

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

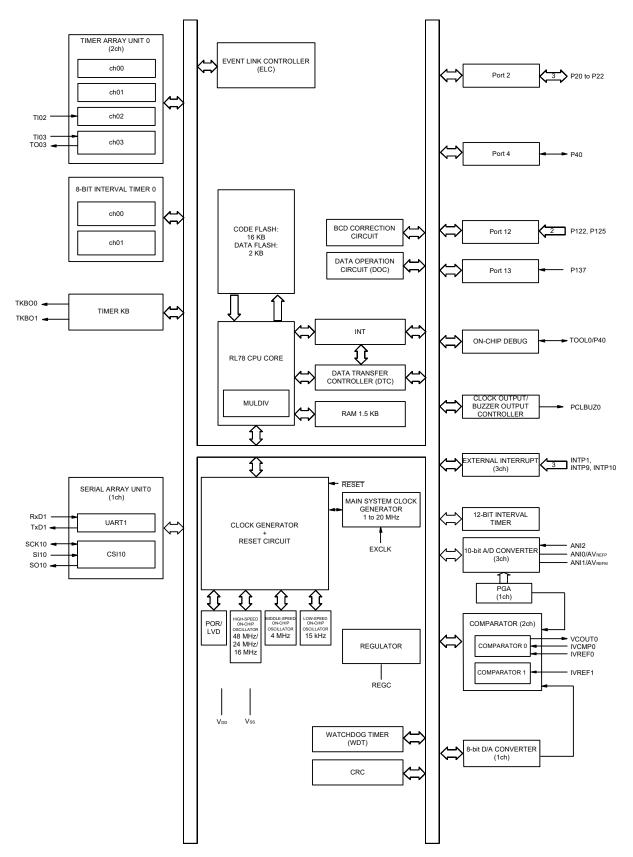
Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	RL78
Core Size	16-Bit
Speed	24MHz
Connectivity	CSI, I ² C, UART/USART
Peripherals	LVD, POR, WDT
Number of I/O	17
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	1.5K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 10x10b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-LSSOP (0.173", 4.40mm Width)
Supplier Device Package	20-LSSOP
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f1056aasp-50

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong


1.4 Pin Identification

ANI0 to ANI3,	: Analog input	PCLBUZ0, PCLBUZ1	: Programmable clock output/buzzer
ANI16 to ANI22			output
ANO1	: Analog output	REGC	: Regulator capacitance
AVREFM	: A/D converter reference	RESET	: Reset
	potential (- side) input	RxD0, RxD1	: Receive data
AVREFP	: A/D converter reference	SCK00, SCK01	: Serial clock input/output
	potential (+ side) input	SCK10, SCK11	
EVDD	: Power supply	SCLA0, SCLA1	: Serial clock input/output
EXCLK	: External clock input	SCL00, SCL01	: Serial clock output
	(main system clock)	SCL10, SCL11	
INTP0 to INTP11	: External interrupt input	SDAA0, SDAA1	: Serial data input/output
INTFO	: Interrupt Flag output	SDA00, SDA01	: Serial data input/output
IVCMP0, IVCMP1	: Comparator input	SDA10, SDA11	
IVREF0, IVREF1	: Comparator reference input	SI00, SI01	: Serial data input
KR0 to KR7	: Key return	SI10, SI11	
PGAI, PGAGND	: PGA Input	SO00, SO01	: Serial data output
P00 to P01	: Port 0	SO10, SO11	
P20 to P23	: Port 2	SSI00	: Serial interface chip select input
P30 to P33	: Port 3	TI00 to TI03	: Timer input
P40	: Port 4	TKBO0, TKBO1	: TMKB output
P51 to P56	: Port 5	TO00 to TO03	: Timer output
P121, P122, P125	: Port 12	TOOL0	: Data input/output for tool
P137	: Port 13	TOOLRXD, TOOLTXD	: Data input/output for external device
		TxD0, TxD1	: Transmit data
		VCOUT0, VCOUT1	: Comparator output
		Vdd	: Power supply
		Vss	: Ground
		X1, X2	: Crystal oscillator (main system clock)

1.5 Block Diagram

1.5.1 10-pin products

<R>

<R>

(2/2)

		10-pin	16-pin	20-pin	24-pin	25-pin					
lte	em	R5F1051A	R5F1054A	R5F1056A	R5F1057A	R5F1058A					
Clock output/ output	/buzzer	 2.44 kHz, 4.88 kHz, 9 (Main system clock: fit 117 Hz, 234 Hz, 469 H 	1 2 2.44 kHz, 4.88 kHz, 9.76 kHz, 1.25 MHz, 2.5 MHz, 5 MHz, 10 MHz (Main system clock: fmain = 20 MHz operation) 117 Hz, 234 Hz, 469 Hz, 938 Hz, 1.875 kHz, 3.75 kHz, 7.5 kHz, 15 kHz (subsystem clock: fiL = 15 kHz operation)								
10-bit	External	3 channels	8 channels	10 channels	11 cha	annels					
resolution A/D converter	Internal	1 channel	e ondimote								
8-bit D/A con	verter	1 channel	1 channel 2 channels								
Comparator (Comparator)	-	1 channel		2 cha	nnels						
PGA		1 channel									
Data Operati (DOC)	on Circuit	Comparison, addition, a	nd subtraction of 16-bit o	lata							
Serial interfa	ce 	[20-pin products] • CSI: 3 channel/UART: [24-pin, 25-pin products	T: 2 channels/simplified l ² C 2 channel/simplified l ² C	: 3 channel							
	I ² C bus	None	1 channel		2 channels						
Data transfer (DTC)	controller	13 sources	22 sources	23 sources	24 so	urces					
Event link co (ELC)	ntroller	Event input: 11 Event trigger output: 3	Event input: 16 Event trigger output: 4	Event input: 17 Event trigger output: 4	·						
Vectored	Internal	20	24		25						
interrupt sources	External	3	9	10	1	3					
Key interrupt		None	3	5	ε	3					
Reset		Reset by RESET pin Internal reset by watch Internal reset by powe Internal reset by voltage Internal reset by illega Internal reset by RAM Internal reset by illega	er-on-reset ge detector Il instruction execution parity error								
Power-on-res	set circuit	1.51 • Power-down-reset: 1.3	± 0.04V (Ta = -40 to +85 ± 0.06V (Ta = +85 to +10 50 ± 0.04 V (Ta = -40 to - 51 ± 0.06V (Ta = +85 to +)5°C) ⊦85°C)							
Voltage	Power on	1.67 V to 4.06 V (14 sta	ges)								
detector	Power down	1.63 V to 3.98 V (14 sta	ges)								
On-chip debu	ug function	Provided (Disable to tra	cing)								
Power supply	y voltage	VDD = 1.6 to 5.5 V									
Operating an temperature	nbient	$T_A = -40 \text{ to } +85^{\circ}\text{C}$ (Cons $T_A = -40 \text{ to } +105^{\circ}\text{C}$ (Ind									

