

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	RL78
Core Size	16-Bit
Speed	24MHz
Connectivity	CSI, I ² C, UART/USART
Peripherals	LVD, POR, WDT
Number of I/O	17
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	1.5К х 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 10x10b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	20-LSSOP (0.173", 4.40mm Width)
Supplier Device Package	20-LSSOP
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f1056agsp-30

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Timers

- 16-bit timer (TAU): 4 channels
- TKB: 1 channel
- 12-bit interval timer: 1 channel
- 8-bit interval timer: 2 channels
- Watchdog timer: 1 channel

A/D converter

- 8/10-bit resolution A/D converter (VDD = 1.6 to 5.5 V)
- Analog input: 10 to 11 channels
- Internal reference voltage (1.45 V) and temperature sensor

D/A converter

- 8/10-bit resolution D/A converter (VDD = 1.6 to 5.5 V)
- Analog input: 2 channels (channel 1: output to the ANO1 pin, channel 0: output to the comparator)
- Output voltage: 0 V to VDD
- Real-time output function

Comparator

- 2 channels
- Operating modes: Comparator high-speed mode, comparator low-speed mode, window mode

PGA

1 channels

I/O ports

- I/O port: 17 to 21 (N-ch open drain I/O [VDD withstand voltage^{Note 1}/EVDD withstand voltage^{Note 2}]: 10 to 14)
- Can be set to N-ch open drain, TTL input buffer, and on-chip pull-up resistor
- Different potential interface: Can connect to a 1.8/2.5/3.0 V device
- On-chip key interrupt function
- On-chip clock output/buzzer output controller
 Others
- On-chip BCD (binary-coded decimal) correction circuit
- On-chip data operation circuit
- **Note 1.** 16, 20, 24-pin products
- Note 2. 25-pin products
- **Remark** The functions mounted depend on the product. See **1.6 Outline of Functions**.

\bigcirc ROM, RAM capacities

Flash	lash Data			RL78/G11								
ROM	flash		10 pins	16 pins	20 pins	24 pins	25 pins					
16 KB	2 KB	1.5 KB	R5F1051A	R5F1054A	R5F1056A	R5F1057A	R5F1058A					

Remark The flash library uses RAM in self-programming and rewriting of the data flash memory.

The target products and start address of the RAM areas used by the flash library are shown below.

R5F105xA (x = 1, 4, 6, 7, 8): Start address FF900H

For the RAM areas used by the flash library, see Self RAM list of Flash Self-Programming Library for RL78 Family (R20UT2944).

<R>

<R>

<R>

(2/2)

						,				
Item	10-pin	16-pin	20-pin	24-pin	25-pin					
Ite		R5F1051A	R5F1054A	R5F1056A	R5F1057A	R5F1058A				
Clock output/	buzzer		1		2					
output		 2.44 kHz, 4.88 kHz, 9 (Main system clock: fr 117 Hz, 234 Hz, 469 I (subsystem clock: fiL) 	.76 kHz, 1.25 MHz, 2.5 M MAIN = 20 MHz operation) Hz, 938 Hz, 1.875 kHz, 3 = 15 kHz operation)	1Hz, 5 MHz, 10 MHz .75 kHz, 7.5 kHz, 15 kHz						
10-bit	External	3 channels	8 channels	10 channels	11 ch	annels				
resolution A/D converter	Internal	1 channel								
8-bit D/A con	verter	1 channel 2 channels								
Comparator (Comparator)	Window	1 channel		2 cha	nnels					
PGA		1 channel								
Data Operatio (DOC)	on Circuit	Comparison, addition, a	and subtraction of 16-bit o	lata						
Serial interfac	be	• CSI: 1 channel/UART: 1 channel [16-pin products] • CSI: 2 channels/UART: 2 channels/simplified l ² C: 1 channel [20-pin products] • CSI: 3 channel/UART: 2 channel/simplified l ² C: 3 channel [24-pin, 25-pin products] • CSI: 4 channels/UART: 2 channel/simplified l ² C: 4 channels								
	I ² C bus	None	1 channel		2 channels					
Data transfer (DTC)	controller	13 sources	22 sources	23 sources	24 sources					
Event link co (ELC)	ntroller	Event input: 11 Event trigger output: 3	Event input: 16 Event trigger output: 4	Event input: 17 Event trigger output: 4	Event input: 18 Event trigger output: 4					
Vectored	Internal	20	24		25					
interrupt sources	External	3	9	10	1	3				
Key interrupt		None	3	5		8				
Reset		Reset by RESET pin Internal reset by watchdog timer Internal reset by power-on-reset Internal reset by voltage detector Internal reset by illegal instruction execution Internal reset by RAM parity error Internal reset by illegal-memory access								
Power-on-res	et circuit	Power-on-reset: 1.51 1.51 Power-down-reset: 1. 1.	± 0.04V (TA = -40 to +85 ± 0.06V (TA = +85 to +10 50 ± 0.04 V (TA = -40 to - 51 ± 0.06V (TA = +85 to +	°C))5°C) +85°C) -105°C)						
Voltage	Power on	1.67 V to 4.06 V (14 sta	iges)							
detector	Power down	1.63 V to 3.98 V (14 sta	iges)							
On-chip debu	g function	Provided (Disable to tra	cing)							
Power supply	voltage	VDD = 1.6 to 5.5 V								
Operating an temperature	ibient	$T_A = -40$ to +85°C (Con- T_A = -40 to +105°C (Ind	sumer applications) ustrial applications)							

2. ELECTRICAL SPECIFICATIONS (TA = -40 to +85°C)

This chapter describes the following electrical specifications.

