox{ R}_b = 5 \mbox{ k}\Omega \end{array}$	-		_						
Data hold time (transmission)	thd: dat	$2.7 \text{ V} \leq \text{EV}_{\text{DD}} \leq 5.5 \text{ V},$ $C_b = 50 \text{ pF}, \text{ R}_b = 2.7 \text{ k}\Omega$	0	305	0	305	0	305	0	305	ns
		$\label{eq:VDD} \begin{array}{l} 1.8 \mbox{ V} \leq EV_{DD} \leq 5.5 \mbox{ V}, \\ C_b \mbox{ = 100 pF, } R_b \mbox{ = 3 } k\Omega \end{array}$		355		355		355		355	
		$\label{eq:VDD} \begin{array}{l} 1.8 \mbox{ V} \leq EV_{DD} < 2.7 \mbox{ V}, \\ C_b = 100 \mbox{ pF}, \mbox{ R}_b = 5 \mbox{ k}\Omega \end{array}$		405		405		405		405	
		$\begin{array}{l} 1.7 \ V \leq EV_{DD} < 1.8 \ V, \\ C_b = 100 \ pF, \ R_b = 5 \ k\Omega \end{array}$									
		$1.6 \text{ V} \leq \text{EV}_{\text{DD}} < 1.8 \text{ V},$ $C_b = 100 \text{ pF}, \text{ R}_b = 5 \text{ k}\Omega$	-	—							

(TA = -40 to +85°C, 1.6 V \leq EVDD = VDD \leq 5.5 V, Vss = 0 V)

RL78/G11

Note 6. The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate. Expression for calculating the transfer rate when 1.8 V \leq EVDD < 3.3 V and 1.6 V \leq Vb \leq 2.0 V

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{1.5}{V_b})\} \times 3}$$
 [bps]
Baud rate error (theoretical value) =
$$\frac{\frac{1}{|Transfer rate \times 2|} - \{-C_b \times R_b \times \ln (1 - \frac{1.5}{V_b})\}}{(\frac{1}{|Transfer rate}) \times \text{Number of transferred bits}} \times 100 [\%]$$

* This value is the theoretical value of the relative difference between the transmission and reception sides

- **Note 7.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 6 above to calculate the maximum transfer rate under conditions of the customer.
- Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (EVDD tolerance) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

- Note 1. Transfer rate in the SNOOZE mode: MAX. 1 Mbps
- Note 2. Use it with $EVDD \ge Vb$.
- Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 4. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Caution Select the TTL input buffer for the SIp pin and SCKp pin and the N-ch open drain output (EVDD tolerance) mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

CSI mode connection diagram (during communication at different potential)

- **Remark 1.** Rb[Ω]: Communication line (SOp) pull-up resistance, Cb[F]: Communication line (SOp) load capacitance, Vb[V]: Communication line voltage
- Remark 2. p: CSI number (p = 00 to 03), m: Unit number (m = 0), n: Channel number (n = 0 to 3), g: PIM and POM numbers (g = 0, 2, 3 to 5 and 12)
- Remark 3. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03))

Remark The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

Standard mode: Cb = 400 pF, Rb = 2.7 k Ω

2.6.2 Temperature sensor characteristics/internal reference voltage characteristic

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Temperature sensor output voltage	VTMPS25	Setting ADS register = 80H, T _A = +25°C		1.05		V
Internal reference voltage	Vbgr	Setting ADS register = 81H	1.38	1.45	1.5	V
Temperature coefficient	FVTMPS	Temperature sensor that depends on the temperature		-3.6		mV/°C
Operation stabilization wait time	tamp	$2.4~V \leq V \text{DD} \leq 5.5~V$	5			μs
		$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 2.4 \text{ V}$	10			μs

(TA = -40 to +85°C, 1.8 V \leq VDD \leq 5.5 V, Vss = 0 V)

2.6.3 D/A converter characteristics

(TA = -40 to +85°C, 1.6 V \leq EVss \leq VDD \leq 5.5 V, Vss = 0 V)