2.2 Oscillator Characteristics

2.2.1 X1 characteristics

(TA = -40 to +85°C, 1.6 V \leq VDD \leq 5.5 V, Vss = 0 V)

Resonator	Resonator	Conditions	MIN.	TYP.	MAX.	Unit
X1 clock oscillation frequency (fx) Note	Ceramic resonator/	$2.7~V \leq V_{DD} \leq 5.5~V$	1.0		20.0	MHz
	crystal resonator	$2.4~V \leq V \text{DD} < 2.7~V$	1.0		16.0	
		$1.8~V \leq V \text{DD} < 2.4~V$	1.0		8.0	
		$1.6~V \leq V \text{DD} < 1.8~V$	1.0		4.0	

Note Indicates only permissible oscillator frequency ranges. Refer to 2.4 AC Characteristics for instruction execution time. Request evaluation by the manufacturer of the oscillator circuit mounted on a board to check the oscillator characteristics.

Caution Since the CPU is started by the high-speed on-chip oscillator clock after a reset release, check the X1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user. Determine the oscillation stabilization time of the OSTC register and the oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.

Remark When using the X1 oscillator, refer to 6.4 System Clock Oscillator in the RL78/G11 User's Manual.

2.2.2 On-chip oscillator characteristics

(TA = -40 to +85°C, 1.6 V \leq VDD \leq 5.5 V, Vss = 0 V)

Oscillators	Parameters	Conditions		MIN.	TYP.	MAX.	Unit
High-speed on-chip oscillator clock frequency Notes 1, 2	fін	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq$	5.5 V	1		24	MHz
		$2.4~V \leq V_{DD} \leq 5.5~V$		1		16	
		$1.8 \text{ V} \leq \text{VDD} \leq$	5.5 V	1		8	
		$1.6 \text{ V} \leq \text{V}_{\text{DD}} \leq$	5.5 V	1		4	
High-speed on-chip oscillator clock frequency accuracy		TA = -20 to	$1.8~V \leq V_{DD} \leq 5.5~V$	-1		1	%
		+85°C	$1.6 \ V \leq V \text{DD} < 1.8 \ V$	-5		5	1
		TA = -40 to	$1.8~V \leq V_{DD} \leq 5.5~V$	-1.5		1.5	%
		-20°C	$1.6~V \leq V \text{DD} < 1.8~V$	-5.5		5.5	
Middle-speed on-chip oscillator oscillation frequency Note 2	fıм			1		4	MHz
Middle-speed on-chip oscillator oscillation frequency accuracy				-12		+12	%
Temperature drift of Middle-speed on-chip oscillator oscillation frequency accuracy	DIMT				0.008		%/°C
Voltage drift of Middle-speed on-chip oscillator oscillation	Dimv	TA = 25°C	$2.1~V \leq V_{DD} \leq 5.5~V$		0.02		%/V
frequency accuracy			$2.0~V \leq V_{DD} < 2.1~V$		-12		
			$1.6~V \leq V_{DD} < 2.0~V$		10		
Low-speed on-chip oscillator clock frequency Note 2	fı∟		1		15		kHz
Low-speed on-chip oscillator clock frequency accuracy				-15	1	+15	%

Note 1. High-speed on-chip oscillator frequency is selected with bits 0 to 3 of the option byte (000C2H) and bits 0 to 2 of the HOCODIV register.

Note 2. This only indicates the oscillator characteristics. Refer to 2.4 AC Characteristics for instruction execution time.

(TA = -40 to +85°C, 1.6 V \leq EVDD \leq VDD \leq 5.5 V, Vss = 0 V)						(4/4)	
Parameter	Symbol		Conditions MIN. TYP.				
Supply current	IDD3	STOP mode	TA = -40°C		0.19	0.51	μA
Note 1	Note 2 Note 3	TA = +25°C		0.25	0.51		
			TA = +50°C		0.28	1.10	
			T _A = +70°C		0.38	1.90	
			TA = +85°C		0.60	3.30	

= -40 to $+85^{\circ}$ C 1 6 V < EV DD < V DD < 5 5 V V SS = 0 V)

Note 1. Total current flowing into VDD and EVDD, including the input leakage current flowing when the level of the input pin is fixed to VDD or Vss. The MAX values include the peripheral operating current. However, these values do not include the current flowing into the A/D converter, comparator, Programmable gain amplifier, LVD circuit, I/O ports, and on-chip pullup/pull-down resistors, and the current flowing during data flash rewrite.

Note 2. The values do not include the current flowing into the 12-bit interval timer and watchdog timer.