Target products A: Consumer applications (TA = -40 to $+85^{\circ}$ C)

R5F105xxAxx

G: When the products "G: Industrial applications (TA = -40 to +105°C)" is used in the range of TA = -40 to +85°C

R5F105xxGxx

- Caution 1. The RL78 microcontrollers have an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.
- Caution 2. The pins mounted depend on the product. Refer to 2.1 Port Functions to 2.2.1 Functions for each product in the RL78/G11 User's Manual.
- Caution 3. The EVDD pin is not present on products with 24 or less pins. Accordingly, replace EVDD with VDD and the voltage condition 1.6 ≤ EVDD ≤ VDD ≤ 5.5 V with 1.6 ≤ VDD ≤ 5.5 V.

(TA = -40 to +85	5°C, 1.6 V	\leq EVDD \leq VDD \leq 5.5 V, Vss = 0	V)					(5/5)
Items	Symbol	Cond	itions		MIN.	TYP.	MAX.	Unit
Input leakage current, high	Іцні	P00, P01, P30 to P33, P40, and P51 to P56	VI = EVDD				1	μA
	ILIH2	P20 to P23, P125, P137, RESET	VI = VDD				1	μA
	Ісінз	P121, P122, X1, X2, EXCLK	VI = VDD	In input port or external clock input			1	μA
				In resonator connection			10	μA
Input leakage current, low	ILIL1	P00, P01, P30 to P33, P40, and P51 to P56	VI = Vss				-1	μA
	ILIL2	P20 to P23, P125, P137, RESET	VI = Vss				-1	μA
	Ilili	P121, P122, X1, X2, EXCLK	VI = Vss	In input port or external clock input			-1	μA
				In resonator connection			-10	μA
On-chip pull-up resistance	Ru	P00, P01, P30 to P33, P40, P51 to P56, P125	VI = Vss, In	input port	10	20	100	kΩ

$(TA = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EVDD} \le \text{VDD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins. Remark

(TA = -40 to +85°C, 1.6 V \leq EVDD \leq VDD \leq 5.5 V, Vss = 0 V)

•		-								• •
Parameter	Symbol			MIN.	TYP.	MAX.	Unit			
Supply current Note 1	IDD1	Operating mode	Normal operation	Subsystem clock	fiL = 15 kHz, T _A = -40°C Note 5	Normal operation		1.8	5.9	μA
				operation	f_{IL} = 15 kHz, T_A = +25°C Note 5	Normal operation		1.9	5.9	
					fı∟ = 15 kHz, T _A = +85°C ^{Note 5}	Normal operation		2.3	8.7	

Note 1. Total current flowing into VDD and EVDD, including the input leakage current flowing when the level of the input pin is fixed to VDD or Vss. The MAX values include the peripheral operating current. However, these values do not include the current flowing into the A/D converter, comparator, Programmable gain amplifier, LVD circuit, I/O ports, and on-chip pull-up/pull-down resistors, and the current flowing during data flash rewrite.

Note 2. When the high-speed on-chip oscillator clock, middle-speed on-chip oscillator clock and low-speed on-chip oscillator clock are stopped.

Note 3. When the high-speed system clock, middle-speed on-chip oscillator clock and low-speed on-chip oscillator clock are stopped.

Note 4. When the high-speed system clock is stopped.

Note 5. When the high-speed system clock, high-speed on-chip oscillator clock and middle-speed on-chip oscillator clock are stopped.

Note 6. When the high-speed system clock, high-speed on-chip oscillator clock and low-speed on-chip oscillator clock are stopped.

Remark 1. fMX: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)

Remark 2. fill: High-speed on-chip oscillator clock frequency (24 MHz max.)

Remark 3. fim: Middle-speed on-chip oscillator clock frequency (4 MHz max.)

Remark 4. fiL: Low-speed on-chip oscillator clock frequency

Remark 5. fsub: Subsystem clock frequency (Low-speed on-chip oscillator clock frequency)

Remark 6. Except subsystem clock operation, temperature condition of the TYP. value is TA = 25°C

(2/4)

When P20 is used as TxD1 pin

(TA = -40 to +85°C, 1.6 V \leq EVDD = VDD \leq 5.5 V, Vss = 0 V)