Parameter	Symbol	Cor	MIN.	TYP.	MAX.	Unit	
Resolution	RES					8	bit
Overall error	AINL	Rload = 4 M Ω	$1.8~V \leq V \text{dd} \leq 5.5~V$			±2.5	LSB
		Rload = 8 M Ω	$1.8~V \leq V \text{dd} \leq 5.5~V$			±2.5	LSB
Settling time	tset	Cload = 20 pF	$2.7~V \leq V_{DD} \leq 5.5~V$			3	μs
			$1.6~V \leq V_{DD} < 2.7~V$			6	μs

2.6.7 LVD circuit characteristics

(1) LVD Detection Voltage of Reset Mode and Interrupt Mode

F	Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	Supply voltage level	VLVD0	Power supply rise time	3.98	4.06	4.14	V
			Power supply fall time	3.90	3.98	4.06	V
		VLVD1	Power supply rise time	3.68	3.75	3.82	V
			Power supply fall time	3.60	3.67	3.74	V
		VLVD2	Power supply rise time	3.07	3.13	3.19	V
			Power supply fall time	3.00	3.06	3.12	V
		VLVD3	Power supply rise time	2.96	3.02	3.08	V
			Power supply fall time	2.90	2.96	3.02	V
		VLVD4	Power supply rise time	2.86	2.92	2.97	V
			Power supply fall time	2.80	2.86	2.91	V
		VLVD5	Power supply rise time	2.76	2.81	2.87	V
			Power supply fall time	2.70	2.75	2.81	V
		VLVD6	Power supply rise time	2.66	2.71	2.76	V
			Power supply fall time	2.60	2.65	2.70	V
		VLVD7	Power supply rise time	2.56	2.61	2.66	V
			Power supply fall time	2.50	2.55	2.60	V
		VLVD8	Power supply rise time	2.45	2.50	2.55	V
			Power supply fall time	2.40	2.45	2.50	V
		VLVD9	Power supply rise time	2.05	2.09	2.13	V
			Power supply fall time	2.00	2.04	2.08	V
		VLVD10	Power supply rise time	1.94	1.98	2.02	V
			Power supply fall time	1.90	1.94	1.98	V
		VLVD11	Power supply rise time	1.84	1.88	1.91	V
			Power supply fall time	1.80	1.84	1.87	V
		VLVD12	Power supply rise time	1.74	1.77	1.81	V
			Power supply fall time	1.70	1.73	1.77	V
		VLVD13	Power supply rise time	1.64	1.67	1.70	V
			Power supply fall time	1.60	1.63	1.66	V
Minimum pulse widt	Minimum pulse width			300			μs
Detection delay time	Detection delay time					300	μs

(TA = -40 to +85°C, VPDR \leq EVDD \leq VDD \leq 5.5 V, VSS = 0 V)

(1/5)

<R>

3.3 DC Characteristics

3.3.1 Pin characteristics

(TA = -40 to +105°C, 2.4 V \leq EVDD = VDD \leq 5.5 V, Vss = 0 V)

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, high Note 1	Іон1	Per pin for P00, P01, P30 to P33, P40, and P51 to P56				-3.0 Note 2	mA
		Total of P00, P01, and P40	$4.0~V \leq EV_{DD} \leq 5.5~V$			-12.5	mA
		(When duty \leq 70% ^{Note 3})	$2.7~V \leq EV_{DD} < 4.0~V$			-10.0	mA
			$2.4~\text{V} \leq \text{EV}_{\text{DD}} < 2.7~\text{V}$			-5.0	mA
		Total of P30 to P33, and P51 to P56	$4.0~V \leq EV_{DD} \leq 5.5~V$			-30.0	mA
		(When duty \leq 70% ^{Note 3})	$2.7~V \leq EV_{DD} < 4.0~V$			-19.0	mA
			$2.4~V \leq EVDD < 2.7~V$			-10.0	mA
		Total of all pins (When duty \leq 70% ^{Note 3})				-42.5	mA
	Іон2	Per pin for P20 to P23				-0.1 Note 2	mA
		Total of all pins (When duty \leq 70% ^{Note 3})	$2.4 \text{ V} \leq \text{VDD} \leq 5.5 \text{ V}$			-0.4	mA

Note 1. Value of current at which the device operation is guaranteed even if the current flows from the VDD pin to an output pin.