Note 3. For the setting of the current values when operating the subsystem clock in STOP mode, see the current values when operating the subsystem clock in HALT mode.

(2) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output, corresponding CSI00 only)

Parameter	Symbol	Conditions	HS (high-speed main) Mode		LS (low-speed main) Mode		LP (Low-power main) mode		LV (low-voltage main) Mode		Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	1
SCKp cycle time	tксү1	$t_{KCY1} \geq 2/f_{CLK}$	83.3		250		2000		500		ns
SCKp high-/low-level width	tĸ∟1	$\begin{array}{l} 4.0 \ V \leq EV \text{DD} \\ \leq 5.5 \ V \end{array}$	tксү1/2 - 7		tксү1/2 - 50		tксү1/2 - 50		tксү1/2 - 50		ns
		$\begin{array}{l} 2.7 \ \text{V} \leq \text{EVDD} \\ \leq 5.5 \ \text{V} \end{array}$	tксү1/2 - 10								ns
SIp setup time (to SCKp↑) Note 1	tsıĸ1	$\begin{array}{l} 4.0 \ V \leq EV \text{DD} \\ \leq 5.5 \ V \end{array}$	23		110		110		110		ns
		$\begin{array}{l} 2.7 \ \text{V} \leq \text{EVDD} \\ \leq 5.5 \ \text{V} \end{array}$	33								ns
SIp hold time (from SCKp↑) Note 2	tksi1		10		10		10		10		ns
Delay time from SCKp↓ to SOp output ^{Note 3}	tkso1	C = 20 pF Note 4		10		20		20		20	ns

(TA = -40 to +85°C, 2.7 V \leq EVDD \leq VDD \leq 5.5 V, Vss = 0 V)

Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 4. C is the load capacitance of the SCKp and SOp output lines.

Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remark 1. p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0), g: PIM and POM numbers (g = 5)

Remark 2. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00))

(1/2)

(8) Communication at different potential (1.8 V, 2.5 V, 3.0 V) (CSI mode) (master mode, SCKp... internal clock output)

Parameter	Sym bol	Conditions			HS (high-speed main) Mode		LS (low-speed main) Mode		v-power mode	LV (low-voltage main) Mode		Unit
	DOI			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tксү1	tkcy1 ≥ 4/fclk		300		1150		1150		1150		ns
			$\begin{array}{l} 2.7 \ V \leq EV_{DD} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	500								ns
			$\label{eq:VD} \begin{split} & 1.8 \ V \leq EV_{DD} < 3.3 \ V, \\ & 1.6 \ V \leq V_b \leq 2.0 \ V \ ^{Note}, \\ & C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{split}$	1150								ns
SCKp high- level width	, , ,			tксү1/2 - 75		tксү1/2 - 75		tксү1/2 - 75		tксү1/2 - 75		ns
		$\begin{array}{l} 2.7 \ V \leq E V_{DD} < \\ C_b = 30 \ pF, \ R_b \end{array}$	 4.0 V, 2.3 V ≤ V_b ≤ 2.7 V, = 2.7 kΩ 	tксү1/2 - 170		tксү1/2 - 170		tксү1/2 - 170		tксү1/2 - 170		ns
	1.8 V \leq EV _{DD} < 3.3 V, 1.6 V \leq V _b \leq 2.0 Note, C _b = 30 pF, R _b = 5.5 kΩ			tксү1/2 - 458		tксү1/2 - 458		tксү1/2 - 458		tксү1/2 - 458		ns
SCKp low-level width	tĸ∟1	$\begin{array}{l} 4.0 \ V \leq EV_{DD} \leq \\ C_b = 30 \ pF, \ R_b \end{array}$	≤ 5.5 V, 2.7 V \leq Vb ≤ 4.0 V, = 1.4 kΩ	tксү1/2 - 12		tксү1/2 - 50		tксү1/2 - 50		tксү1/2 - 50		ns
		$2.7 \text{ V} \leq EV_{DD} < C_b = 30 \text{ pF, } R_b$	 < 4.0 V, 2.3 V ≤ Vb ≤ 2.7 V, = 2.7 kΩ 	tксү1/2 - 18								
		$\begin{array}{l} 1.8 \ V \leq EV_{DD} < \\ & \\ Note_{,} \\ C_{b} = 30 \ pF, \ R_{b} \end{array}$	 3.3 V, 1.6 V ≤ V_b ≤ 2.0 V = 5.5 kΩ 	tксү1/2 - 50								ns

(TA = -40 to +85°C, 1.8 V \leq EVDD \leq VDD \leq 5.5 V, VSS = 0 V)

Note Use it with $EVDD \ge Vb$.

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (EVDD tolerance) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(**Remarks** are listed on the page after the next page.)

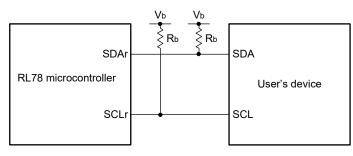
(2/2)

(8) Communication at different potential (1.8 V, 2.5 V, 3.0 V) (CSI mode) (master mode, SCKp... internal clock output)