Parameter	Sym bol	Conditions	HS (hig main)	lh-speed) Mode	LS (low-s M	peed main) ode	LP (Low-p mo	ower main) ode	LV (low-vo Mo	ltage main) ode	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Transfer rate		$4.0~V \leq V_{DD} \leq 5.5~V$		fмск/6 Notes 1, 2, 3		fмск/6 Notes 1, 2		fмск/6 Notes 1, 2		fмск/6 Notes 1, 2	bps
		Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Notes 1, 3}$		1.5		1.3		0.1		0.6	Mbps
		$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$		fмск/6 Notes 1, 2, 3		fмск/6 Notes 1, 2		fмск/6 Notes 1, 2		fмск/6 Notes 1, 2	bps
		Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Notes 1, 3}$		1.2		1.2		0.1		0.6	Mbps
		$2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}$		fмск/6 Notes 1, 2, 3		fмск/6 Notes 1, 2		fмск/6 Notes 1, 2		fмск/6 Notes 1, 2	bps
		Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Notes 1, 3}$		1.0		1.0		0.1		0.6	Mbps
		$1.8 \text{ V} \leq \text{V}\text{DD} \leq 5.5 \text{ V}$				fмск/6 Notes 1, 2		fмск/6 Notes 1, 2		fмск/6 Notes 1, 2	bps
		Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Notes 1, 3}$		-		0.6		0.1		0.6	Mbps
		$1.7 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$								fмск/6 Notes 1, 2	bps
		Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Notes 1, 3}$		Using prohibited		Using		Using		0.5	Mbps
		$1.6~V \leq V_{DD} \leq 5.5~V$				prohibited		prohibited		fмск/6 Notes 1, 2	bps
		Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Notes 1, 3}$								0.5	Mbps

Note 1. fMCK is a frequency selected by setting the CKS bit in the SPS and SMR registers.

Note 2. The transfer rate of 4800 bps is only supported in the SNOOZE mode.

Note that the SNOOZE mode is not supported when fHOCO is 48 MHz.

Note 3. fclk in each operating mode is as follows.:

24 MHz (2.7 V \leq VDD \leq 5.5 V)
16 MHz (2.4 V \leq VDD \leq 5.5 V)
8 MHz (1.8 V \leq VDD \leq 5.5 V)
1 MHz (1.8 V \leq VDD \leq 5.5 V)
4 MHz (1.6 V \leq VDD \leq 5.5 V)

Caution Select the normal input buffer for the RxDq pin and the normal output mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg).

When P20 is used as SO10 pin

(TA = -40 to +85°C, 1.6 V \leq EVDD \leq VDD \leq 5.5 V, Vss = 0 V)

Parameter	Symbol	C	onditions	HS (higl main)	h-speed Mode	LS (low main)	/-speed Mode	LP (Lov main)	v-power mode	LV (low- main)	-voltage Mode	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle	tkCY1	tkcy1 ≥ 4/fclk	$4.0~V \leq V_{DD} \leq 5.5~V$	600		600		4000		1000		ns
time			$2.7~V \leq V \text{DD} \leq 5.5~V$	850		850						
			$2.4~V \leq V_{DD} \leq 5.5~V$	1000		1000						
			$1.8~V \leq V \text{DD} \leq 5.5~V$	—		1500				1500		
			$1.7~V \leq V_{DD} \leq 5.5~V$	—		—		—		2000		
			$1.6~V \leq V \text{DD} \leq 5.5~V$	—		—		—				
SCKp high-/ low-level	tĸнı, tĸ∟ı	$4.0 V \le V_{DD} \le 3$	5.5 V	tксү1/2 - 12		tксү1/2 - 50		tксү1/2 - 50		tксү1/2 - 50		ns
width		$2.7 \text{ V} \leq \text{V}_{DD} \leq 3$	5.5 V	tксү1/2 - 18								
		$2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$		tксү1/2 - 38								
		$1.8 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$		_								
		$1.7~V \leq V_{DD} \leq$	5.5 V	—		—		—		tксү1/2		
		$1.6~V \leq V_{DD} \leq$	5.5 V	—		—		—		- 100		
SIp setup	tsik1	$4.0~V \leq V_{DD} \leq$	5.5 V	44		110		110		110		ns
time (to SCKpt)		$2.7~V \leq V_{DD} \leq$	5.5 V									
Note 1		$2.4~V \leq V_{DD} \leq$	5.5 V	75								
		$1.8~V \le V_{DD} \le$	5.5 V	_								
		$1.7~V \leq V_{DD} \leq$	5.5 V	—		—		—		220		
		$1.6 \text{ V} \leq \text{V}_{\text{DD}} \leq 1.6 \text{ V}$	5.5 V	—		_		_				
SIp hold	tksi1	$2.4~V \leq V_{DD} \leq$	5.5 V	19		19		19		19		ns
time (from		$1.8~V \le V_{DD} \le$	5.5 V	—								
Note 2		$1.6~V \le V_{DD} \le$	5.5 V	—		—		—				
Delay time	tkso1	C = 30 pF	$2.4~V \leq V_{DD} \leq 5.5~V$		150		250		250		300	ns
from SCKp↓		Note 4	$1.8~V \le V_{DD} \le 5.5~V$		_							
output Note 3			$1.6~V \leq V_{DD} \leq 5.5~V$		—		—		—			

Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The Slp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 4. C is the load capacitance of the SCKp and SOp output lines.

Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remark 1. p: CSI number (p = 00, 01, 10 and 11), m: Unit number (m = 0), n: Channel number (n = 0 to 3), g: PIM and POM numbers (g = 0, 4 and 12)

Remark 2. fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03))

	-	·		1								
Parameter	Symbol	Condit	ions	HS (high-sj Mo	peed main) Ide	LS (low-sp Mo	oeed main) ode	LP (Lov main)	/-power mode	LV (low- main)	voltage Mode	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tксү2	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$	f _{мск} > 20 MHz	14/fмск		—		—		—		ns
Note 5			$f_{MCK} \leq 20 \ MHz$	12/fмск		12/fмск		12/fмск		12/fмск		
		$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	fмск > 16 MHz	14/fмск and 850		—				_		
			fмск \leq 16 MHz	12/fмск and 850		12/fмск		12/fмск		12/fмск		
		$2.4~V \leq V_{DD} \leq 5.5~V$		12/fмск and 1000		12/fмск		12/fмск		12/fмск		
		$1.8 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$		—		12/fмск		12/fмск		12/fмск		
		$1.7~V \leq V_{\text{DD}} \leq 5.5V$		—		—		—		12/fмск		
		$1.6~V \leq V_{\text{DD}} \leq 5.5~V$		—		—		_				
SCKp high-/ low-level width	tкн2, tкL2	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$		tксү2/2 - 7		tксү2/2 - 7		tксү2/2 - 7		tксү2/2 - 7		ns
		$2.7~V \leq V_{\text{DD}} \leq 5.5~V$		tксү2/2 - 8		tксү2/2 - 8		tксү2/2 - 8		tксү2/2 - 8		
		$1.8 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$		-		tксү2/2 - 18		tксү2/2 - 18		tксү2/2 - 18		
		$1.7~V \leq V_{\text{DD}} \leq 5.5~V$	—		—		_		tксү2/2 -			
		$1.6~V \leq V_{\text{DD}} \leq 5.5~V$		—		—		_		66		
SIp setup time (to SCKp↑)	tsık2	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$		1/fмск + 20		1/fмск + 30		1/fмск + 30		1/fмск + 30		ns
Note 1		$1.8~V \leq V_{DD} \leq 5.5~V$		1/fмск + 30								
		$1.7~V \leq V_{\text{DD}} \leq 5.5~V$		—		—		_		1/fмск		
		$1.6~V \leq V_{\text{DD}} \leq 5.5~V$		—		—		_		+ 40		
SIp hold time (from SCKp↑)	tĸsı2	$2.5~V \leq V_{DD} \leq 5.5~V$		1/fмск + 31		1/fмск + 31		1/fмск + 31		1/fмск + 31		ns
Note 2		$1.8~V \leq V_{\text{DD}} \leq 5.5~V$		-		1/fмск + 31		1/fмск + 31		1/fмск + 31		
		$1.7~V \leq V_{\text{DD}} \leq 5.5~V$		_		_		_		1/fмск		
		$1.6~V \leq V_{\text{DD}} \leq 5.5~V$		_		_		—		+ 250		
Delay time from SCKp↓ to SOp	tkso2	C = 30 pF Note 4	$2.7~V \leq V_{DD} \leq 5.5~V$		2/fмск + 160		2/fмск + 260		2/fмск + 260		2/fмск + 260	ns
output ^{Note 3}		2	$2.4~V \leq V_{DD} \leq 5.5~V$		2/fмск + 190							
			$1.8~V \leq V_{\text{DD}} \leq 5.5~V$		_							
			$1.7~V \leq V_{DD} \leq 5.5~V$		_		—		—		2/fмск	
			$1.6~V \leq V_{DD} \leq 5.5~V$		_		_				+ 320	

When P20 is used as SO10 pin

(TA = -40 to +85°C, 1.6 V \leq EVDD \leq VDD \leq 5.5 V, Vss = 0 V)

Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 4. C is the load capacitance of the SOp output lines.

Note 5. The maximum transfer rate when using the SNOOZE mode is 1 Mbps.

Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remark 1. p: CSI number (p = 00, 01, 10 and 11), m: Unit number (m = 0), n: Channel number (n = 0 to 3), g: PIM and POM numbers (g = 0, 4 and 12)

CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

Remark 1. p: CSI number (p = 00, 01, 10 and 11) **Remark 2.** m: Unit number, n: Channel number (mn = 00 to 03)

RL78/G11

(5) During communication at same potential (simplified I²C mode)