Note 2. Do not exceed the total current value.

Note 3. Specification under conditions where the duty factor \leq 70%.

The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).

• Total output current of pins = (IOH × 0.7)/(n × 0.01)

<Example> Where n = 80% and IoH = -10.0 mA Total output current of pins = (-10.0 × 0.7)/(80 × 0.01) \approx -8.7 mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

Caution P00, P01, P20, P30 to P33, P40 and P51 to P56 do not output high level in N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

3.3.2 Supply current characteristics

TA - 40 to	±105°C			$V_{CC} = 0.1/1$
1A = -40 10	T105 C,	$2.4 \mathbf{V} \leq \mathbf{EVDD}$	≤ VUU ≤ 5.5 V	, vss – u vj

Parameter	Symbol				Conditions			MIN.	TYP.	MAX.	Unit
Supply current	IDD1	Operating	Basic	HS (high-speed main)	fHOCO = 48 MHzNote 3	V _{DD} = 5.0 V			1.7		mA
Note 1		mode	operation	mode	fin = 24 MHz Note 3	V _{DD} = 3.0 V			1.7		
					fHOCO = 24 MHzNote 3	V _{DD} = 5.0 V			1.4		
					fin = 24 MHz Note 3	V _{DD} = 3.0 V			1.4		
			Normal	HS (high-speed main)	fHOCO = 48 MHzNote 3	V _{DD} = 5.0 V			3.5	7.3	mA
			operation	mode	fin = 24 MHz Note 3	V _{DD} = 3.0 V			3.5	7.3	
					fHOCO = 24 MHzNote 3	V _{DD} = 5.0 V	= 5.0 V		3.2	6.7	
					fin = 24 MHz Note 3	V _{DD} = 3.0 V			3.2	6.7	
					fHOCO = 16 MHzNote 3	V _{DD} = 5.0 V			2.4	4.9	
					fin = 16 MHz Note 3	V _{DD} = 3.0 V	: 3.0 V		2.4	4.9	
			Normal	HS (high-speed main)	f _{MX} = 20 MHz Note 2	V _{DD} = 5.0 V	Square wave input		2.7	5.7	mA
			operation	mode		Resonato V _{DD} = 3.0 V Square w	Resonator connection		2.8	5.8	5.8 5.7 5.8 3.4
							Square wave input		2.7	5.7	
							Resonator connection		2.8	5.8	
					f _{MX} = 10 MHz Note 2	V _{DD} = 5.0 V	Square wave input		1.8	3.4	
							Resonator connection		1.9	3.5	
						V _{DD} = 3.0 V	Square wave input		1.8	3.4	
							Resonator connection		1.9	3.5	
			Normal operation	Subsystem clock operation	fiL = 15 kHz, TA = - 40°C Note 4				1.8	5.9	μA
					fıL = 15 kHz, TA = +25°C Note 4				1.9	5.9	
					fı∟ = 15 kHz, T₄ = +85°C ^{Note 4}				2.3	8.7	
					fı∟ = 15 kHz, T _A = +105°C ^{Note 4}				3.0	20.9	

Note 1. Total current flowing into VDD and EVDD, including the input leakage current flowing when the level of the input pin is fixed to VDD or Vss. The MAX values include the peripheral operating current. However, these values do not include the current flowing into the A/D converter, comparator, Programmable gain amplifier, LVD circuit, I/O ports, and on-chip pull-up/pull-down resistors, and the current flowing during data flash rewrite.

Remark 4. fiL: Low-speed on-chip oscillator clock frequency

```
Remark 5. fsub: Subsystem clock frequency (Low-speed on-chip oscillator clock frequency)
```

Remark 6. Except subsystem clock operation, temperature condition of the TYP. value is TA = 25°C

(1/3)

Note 2. When the high-speed on-chip oscillator clock, middle-speed on-chip oscillator clock and low-speed on-chip oscillator clock are stopped.