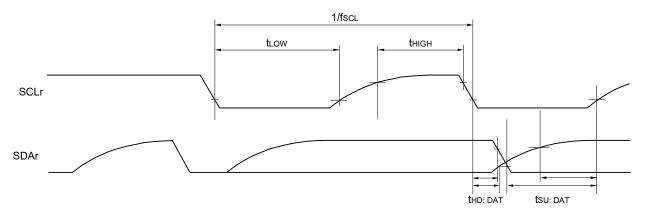
HS (high-speed LS (low-speed LP (Low-power LV (low-voltage Sym Conditions main) Mode main) Mode main) mode main) Mode Parameter Unit bol MAX. MIN MAX. MIN MIN MIN MAX. MAX. 81 479 479 479 SIp setup $4.0~V \leq EV_{DD} \leq 5.5~V,~2.7~V \leq V_b \leq 4.0~V,$ tsik1 ns time C_b = 30 pF, R_b = 1.4 k Ω (to SCKp↑) $2.7~V \leq EV_{DD}$ < 4.0 V, 2.3 V $\leq V_b \leq 2.7$ V, 177 Note 1 $C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$ 1.8 V $\leq EV_{DD}$ < 3.3 V, 1.6 V \leq V_b \leq 2.0 V Note 3, 479 $C_b = 30 \text{ pF}, R_b = 5.5 \text{ k}\Omega$ 19 19 19 Slp hold time $4.0 \text{ V} \le EV_{DD} \le 5.5 \text{ V}, 2.7 \text{ V} \le V_b \le 4.0 \text{ V},$ 19 tksi1 ns (from SCKp↑) $C_b = 30 \text{ pF}, R_b = 1.4 \text{ k}\Omega$ Note 1 $2.7 \text{ V} \leq \text{EV}_{\text{DD}} < 4.0 \text{ V}, 2.3 \text{ V} \leq \text{V}_{b} \leq 2.7 \text{ V}.$ $C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$ $1.8 V < EV_{DD} < 3.3 V. 1.6 V < V_b < 2.0 V Note 3.$ C_b = 30 pF, R_b = 5.5 k Ω Delay time 100 100 tkso1 $4.0 \text{ V} \leq EV_{DD} \leq 5.5 \text{ V}, 2.7 \text{ V} \leq V_b \leq 4.0 \text{ V},$ 100 100 ns from SCKp↓ C_b = 30 pF, R_b = 1.4 k Ω to SOp $2.7 \text{ V} \le EV_{DD} < 4.0 \text{ V}, 2.3 \text{ V} \le V_b \le 2.7 \text{ V},$ 195 195 195 195 ns output Note 1 $C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$ 483 483 483 483 $1.8 \text{ V} \le \text{EV}_{\text{DD}} < 3.3 \text{ V}, 1.6 \text{ V} \le \text{V}_{b} \le 2.0 \text{ V}^{\text{Note 3}},$ ns C_b = 30 pF, R_b = 5.5 k Ω SIp setup $4.0~V \leq EV_{DD} \leq 5.5~V, 2.7~V \leq V_b \leq 4.0~V,$ 44 110 110 110 tsiĸ1 ns time C_b = 30 pF, R_b = 1.4 k Ω (to SCKp↓) $2.7~\text{V} \leq EV_{\text{DD}}$ < 4.0 V, 2.3 V \leq Vb \leq 2.7 V, Note 2 C_b = 30 pF, R_b = 2.7 k Ω $1.8 \text{ V} \le \text{EV}_{\text{DD}}$ < 3.3 V, 1.6 V $\le \text{V}_{\text{b}} \le 2.0 \text{ V}$ Note 3, 110 $C_b = 30 \text{ pF}, R_b = 5.5 \text{ k}\Omega$ Slp hold time tksi1 $4.0~V \leq EV_{DD} \leq 5.5~V,~2.7~V \leq V_b \leq 4.0~V,$ 19 19 19 19 ns (from SCKp↓) C_b = 30 pF, R_b = 1.4 k Ω Note 2 $2.7~V \leq EV_{DD}$ < 4.0 V, 2.3 V $\leq V_b \leq 2.7$ V, $C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$ 1.8 V \leq EVDD < 3.3 V, 1.6 V \leq Vb \leq 2.0 V Note 3, $C_b = 30 \text{ pF}, R_b = 5.5 \text{ k}\Omega$ Delay time 25 25 25 25 $4.0~V \leq EV_{DD} \leq 5.5~V,~2.7~V \leq V_b \leq 4.0~V,$ tks01 ns from SCKp↑ C_b = 30 pF, R_b = 1.4 k Ω to SOp $2.7 \text{ V} \le \text{EV}_{\text{DD}} < 4.0 \text{ V}, 2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V},$ output Note 2 $C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$ 1.8 V \leq EV_{DD} < 3.3 V, 1.6 V \leq V_b \leq 2.0 V Note 3, $C_b = 30 \text{ pF}, R_b = 5.5 \text{ k}\Omega$

Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.

Note 2. When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.


 $\label{eq:Note 3.} \qquad \text{Use it with } EV_{\text{DD}} \geq V_{\text{b}}.$

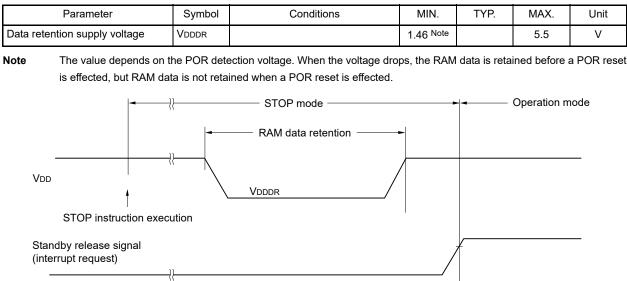
Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (EVDD tolerance) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For ViH and Vi∟, see the DC characteristics with TTL input buffer selected.


(Remarks are listed on the next page.)