Parameter	Symbol	Conditions	HS (high-s Mo	peed main) ode	LS (low-sp Mo	oeed main) ode	LP (Lov main)	v-power mode	LV (low- main)	-voltage Mode	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCLr clock frequency	fscL	$\label{eq:VDD} \begin{array}{l} 2.7 \mbox{ V} \leq EV_{DD} \leq 5.5 \mbox{ V}, \\ C_b = 50 \mbox{ pF, } R_b = 2.7 \mbox{ k}\Omega \end{array}$		1000 Note 1		400 Note 1		250 Note 1		400 Note 1	kHz
		$\label{eq:linear} \begin{array}{l} 1.8 \mbox{ V} \leq EV_{DD} \leq 5.5 \mbox{ V}, \\ C_b = 100 \mbox{ pF}, \mbox{ R}_b = 3 k\Omega \end{array}$		400 Note 1							
		$\label{eq:VDD} \begin{array}{l} 1.8 \mbox{ V} \leq EV_{DD} < 2.7 \mbox{ V}, \\ C_b = 100 \mbox{ pF}, \mbox{ R}_b = 5 \mbox{ k}\Omega \end{array}$		300 Note 1		300 Note 1		250 Note 1		300 Note 1	
		$\label{eq:VDD} \begin{array}{l} 1.7 \mbox{ V} \leq EV_{DD} < 1.8 \mbox{ V}, \\ C_b = 100 \mbox{ pF}, \mbox{ R}_b = 5 \mbox{ k}\Omega \end{array}$		250 Note 1		250 Note 1		250 Note 1		250 Note 1	
		$\label{eq:constraint} \begin{array}{l} 1.6 \mbox{ V} \leq EV_{DD} < 1.8 \mbox{ V}, \\ C_b = 100 \mbox{ pF}, \mbox{ R}_b = 5 \mbox{ k}\Omega \end{array}$		—							
Hold time when SCLr = "L"	tLOW	$\label{eq:constraint} \begin{array}{l} 2.7 \mbox{ V} \leq EV_{DD} \leq 5.5 \mbox{ V}, \\ C_b = 50 \mbox{ pF}, \mbox{ R}_b = 2.7 \mbox{ k}\Omega \end{array}$	475		1150		1150		1150		ns
		$\label{eq:linear} \begin{array}{l} 1.8 \mbox{ V} \leq EV_{DD} \leq 5.5 \mbox{ V}, \\ C_b = 100 \mbox{ pF}, \mbox{ R}_b = 3 k\Omega \end{array}$	1150								
		$\label{eq:VDD} \begin{array}{l} 1.8 \mbox{ V} \leq EV_{\mbox{DD}} < 2.7 \mbox{ V}, \\ C_b = 100 \mbox{ pF}, \mbox{ R}_b = 5 \mbox{ k}\Omega \end{array}$	1550		1550		1550		1550		
		$\label{eq:VDD} \begin{array}{l} 1.7 \mbox{ V} \leq EV_{DD} < 1.8 \mbox{ V}, \\ C_b = 100 \mbox{ pF}, \mbox{ R}_b = 5 \mbox{ k}\Omega \end{array}$	1850		1850		1850		1850		
		$\label{eq:VDD} \begin{array}{l} 1.6 \mbox{ V} \leq EV_{DD} < 1.8 \mbox{ V}, \\ C_b = 100 \mbox{ pF}, \mbox{ R}_b = 5 \mbox{ k}\Omega \end{array}$	—								
Hold time when SCLr = "H"	tнigн	$\label{eq:VDD} \begin{array}{l} 2.7 \ V \leq EV_{\text{DD}} \leq 5.5 \ V, \\ C_b = 50 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	475		1150		1150		1150		ns
		$\label{eq:VDD} \begin{array}{l} 1.8 \mbox{ V} \leq EV_{\mbox{DD}} \leq 5.5 \mbox{ V}, \\ C_b = 100 \mbox{ pF}, \mbox{ R}_b = 3 k\Omega \end{array}$	1150								
		$\label{eq:VDD} \begin{array}{l} 1.8 \mbox{ V} \leq EV_{\mbox{DD}} < 2.7 \mbox{ V}, \\ C_{\mbox{b}} = 100 \mbox{ pF}, \mbox{ R}_{\mbox{b}} = 5 k\Omega \end{array}$	1550		1550		1550		1550		
		$\label{eq:VDD} \begin{array}{l} 1.7 \mbox{ V} \leq EV_{DD} < 1.8 \mbox{ V}, \\ C_b = 100 \mbox{ pF}, \mbox{ R}_b = 5 \mbox{ k}\Omega \end{array}$	1850		1850		1850		1850		
		$\label{eq:VDD} \begin{array}{l} 1.6 \mbox{ V} \leq EV_{\mbox{DD}} < 1.8 \mbox{ V}, \\ C_{\mbox{b}} = 100 \mbox{ pF}, \mbox{ R}_{\mbox{b}} = 5 k\Omega \end{array}$	-								
Data setup time (reception)	tsu: dat	$\label{eq:states} \begin{array}{l} 2.7 \ V \leq EV_{\text{DD}} \leq 5.5 \ V, \\ C_b = 50 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	1/fмск + 85 Note 2		1/fмск + 145 Note 2		1/fмск + 145 Note 2		1/fмск + 145 Note 2		ns
		$\label{eq:VDD} \begin{array}{l} 1.8 \mbox{ V} \leq EV_{DD} \leq 5.5 \mbox{ V}, \\ C_b = 100 \mbox{ pF}, \mbox{ R}_b = 3 \mbox{ k}\Omega \end{array}$	1/fмск + 145 Note 2								
		$\label{eq:Viscous} \begin{array}{l} 1.8 \ V \leq EV_{DD} < 2.7 \ V, \\ C_b = 100 \ pF, \ R_b = 5 \ k\Omega \end{array}$	1/fмск + 230 Note 2		1/fмск + 230 Note 2		1/fмск + 230 Note 2		1/fмск + 230 Note 2		
		$\label{eq:VDD} \begin{array}{l} 1.7 \ V \leq EV_{DD} < 1.8 \ V, \\ C_b = 100 \ pF, \ R_b = 5 \ k\Omega \end{array}$	1/fмск + 290 Note 2		1/fмск + 290 Note 2		1/fмск + 290 Note 2		1/fмск + 290 Note 2		
		$\label{eq:linear} \begin{array}{l} 1.6 \mbox{ V} \leq EV_{DD} < 1.8 \mbox{ V}, \\ C_b = 100 \mbox{ pF}, \mbox{ R}_b = 5 \mbox{ k}\Omega \end{array}$	-		_						
Data hold time (transmission)	thd: dat	$2.7 \text{ V} \leq \text{EV}_{\text{DD}} \leq 5.5 \text{ V},$ $C_b = 50 \text{ pF}, \text{ R}_b = 2.7 \text{ k}\Omega$	0	305	0	305	0	305	0	305	ns
		$\label{eq:VDD} \begin{array}{l} 1.8 \mbox{ V} \leq EV_{DD} \leq 5.5 \mbox{ V}, \\ C_b \mbox{ = 100 pF, } R_b \mbox{ = 3 } k\Omega \end{array}$		355		355		355		355	
		$\label{eq:VDD} \begin{array}{l} 1.8 \mbox{ V} \leq EV_{DD} < 2.7 \mbox{ V}, \\ C_b = 100 \mbox{ pF}, \mbox{ R}_b = 5 \mbox{ k}\Omega \end{array}$		405		405		405		405	
		$\begin{array}{l} 1.7 \ V \leq EV_{DD} < 1.8 \ V, \\ C_b = 100 \ pF, \ R_b = 5 \ k\Omega \end{array}$									
		$1.6 \text{ V} \leq \text{EV}_{\text{DD}} < 1.8 \text{ V},$ $C_b = 100 \text{ pF}, \text{ R}_b = 5 \text{ k}\Omega$	-	—							