Note 3. When the high-speed system clock, middle-speed on-chip oscillator clock and low-speed on-chip oscillator clock are stopped.

Note 4. When the high-speed system clock, high-speed on-chip oscillator clock and middle-speed on-chip oscillator clock are stopped.

Remark 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)

Remark 2. fill: High-speed on-chip oscillator clock frequency (24 MHz max.)

Remark 3. fim: Middle-speed on-chip oscillator clock frequency (4 MHz max.)

AC Timing Test Points

External System Clock Timing

TI/TO Timing

3.5.1 Serial array unit

(1) during communication at same potential (UART mode) When P01, P30, P31 and P54 are used as TxDq pin

(TA = -40 to +105°C, 2.4 V \leq EVDD \leq VDD \leq 5.5 V, Vss = 0 V)

Parameter	Symbol	Conditions	HS (high-sp	eed main) Mode	Unit
r arameter Symbol		Conditions	MIN.	MAX.	Onit
Transfer rate		Theoretical value of the maximum transfer		fMCK/12Notes 1, 2	bps
		rate fмск = fclк = 24 MHz		2.0	Mbps

Note 1. Transfer rate in the SNOOZE mode is 4800 bps only.

Note 2. The maximum operating frequencies of the CPU/peripheral hardware clock (fcLK) are: HS (high-speed main) mode: $2.4 \text{ V} \le \text{EV}\text{DD} \le 2.7 \text{ V}$: MAX. 1.3 Mbps

Caution Select the normal input buffer for the RxDq pin and the normal output mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg).

When P20 is used as TxD1 pin

(TA = -40 to +105°C, 2.4 V \leq EVDD \leq VDD \leq 5.5 V, Vss = 0 V)

Paramotor	Symbol	Conditions	HS (high-spee	Linit	
Falanetei	Symbol	Conditions	MIN.	MAX.	Offic
Transfer rate		$4.0~V \leq V \text{dd} \leq 5.5~V$		fмск/16 ^{Note}	bps
		Theoretical value of the maximum transfer rate fMCK = fCLK = 24 MHz		1.5	Mbps
		$2.7 \text{ V} \leq \text{V}\text{dd} \leq 5.5 \text{ V}$		fмск/20 ^{Note}	bps
		Theoretical value of the maximum transfer rate fмск = fcLк = 24 MHz		1.2	Mbps
		$2.4 \text{ V} \leq \text{V}\text{DD} \leq 5.5 \text{ V}$		fмск/16 ^{Note}	bps
		Theoretical value of the maximum transfer rate fмcκ = fcLκ = 16 MHz		1.0	Mbps

<R>

Note

Transfer rate in the SNOOZE mode is 4800 bps only. When fHOCO = 48 MHz, SNOOZE mode is not supported.

Note 6. The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate. Expression for calculating the transfer rate when $2.4 \text{ V} \le \text{EV}\text{DD} < 3.3 \text{ V}$ and $1.6 \text{ V} \le \text{V}\text{b} \le 2.0 \text{ V}$

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{1.5}{V_b})\} \times 3}$$
 [bps]
Baud rate error (theoretical value) =
$$\frac{\frac{1}{Transfer rate \times 2} - \{-C_b \times R_b \times \ln (1 - \frac{1.5}{V_b})\}}{(\frac{1}{Transfer rate}) \times 100 [\%]}$$

* This value is the theoretical value of the relative difference between the transmission and reception sides

- **Note 7.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 6 above to calculate the maximum transfer rate under conditions of the customer.
- Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (EVDD tolerance) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

CSI mode connection diagram (during communication at different potential)

Remark 1. Rb[Ω]: Communication line (SCKp, SOp) pull-up resistance, Cb[F]: Communication line (SCKp, SOp) load capacitance, Vb[V]: Communication line voltage

Remark 2. p: CSI number (p = 00, 01, 10 and 11), m: Unit number (m = 0), n: Channel number (n = 0 to 3), g: PIM and POM numbers (g = 0, 2, 3 to 5 and 12)