- **Note 1.** The value must be equal to or less than fMCK/4.
- Note 2. Use it with $EV_{DD} \ge V_b$.
- Note 3. Set the fMCK value to keep the hold time of SCLr = "L" and SCLr = "H".
- Caution Select the TTL input buffer and the N-ch open drain output (EVDD tolerance) mode for the SDAr pin and the N-ch open drain output (EVDD tolerance) mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

Simplified I²C mode connection diagram (during communication at different potential)

Simplified I²C mode serial transfer timing (during communication at different potential)


- **Remark 1.** Rb[Ω]: Communication line (SDAr, SCLr) pull-up resistance, Cb[F]: Communication line (SDAr, SCLr) load capacitance, Vb[V]: Communication line voltage
- Remark 2. r: IIC number (r = 00, 01, 10 and 11), g: PIM, POM number (g = 0, 3 and 5)
- Remark 3. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0), n: Channel number (n = 0 to 3), mn = 00 to 03)

2.7 RAM Data Retention Characteristics

(TA = -40 to +85°C, 1.8 V \leq EVDD \leq VDD \leq 5.5 V, VSS = 0 V)

2.8 Flash Memory Programming Characteristics

(TA = -40 to +85°C, 1.8 V \leq EVDD \leq VDD \leq 5.5 V, Vss = 0 V)

Parameter	Symbol	Conditi	MIN.	TYP.	MAX.	Unit	
System clock frequency	fclk			1		24	MHz
Number of code flash rewrites Notes 1, 2, 3	Cerwr	Retained for 20 years	TA = 85°C	1,000			Times
Number of data flash rewrites		Retained for 1 year	TA = 25°C		1,000,000		
Notes 1, 2, 3		Retained for 5 years	TA = 85°C	100,000			
		Retained for 20 years	TA = 85°C	10,000			1

Note 1. 1 erase + 1 write after the erase is regarded as 1 rewrite. The retaining years are until next rewrite after the rewrite.

Note 2. When using flash memory programmer and Renesas Electronics self-programming library

Note 3. These are the characteristics of the flash memory and the results obtained from reliability testing by Renesas Electronics Corporation.

(1/5)

<R>

3.3 DC Characteristics

3.3.1 Pin characteristics

(TA = -40 to +105°C, 2.4 V \leq EVDD = VDD \leq 5.5 V, Vss = 0 V)

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, high Note 1	Іон1	Per pin for P00, P01, P30 to P33, P40, and P51 to P56				-3.0 Note 2	mA
		Total of P00, P01, and P40	$4.0~V \le EV_{DD} \le 5.5~V$			-12.5	mA
		(When duty \leq 70% ^{Note 3})	$2.7~V \leq EV_{DD} < 4.0~V$			-10.0	mA
			$2.4~\text{V} \leq \text{EV}_{\text{DD}} < 2.7~\text{V}$			-5.0	mA
		Total of P30 to P33, and P51 to P56	$4.0~V \leq EV\text{DD} \leq 5.5~V$			-30.0	mA
		(When duty $\leq 70\%$ ^{Note 3})	$2.7~V \leq EV_{DD} < 4.0~V$			-19.0	mA
			$2.4~V \leq EV_{DD} < 2.7~V$			-10.0	mA
		Total of all pins (When duty \leq 70% ^{Note 3})				-42.5	mA
	Іон2	Per pin for P20 to P23				-0.1 Note 2	mA
		Total of all pins (When duty \leq 70% ^{Note 3})	$2.4~V \leq V_{DD} \leq 5.5~V$			-0.4	mA

Note 1. Value of current at which the device operation is guaranteed even if the current flows from the VDD pin to an output pin.

Note 2. Do not exceed the total current value.

Note 3. Specification under conditions where the duty factor \leq 70%.

The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).

• Total output current of pins = (IOH × 0.7)/(n × 0.01)

<Example> Where n = 80% and IoH = -10.0 mA Total output current of pins = (-10.0 × 0.7)/(80 × 0.01) \approx -8.7 mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

Caution P00, P01, P20, P30 to P33, P40 and P51 to P56 do not output high level in N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

When P20 is used as SO10 pin

(TA = -40 to +105°C, 2.7 V \leq EVDD \leq VDD \leq 5.5 V, Vss = 0 V)

Parameter	Symbol		Conditions	HS (high-spee	HS (high-speed main) Mode		
Falameter	Symbol		Jonations	MIN.	MAX.	Unit	
SCKp cycle time	tксү1	tkcyı ≥ 4/fclk	$2.7~V \leq V_{DD} \leq 5.5~V$	1000		ns	
			$2.4~V \leq V_{DD} \leq 5.5~V$	1200		ns	
SCKp high-/low-level width	tĸнı, tĸ∟ı	$4.0 \text{ V} \leq \text{V}\text{DD} \leq 5.5 \text{ V}$		tксү1/2 - 24		ns	
		$2.4~V \leq V_{DD} \leq 5.4$	5 V	tксү1/2 - 76		ns	
SIp setup time (to SCKp↑) Note 1	tsiĸ1	$2.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.$	5 V	66		ns	
		$2.4~V \leq V_{DD} \leq 5.4$	5 V	133		ns	
SIp hold time (from SCKp [↑]) Note 2	tksi1			38		ns	
Delay time from SCKp \downarrow to SOp output Note 3	tkso1	C = 30 pF Note 4			180	ns	

Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The Slp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 4. C is the load capacitance of the SCKp and SOp output lines.

Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remark 1. p: CSI number (p = 00, 01, 10 and 11), m: Unit number (m = 0), n: Channel number (n = 0 to 3), g: PIM and POM numbers (g = 0, 2, 3 to 5 and 12)

Remark 2. fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03))

When P20 is used as SO10 pin

(TA = -40 to +105°C, 2.4 V \leq EVDD \leq VDD \leq 5.5 V, Vss = 0 V)