(TA = -40 to +85°C, 1.6 V \leq EVDD = VDD \leq 5.5 V, Vss = 0 V)

- **Note 1.** The value must be equal to or less than fMCK/4.
- Note 2. Use it with $EV_{DD} \ge V_b$.
- Note 3. Set the fMCK value to keep the hold time of SCLr = "L" and SCLr = "H".
- Caution Select the TTL input buffer and the N-ch open drain output (EVDD tolerance) mode for the SDAr pin and the N-ch open drain output (EVDD tolerance) mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

Simplified I²C mode connection diagram (during communication at different potential)

Simplified I²C mode serial transfer timing (during communication at different potential)

- **Remark 1.** Rb[Ω]: Communication line (SDAr, SCLr) pull-up resistance, Cb[F]: Communication line (SDAr, SCLr) load capacitance, Vb[V]: Communication line voltage
- Remark 2. r: IIC number (r = 00, 01, 10 and 11), g: PIM, POM number (g = 0, 3 and 5)
- Remark 3. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0), n: Channel number (n = 0 to 3), mn = 00 to 03)

AC Timing Test Points

External System Clock Timing

TI/TO Timing

UART mode connection diagram (during communication at same potential)

UART mode bit width (during communication at same potential) (reference)

Remark 1. q: UART number (q = 0 and 1), g: PIM and POM number (g = 0, 2, 3 and 5)

Remark 2. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03)

CSI mode connection diagram (during communication at same potential)

CSI mode connection diagram (during communication at same potential) (Slave Transmission of slave select input function (CSI00))

Remark p: CSI number (p = 00, 01, 10 and 11)

Simplified I²C mode connection diagram (during communication at same potential)

Simplified I²C mode serial transfer timing (during communication at same potential)

 $\label{eq:result} \textbf{Remark 1. } Rb[\Omega]: Communication line (SDAr) pull-up resistance, Cb[F]: Communication line (SDAr, SCLr) load capacitance and capacitance$

Remark 2. r: IIC number (r = 00, 01, 10 and 11), g: PIM number (g = 0, 3 and 5), h: POM number (h = 0, 3 and 5)

Remark 3. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0), n: Channel number (n = 0 to 3), mn = 00 to 03)

CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

Remark p: CSI number (p = 00, 01, 10 and 11), m: Unit number (m = 0), n: Channel number (n = 0 to 3), g: PIM and POM numbers (g = 0, 2, 3 to 5 and 12)

(7) Communication at different potential (1.8 V, 2.5 V, 3.0 V) (CSI mode) (slave mode, SCKp... external clock input)

(TA = -40 to +105°C, 2.4 V \leq EVDD \leq VDD \leq 5.5 V, Vss = 0 V)