Remark 3. fmck: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,

n: Channel number (mn = 00 to 03))

(7) Communication at different potential (1.8 V, 2.5 V, 3.0 V) (CSI mode) (slave mode, SCKp... external clock input)

(TA = -40 to +105°C, 2.4 V \leq EVDD \leq VDD \leq 5.5 V, Vss = 0 V)

Decomptor	Symbol	Conditions		HS (high-speed main) Mode		Linit
Parameter	Symbol	Con	Conditions		MAX.	Unit
SCKp cycle time Note 1	tксү2	$\begin{array}{l} 4.0 \ V \leq EV_{DD} \leq 5.5 \ V, \\ 2.7 \ V \leq V_b \leq 4.0 \ V \end{array}$	$20 \text{ MHz} < \text{fmck} \le 24 \text{ MHz}$	24/fмск		ns
			$8 \text{ MHz} < \text{fmck} \le 20 \text{ MHz}$	20/fмск		ns
			$4 \text{ MHz} < \text{fmck} \le 8 \text{ MHz}$	16/fмск		ns
			fмск ≤ 4 MHz	12/fмск		ns
		$2.7 \text{ V} \leq EV\text{dd} < 4.0 \text{ V},$	$20 \text{ MHz} < f_{MCK} \le 24 \text{ MHz}$	32/fмск		ns
		$2.3~V \leq V_b \leq 2.7~V$	$16 \text{ MHz} < f_{MCK} \le 20 \text{ MHz}$	28/fмск		ns
			$8 \text{ MHz} < f_{MCK} \le 16 \text{ MHz}$	24/fмск		ns
			$4 \text{ MHz} < \text{fmck} \le 8 \text{ MHz}$	16/fмск		ns
			fмск ≤ 4 MHz	12/fмск		ns
		$\begin{array}{l} 2.4 \ V \leq EV_{DD} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V \ Note \ 2 \end{array}$	20 MHz < fmck \leq 24 MHz	72/fмск		ns
			$16 \text{ MHz} < f_{MCK} \le 20 \text{ MHz}$	64/fмск		ns
			$8 \text{ MHz} < f_{MCK} \le 16 \text{ MHz}$	52/fмск		ns
			$4 \text{ MHz} < \text{fmck} \le 8 \text{ MHz}$	32/fмск		ns
			fмск ≤ 4 MHz	20/fмск		ns
SCKp high-/low-level width	tĸн₂, tĸ∟₂	$4.0~V \leq EV_{\text{DD}} \leq 5.5~V,~2.7$	$V \le V_b \le 4.0 V$	tксү2/2 - 24		ns
		$2.7 \; V \leq EV_{DD} < 4.0 \; V, \; 2.3 \; V \leq V_b \leq 2.7 \; V$		tксү2/2 - 36		ns
		$2.4 \text{ V} \le \text{EV}_{\text{DD}} < 3.3 \text{ V}, 1.6$	$V \leq V_b \leq 2.0 \ V \ \text{Note 2}$	tксү2/2 - 100		ns
SIp setup time (to SCKp↑) ^{Note 3}	tsıĸ2	$2.7~V \leq EV_{DD} \leq 5.5~V,~2.3$	$V \leq V_b \leq 4.0 \ V$	1/fмск + 40		ns
		$2.4~\text{V} \leq \text{EV}_{\text{DD}}$ < 3.3 V, 1.6 V $\leq \text{V}_{b} \leq 2.0~\text{V}$ Note 2		1/fмск + 60		ns
SIp hold time (from SCKp↑) Note 4	tĸsı2			1/fмск + 62		ns
Delay time from SCKp↓ to SOp output ^{Note 5}	tĸso2	$\begin{array}{l} 4.0 \mbox{ V} \leq \mbox{EV}_{\mbox{DD}} \leq 5.5 \mbox{ V}, 2.7 \\ C_b = 30 \mbox{ pF}, \mbox{ R}_b = 1.4 \mbox{ k}\Omega \end{array}$	$V \leq V_b \leq 4.0 \ V$		2/fмск + 240	ns
		$\begin{array}{l} 2.7 \ \text{V} \leq \text{EV}_{\text{DD}} < 4.0 \ \text{V}, \ 2.3 \\ \text{C}_{b} = 30 \ \text{pF}, \ \text{R}_{b} = 2.7 \ \text{k}\Omega \end{array}$	$V \leq V_b \leq 2.7 \ V$		2/fмск + 428	ns
		$\begin{array}{l} 2.4 \; V \leq {\sf EV}_{\sf DD} < 3.3 \; V, \; 1.6 \\ {\sf C}_{\sf b} = 30 \; p{\sf F}, \; {\sf R}_{\sf b} = 5.5 \; {\sf k}\Omega \end{array}$	$V \leq V_b \leq 2.0 \ V \ \text{Note 2}$		2/fмск + 1146	ns