Demonster	O much al	Conditions		HS (high-speed main) Mode		1.1 14
Parameter	Symbol			MIN.	MAX.	Unit
SCKp cycle time Note 4	tксү2	$4.0~V \leq V_{DD} \leq 5.5~V$	fмск > 20 MHz	20/fмск		ns
			fмск \leq 20 MHz	18/fмск		ns
	$2.7~V \leq V_{DD} < 4.0~V$		fмск > 16 MHz	20/fMCK and 1000		ns
			fмск \leq 16 MHz	18/fмск		ns
	$2.4 \text{ V} \leq \text{Vdd} < 2.7 \text{ V}$		18/fмск and 1200		ns	
SCKp high-/low-level width	tkH2, tkL2	$4.0~V \leq V_{DD} \leq 5.5~V$		tксү2/2 - 14		ns
	tĸн₂, tĸ∟₂	$2.7 \text{ V} \leq \text{V}\text{dd} < 4.0 \text{ V}$		tkcy2/2 - 16		ns
		$2.4~V \leq V \text{DD} < 2.7~V$		tkcy2/2 - 36		ns
SIp setup time (to SCKp↑) ^{Note 1}	tsik2	$2.7 V \le V_{DD} \le 5.5 V$ 2.4 V \le V_{DD} < 2.7 V		1/fмск + 40		ns
				1/fмск + 60		ns
SIp hold time (from SCKp↑) Note 1	tksi2			1/fмск + 62		ns
Delay time from SCKp↓ to SOp output ^{Note 2}	tĸso2	C = 30 pF Note 3	$2.7~V \leq V_{DD} \leq 5.5~V$		2/fмск + 190	ns
			$2.4~V \leq V \text{DD} < 2.7~V$		2/fмск + 250	ns

Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The Slp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 3. C is the load capacitance of the SOp output lines.

Note 4. The maximum transfer rate when using the SNOOZE mode is 1 Mbps.

Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

- **Remark 1.** p: CSI number (p = 00, 01, 10 and 11), m: Unit number (m = 0), n: Channel number (n = 0 to 3), g: PIM and POM numbers (g = 0, 2, 3 to 5 and 12)
- Remark 2. fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03))

Note 6. The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate. Expression for calculating the transfer rate when $2.4 \text{ V} \le \text{EV}\text{DD} < 3.3 \text{ V}$ and $1.6 \text{ V} \le \text{V}\text{b} \le 2.0 \text{ V}$

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{1.5}{V_b})\} \times 3}$$
 [bps]
Baud rate error (theoretical value) =
$$\frac{\frac{1}{Transfer rate \times 2} - \{-C_b \times R_b \times \ln (1 - \frac{1.5}{V_b})\}}{(\frac{1}{Transfer rate}) \times 100 [\%]}$$

* This value is the theoretical value of the relative difference between the transmission and reception sides

- **Note 7.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 6 above to calculate the maximum transfer rate under conditions of the customer.
- Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (EVDD tolerance) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(1/2)

(6) Communication at different potential (1.8 V, 2.5 V, 3.0 V) (CSI mode) (master mode, SCKp... internal clock output)

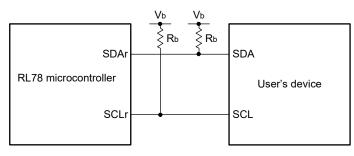
(TA = -40 to +105°C, 2.4 V \leq EVDD \leq VDD \leq 5.5 V, Vss = 0 V)

HS (high-speed main) Mode Symbol Parameter Conditions Unit MIN. MAX. SCKp cycle time tkCY1 tkcy1 ≥ 4/fclk $4.0 \text{ V} \leq EV_{DD} \leq 5.5 \text{ V}, 2.7 \text{ V} \leq V_b \leq 4.0 \text{ V},$ 600 ns $C_b = 30 \text{ pF}, R_b = 1.4 \text{ k}\Omega$ $2.7~\text{V} \leq EV_{\text{DD}} < 4.0~\text{V},~2.3~\text{V} \leq V_{\text{b}} \leq 2.7~\text{V},$ 1000 ns C_b = 30 pF, R_b = 2.7 k Ω 2300 $2.4~V \leq EV_{DD} < 3.3~V,~1.6~V \leq V_b \leq 2.0~V,$ ns C_b = 30 pF, R_b = 5.5 k Ω $4.0 \text{ V} \le \text{EV}_{\text{DD}} \le 5.5 \text{ V}, 2.7 \text{ V} \le \text{V}_{b} \le 4.0 \text{ V},$ SCKp high-level width tkH1 tkcy1/2 - 150 ns $C_b = 30 \text{ pF}, R_b = 1.4 \text{ k}\Omega$ tkcy1/2 - 340 $2.7~V \leq EV_{DD} < 4.0~V,~2.3~V \leq V_b \leq 2.7~V,$ ns C_b = 30 pF, R_b = 2.7 k Ω $2.4~V \leq EV_{DD} < 3.3~V,~1.6~V \leq V_b \leq 2.0~V,$ tkcy1/2 - 916 ns $C_b = 30 \text{ pF}, R_b = 5.5 \text{ k}\Omega$ $4.0 \text{ V} \le EV_{DD} \le 5.5 \text{ V}, 2.7 \text{ V} \le V_b \le 4.0 \text{ V},$ SCKp low-level width tkcy1/2 - 24 tĸ∟1 ns $C_b = 30 \text{ pF}, R_b = 1.4 \text{ k}\Omega$ tkcy1/2 - 36 $2.7~V \leq EV_{DD} < 4.0~V,~2.3~V \leq V_b \leq 2.7~V,$ ns $C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$ $2.4 \text{ V} \le \text{EV}_{\text{DD}} < 3.3 \text{ V}, 1.6 \text{ V} \le \text{V}_{\text{b}} \le 2.0 \text{ V},$ tkcy1/2 - 100 ns $C_b = 30 \text{ pF}, R_b = 5.5 \text{ k}\Omega$

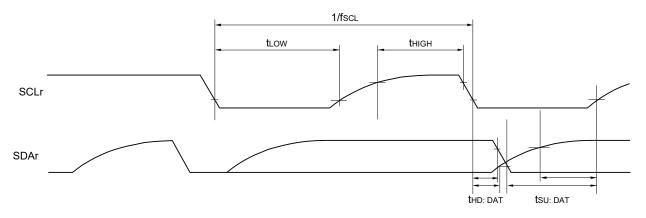
Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (EVDD tolerance) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(**Remarks** are listed on the page after the next page.)