Decomptor	Cumhal	Can	ditions	HS (high-spee	ed main) Mode	Linit
Parameter	Symbol	Con	$\begin{tabular}{ c c c c } \hline HS (high-speed main) Model \\ \hline MIN. MAX. \\ \hline S Ub \leq 4.0 V \\ \hline 4 MHz < fmck \leq 24 MHz & 20/fmck \\ \hline 4 MHz < fmck \leq 8 MHz & 16/fmck \\ \hline fmck \leq 4 MHz & 12/fmck \\ \hline 12/fmck \\ \hline MHz < fmck \leq 24 MHz & 32/fmck \\ \hline 16 MHz < fmck \leq 24 MHz & 32/fmck \\ \hline 16 MHz < fmck \leq 20 MHz & 28/fmck \\ \hline 8 MHz < fmck \leq 16 MHz & 24/fmck \\ \hline 8 MHz < fmck \leq 8 MHz & 16/fmck \\ \hline mck \leq 4 MHz & 12/fmck \\ \hline 16 MHz < fmck \leq 20 MHz & 24/fmck \\ \hline 8 MHz < fmck \leq 4 MHz & 12/fmck \\ \hline 16 MHz < fmck \leq 24 MHz & 12/fmck \\ \hline 16 MHz < fmck \leq 24 MHz & 12/fmck \\ \hline 16 MHz < fmck \leq 4 MHz & 12/fmck \\ \hline 16 MHz < fmck \leq 4 MHz & 32/fmck \\ \hline 16 MHz < fmck \leq 4 MHz & 32/fmck \\ \hline 8 MHz < fmck \leq 4 MHz & 32/fmck \\ \hline 8 MHz < fmck \leq 4 MHz & 32/fmck \\ \hline 8 MHz < fmck \leq 4 MHz & 32/fmck \\ \hline 8 MHz < fmck \leq 4 MHz & 32/fmck \\ \hline EVDD \leq 5.5 V, 2.7 V \leq Vb \leq 4.0 V & tkcyz/2 - 24 \\ \hline EVDD < 4.0 V, 2.3 V \leq Vb \leq 2.7 V & tkcy2/2 - 36 \\ \hline EVDD < 3.3 V, 1.6 V \leq Vb \leq 2.0 V Note 2 & tkcy2/2 - 100 \\ \hline EVDD < 5.5 V, 2.3 V \leq Vb \leq 4.0 V & 1/fmck + 40 \\ \hline EVDD < 5.5 V, 2.3 V \leq Vb \leq 2.0 V Note 2 & 1/fmck + 60 \\ \hline \end{array}$	Unit		
SCKp cycle time Note 1	tксү2	$4.0~V \leq EV_{\text{DD}} \leq 5.5~V,$	$20 \text{ MHz} < \text{fmck} \le 24 \text{ MHz}$	24/fмск		ns
		$2.7~V \leq V_b \leq 4.0~V$	$8 \text{ MHz} < \text{fmck} \le 20 \text{ MHz}$	20/fмск		ns
			$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	ns		
	$ \begin{array}{ c c c c c c c c } \hline f_{MCK} \leq 4 \ MHz & 12/f_{MCK} & ns \\ \hline f_{MCK} \leq 4 \ MHz & 12/f_{MCK} & ns \\ \hline \\ 2.7 \ V \leq EV_{DD} < 4.0 \ V, \\ \hline \\ 2.3 \ V \leq V_b \leq 2.7 \ V & \hline \\ \hline 16 \ MHz < f_{MCK} \leq 24 \ MHz & 32/f_{MCK} & ns \\ \hline \\ 16 \ MHz < f_{MCK} \leq 20 \ MHz & 28/f_{MCK} & ns \\ \hline \\ 8 \ MHz < f_{MCK} \leq 16 \ MHz & 24/f_{MCK} & ns \\ \hline \\ 4 \ MHz < f_{MCK} \leq 8 \ MHz & 16/f_{MCK} & ns \\ \hline \\ f_{MCK} \leq 4 \ MHz & 12/f_{MCK} & ns \\ \hline \\ f_{MCK} \leq 4 \ MHz & 12/f_{MCK} & ns \\ \hline \\ 1.6 \ V \leq V_b \leq 2.0 \ V \ Note 2 & \hline \\ \hline \\ 16 \ MHz < f_{MCK} \leq 24 \ MHz & 72/f_{MCK} & ns \\ \hline \\ \hline \\ 16 \ MHz < f_{MCK} \leq 20 \ MHz & 64/f_{MCK} & ns \\ \hline \\ \hline \\ 8 \ MHz < f_{MCK} \leq 16 \ MHz & 52/f_{MCK} & ns \\ \hline \\ \hline \\ \hline \end{array} $	ns				
		$2.7 \text{ V} \leq \text{EV}_{\text{DD}} < 4.0 \text{ V},$	$20 \text{ MHz} < \text{fmck} \le 24 \text{ MHz}$	32/fмск		ns
	$2.3 \text{ V} \leq \text{Vb} \leq 2.7 \text{ V}$ $16 \text{ MHz} < \text{fmck}$ $8 \text{ MHz} < \text{fmck}$ $4 \text{ MHz} < \text{fmck}$ $fmck \leq 4 \text{ MHz}$ $2.4 \text{ V} \leq \text{EVdd} < 3.3 \text{ V}, 20 \text{ MHz} < \text{fmck}$	$2.3~V \leq V_b \leq 2.7~V$	$16 \text{ MHz} < f_{MCK} \le 20 \text{ MHz}$	28/fмск		ns
		$8 \text{ MHz} < f_{MCK} \le 16 \text{ MHz}$	24/fмск		ns	
			$4 \text{ MHz} < \text{fmck} \le 8 \text{ MHz}$	16/fмск		ns
			fмск ≤ 4 MHz	12/fмск		ns
	$\begin{array}{ c c c c c c c c c } \hline 2.4 \ V \leq EV_{DD} < 3.3 \ V, & 20 \ V \\ \hline 1.6 \ V \leq V_b \leq 2.0 \ V \ Note \ 2 & 16 \ V \\ \hline \end{array}$		20 MHz < fmck \leq 24 MHz	72/fмск		ns
	$1.6 V \le V_b \le 2.0 V \text{ Note } 2$		$16 \text{ MHz} < f_{MCK} \le 20 \text{ MHz}$	64/fмск		ns
			$8 \text{ MHz} < \text{fmck} \le 16 \text{ MHz}$	52/fмск		ns
			$4 \text{ MHz} < \text{fmck} \le 8 \text{ MHz}$	32/fмск		ns
			fмск ≤ 4 MHz	20/fмск		ns
SCKp high-/low-level width	tĸн₂, tĸ∟₂	$4.0~V \leq EV_{\text{DD}} \leq 5.5~V,~2.7$	$V \le V_b \le 4.0 V$	tксү2/2 - 24		ns
		$2.7~V \leq EV_{DD} < 4.0~V,~2.3$	$V \leq V_b \leq 2.7~V$	tксү2/2 - 36		ns
		$2.4 \text{ V} \le \text{EV}_{\text{DD}} < 3.3 \text{ V}, 1.6$	$V \leq V_b \leq 2.0 \ V \ \text{Note 2}$	tксү2/2 - 100		ns
SIp setup time (to SCKp↑) ^{Note 3}	tsıĸ2	$2.7~V \leq EV_{DD} \leq 5.5~V,~2.3$	$V \leq V_b \leq 4.0 \ V$	1/fмск + 40		ns
		$2.4~\text{V} \leq \text{EV}_{\text{DD}} < 3.3~\text{V},~1.6$	$V \leq V_b \leq 2.0 \ V \ \text{Note 2}$	1/fмск + 60		ns
SIp hold time (from SCKp↑) Note 4	tĸsı2			1/fмск + 62		ns
Delay time from SCKp↓ to SOp output ^{Note 5}	tĸso2	$\begin{array}{l} 4.0 \mbox{ V} \leq \mbox{EV}_{\mbox{DD}} \leq 5.5 \mbox{ V}, 2.7 \\ C_b = 30 \mbox{ pF}, \mbox{ R}_b = 1.4 \mbox{ k}\Omega \end{array}$	$V \leq V_b \leq 4.0 \ V$		2/fмск + 240	ns
	-	$\begin{array}{l} 2.7 \ \text{V} \leq \text{EV}_{\text{DD}} < 4.0 \ \text{V}, \ 2.3 \\ \text{C}_{b} = 30 \ \text{pF}, \ \text{R}_{b} = 2.7 \ \text{k}\Omega \end{array}$	$V \leq V_b \leq 2.7 \ V$		2/fмск + 428	ns
		$\begin{array}{l} 2.4 \; V \leq {\sf EV}_{\sf DD} < 3.3 \; V, \; 1.6 \\ {\sf C}_{\sf b} = 30 \; p{\sf F}, \; {\sf R}_{\sf b} = 5.5 \; {\sf k}\Omega \end{array}$	$V \leq V_b \leq 2.0 \ V \ \text{Note 2}$		2/fмск + 1146	ns