(Notes, Caution and Remarks are listed on the next page.)

CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

Remark p: CSI number (p = 00, 01, 10 and 11), m: Unit number (m = 0), n: Channel number (n = 0 to 3), g: PIM and POM numbers (g = 0, 2, 3 to 5 and 12)

3.6.7 LVD circuit characteristics

(1) LVD Detection Voltage of Reset Mode and Interrupt Mode

Parameter		Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage Supply voltage level		VLVD0	Power supply rise time	3.90	4.06	4.22	V
			Power supply fall time	3.83	3.98	4.13	V
		VLVD1	Power supply rise time	3.60	3.75	3.90	V
			Power supply fall time	3.53	3.67	3.81	V
		Vlvd2	Power supply rise time	3.01	3.13	3.25	V
			Power supply fall time	2.94	3.06	3.18	V
		Vlvd3	Power supply rise time	2.90	3.02	3.14	V
			Power supply fall time	2.85	2.96	3.07	V
		VLVD4	Power supply rise time	2.81	2.92	3.03	V
			Power supply fall time	2.75	2.86	2.97	V
		Vlvd5	Power supply rise time	2.71	2.81	2.92	V
			Power supply fall time	2.64	2.75	2.86	V
		Vlvd6	Power supply rise time	2.61	2.71	2.81	V
			Power supply fall time	2.55	2.65	2.75	V
		Vlvd7	Power supply rise time	2.51	2.61	2.71	V
			Power supply fall time	2.45	2.55	2.65	V
Minimum pulse width		tLW		300			μs
Detection delay time						300	μs

(TA = -40 to +105°C, VPDR \leq EVDD = VDD \leq .5.5 V, Vss = 0 V)

(2) LVD Detection Voltage of Interrupt & Reset Mode

(TA = -40 to +105°C, VPDR \leq EVDD \leq VDD \leq 5.5 V, Vss = 0 V)

Parameter	Symbol	Conditions			MIN.	TYP.	MAX.	Unit
Interrupt and	VLVDD0	VPOC0,	POC0, VPOC1, VPOC2 = 0, 1, 1, falling reset voltage			2.75	2.86	V
reset mode	VLVDD1		LVIS0, LVIS1 = 1, 0 Rising release reset voltage		2.81	2.92	3.03	V
				Falling interrupt voltage	2.75	2.86	2.97	V
	VLVDD2		LVIS0, LVIS1 = 0, 1	Rising release reset voltage	2.90	3.02	3.14	V
				Falling interrupt voltage	2.85	2.96	3.07	V
	Vlvdd3		LVIS0, LVIS1 = 0, 0	Rising release reset voltage	3.90	4.06	4.22	V
				Falling interrupt voltage	3.83	3.98	4.13	V

3.6.8 Power supply voltage rising slope characteristics

(TA = -40 to +105°C, Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Power supply voltage rising slope	SVDD				54	V/ms

Caution Make sure to keep the internal reset state by the LVD circuit or an external reset until VDD reaches the operating voltage range shown in 3.4 AC Characteristics.

4.5 25-pin products

R5F1058AGLA, R5F1058AALA

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-WFLGA25-3x3-0.50	PWLG0025KA-A	P25FC-50-2N2-2	0.01

© 2012 Renesas Electronics Corporation. All rights reserved.