(8) Communication at different potential (1.8 V, 2.5 V, 3.0 V) (simplified I²C mode)


Parameter	Symbol	Conditions	HS (high-speed main) Mode		Unit
	Symbol	Conditions	MIN.	MAX.	Offic
SCLr clock frequency	fscL	$\begin{array}{l} 4.0 \ V \leq EV_{DD} \leq 5.5 \ V, \ 2.7 \ V \leq V_b \leq 4.0 \ V, \\ C_b = 50 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$		400 Note 1	kHz
		$\begin{array}{l} 2.7 \; V \leq EV_{DD} < 4.0 \; V, \; 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b \; = \; 50 \; pF, \; R_b \; = \; 2.7 \; k\Omega \end{array}$		400 Note 1	kHz
		$\begin{array}{l} 4.0 \; V \leq EV_{DD} \leq 5.5 \; V, \; 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 100 \; pF, \; R_b = 2.8 \; k\Omega \end{array}$		100 Note 1	kHz
		$\label{eq:VDD} \begin{array}{l} 2.7 \; V \leq EV_{DD} < 4.0 \; V, \; 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 100 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$		100 Note 1	kHz
		$\label{eq:VD} \begin{array}{l} 2.4 \ V \leq EV_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V \ \mbox{Note 2,} \\ C_b = 100 \ p\mbox{F}, \ R_b = 5.5 \ k\Omega \end{array}$		100 Note 1	kHz
Hold time when SCLr = "L"	tLOW	$\begin{array}{l} 4.0 \; V \leq EV_{DD} \leq 5.5 \; V, \; 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b \; = \; 50 \; pF, \; R_b \; = \; 2.7 \; k\Omega \end{array}$	1200		ns
		$\label{eq:VD} \begin{array}{l} 2.7 \ V \leq EV_{DD} < 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 50 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	1200		ns
		$\begin{array}{l} 4.0 \; V \leq EV_{DD} \leq 5.5 \; V, 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 100 \; pF, \; R_b = 2.8 \; k\Omega \end{array}$	4600		ns
		$\label{eq:VD} \begin{array}{l} 2.7 \; V \leq EV_{DD} < 4.0 \; V, \; 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 100 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	4600		ns
		$\label{eq:VDD} \begin{array}{l} 2.4 \ V \leq EV_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V \ ^{Note \ 2}, \\ C_b = 100 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$	4650		ns
Hold time when SCLr = "H"	tнıgн	$\begin{array}{l} 4.0 \ V \leq EV_{DD} \leq 5.5 \ V, \ 2.7 \ V \leq V_b \leq 4.0 \ V, \\ C_b = 50 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	620		ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD} < 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 50 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	500		ns
		$\begin{array}{l} 4.0 \ V \leq EV_{DD} \leq 5.5 \ V, \ 2.7 \ V \leq V_b \leq 4.0 \ V, \\ C_b = 100 \ pF, \ R_b = 2.8 \ k\Omega \end{array}$	2700		ns
		$\begin{array}{l} 2.7 \; V \leq EV_{DD} < 4.0 \; V, \; 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 100 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	2400		ns
		$\label{eq:VDD} \begin{array}{l} 2.4 \ V \leq EV_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V \ ^{Note \ 2}, \\ C_b = 100 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$	1830		ns
Data setup time (reception)	tsu:dat	$\begin{array}{l} 4.0 \ V \leq EV_{DD} \leq 5.5 \ V, \ 2.7 \ V \leq V_b \leq 4.0 \ V, \\ C_b = 50 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	1/f _{MCK} + 340 Note 3		ns
		$\label{eq:VDD} \begin{array}{l} 2.7 \ V \leq EV_{DD} < 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 50 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	1/f _{MCK} + 340 Note 3		ns
		$\begin{array}{l} 4.0 \ V \leq EV_{DD} \leq 5.5 \ V, \ 2.7 \ V \leq V_b \leq 4.0 \ V, \\ C_b = 100 \ pF, \ R_b = 2.8 \ k\Omega \end{array}$	1/f _{MCK} + 760 Note 3		ns
		$\label{eq:VDD} \begin{array}{l} 2.7 \ V \leq EV_{DD} < 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 100 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	1/f _{MCK} + 760 Note 3		ns
		$\label{eq:VD} \begin{array}{l} 2.4 \ V \leq EV_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V \ \mbox{Note 2}, \\ C_b = 100 \ pF, \ R_b = 5.5 \ \mbox{k}\Omega \end{array}$	1/f _{MCK} + 570 Note 3		ns
Data hold time (transmission)	thd:dat	$\begin{array}{l} 4.0 \; V \leq EV_{DD} \leq 5.5 \; V, 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	0	770	ns
		$\begin{array}{l} 2.7 \; V \leq EV_{DD} < 4.0 \; V, 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	0	770	ns
		$\begin{array}{l} 4.0 \ V \leq EV_{DD} \leq 5.5 \ V, \ 2.7 \ V \leq V_b \leq 4.0 \ V, \\ C_b = 100 \ pF, \ R_b = 2.8 \ k\Omega \end{array}$	0	1420	ns
		$\label{eq:VD} \begin{array}{l} 2.7 \ V \leq EV_{DD} < 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 100 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	0	1420	ns
		$\begin{array}{l} 2.4 \ V \leq EV_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V \ \mbox{Note 2}, \\ C_b = 100 \ p\mbox{F}, \ R_b = 5.5 \ k\Omega \end{array}$	0	1215	ns

(TA = -40 to +105°C, 2.4 V \leq EVDD \leq VDD \leq 5.5 V, Vss = 0 V)



- **Note 1.** The value must be equal to or less than fMCK/4.
- Note 2. Use it with $EV_{DD} \ge V_b$.
- Note 3. Set the fMCK value to keep the hold time of SCLr = "L" and SCLr = "H".
- Caution Select the TTL input buffer and the N-ch open drain output (EVDD tolerance) mode for the SDAr pin and the N-ch open drain output (EVDD tolerance) mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

Simplified I²C mode connection diagram (during communication at different potential)

Simplified I²C mode serial transfer timing (during communication at different potential)

- **Remark 1.** Rb[Ω]: Communication line (SDAr, SCLr) pull-up resistance, Cb[F]: Communication line (SDAr, SCLr) load capacitance, Vb[V]: Communication line voltage
- Remark 2. r: IIC number (r = 00, 01, 10 and 11), g: PIM, POM number (g = 0, 3 and 5)
- Remark 3. fMCK: Serial array unit operation clock frequency

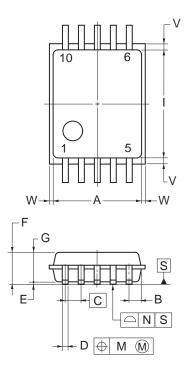
(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0), n: Channel number (n = 0 to 3), mn = 00 to 03)

3.6.5 PGA

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Input offset voltage	Viopga					±10	mV
Input voltage range	Vipga			0		0.9 × V _{DD} /Gain	V
Output voltage range	VIOHPGA			$0.93 \times V_{\text{DD}}$			V
	VIOLPGA					$0.07\times V_{\text{DD}}$	V
Gain error		x4, x8				±1	%
		x16				±1.5	%
		x32	x32			±2	%
Slew rate S	SR _{RPGA} Rising When VIN = 0.1V _{DD} /gain to 0.9V _{DD} /gain.	$4.0 V \le V_{DD} \le 5.5 V$ (Other than x32)	3.5			V/µs	
		10 to 90% of output voltage amplitude	$4.0 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V} (x32)$	3.0			
			$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 4.0 \text{V}$	0.5			
	SRfpga	Falling When VIN= 0.1Vpb/gain to 0.9Vpb/gain.	4.0 V ≤ V _{DD} ≤ 5.5 V (Other than x32)	3.5			
		90 to 10% of output	$4.0 V \le V_{DD} \le 5.5 V (x32)$	3.0			
	voltage amplitude	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 4.0 \text{V}$	0.5				
Reference voltage	t PGA	x4, x8 x16, x32				5	μs
stabilization wait time ^{Note}						10	μs

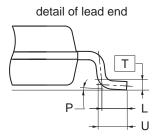
(Ta = -40 to +105°C, 2.7 V \leq EVDD \leq VDD \leq 5.5 V, Vss = 0 V)

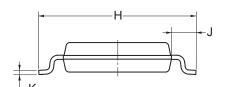
Note Time required until a state is entered where the DC and AC specifications of the PGA are satisfied after the PGA operation has been enabled (PGAEN = 1).



4. PACKAGE DRAWINGS

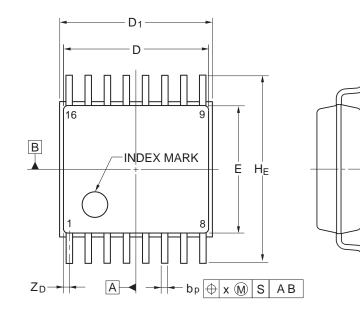
4.1 10-pin products

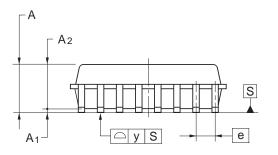

R5F1051AGSP, R5F1051AASP


JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LSSOP10-4.4x3.6-0.65	PLSP0010JA-A	P10MA-65-CAC-2	0.05

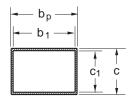
Each lead centerline is located within 0.13 mm of its true position (T.P.) at maximum material condition.

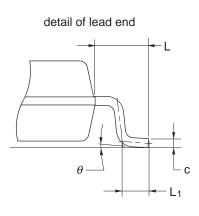
	(UNIT:mm)
ITEM	DIMENSIONS
Α	3.60±0.10
В	0.50
С	0.65 (T.P.)
D	0.24±0.08
Е	0.10±0.05
F	1.45 MAX.
G	1.20±0.10
Н	6.40±0.20
1	4.40±0.10
J	1.00±0.20
К	$0.17^{+0.08}_{-0.07}$
L	0.50
Μ	0.13
N	0.10
Р	3° +5° -3°
Т	0.25 (T.P.)
U	0.60 ± 0.15
V	0.25 MAX.
W	0.15 MAX.


©2012 Renesas Electronics Corporation. All rights reserved.



4.2 16-pin products


R5F1054AGSP, R5F1054AASP


JEITA Package code	RENESAS code	Previous code	MASS(TYP.)[g]
P-SSOP16-4.4x5-0.65	PRSP0016JC-B	P16MA-65-FAB	0.08

Terminal cross section

Referance	Dimension in Millimete				
Symbol	Min	Nom	Max		
D	4.85	5.00	5.15		
D ₁	5.05	5.20	5.35		
E	4.20	4.40	4.60		
A ₂		1.50			
A ₁	0.075	0.125	0.175		
A			1.725		
bp	0.17	0.24	0.32		
b1		0.22			
С	0.14	0.17	0.20		
C ₁		0.15			
θ	0°		8°		
H _E	6.20	6.40	6.60		
е		0.65			
х			0.13		
У			0.10		
Z _D		0.225			
L	0.35	0.50	0.65		
L ₁		1.00			