(Notes, Caution and Remarks are listed on the next page.)

3.6.7 LVD circuit characteristics

(1) LVD Detection Voltage of Reset Mode and Interrupt Mode

Pa	arameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	Supply voltage level	VLVD0	Power supply rise time	3.90	4.06	4.22	V
			Power supply fall time	3.83	3.98	4.13	V
		VLVD1	Power supply rise time	3.60	3.75	3.90	V
			Power supply fall time	3.53	3.67	3.81	V
		Vlvd2	Power supply rise time	3.01	3.13	3.25	V
			Power supply fall time	2.94	3.06	3.18	V
		Vlvd3	Power supply rise time	2.90	3.02	3.14	V
			Power supply fall time	2.85	2.96	3.07	V
		Vlvd4	Power supply rise time	2.81	2.92	3.03	V
			Power supply fall time	2.75	2.86	2.97	V
		Vlvd5	Power supply rise time	2.71	2.81	2.92	V
			Power supply fall time	2.64	2.75	2.86	V
		Vlvd6	Power supply rise time	2.61	2.71	2.81	V
			Power supply fall time	2.55	2.65	2.75	V
		Vlvd7	Power supply rise time	2.51	2.61	2.71	V
		Power supply fall time 2.45		2.55	2.65	V	
Minimum pulse width	-	tLW		300			μs
Detection delay time						300	μs

(TA = -40 to +105°C, VPDR \leq EVDD = VDD \leq .5.5 V, Vss = 0 V)

(2) LVD Detection Voltage of Interrupt & Reset Mode

(TA = -40 to +105°C, VPDR \leq EVDD \leq VDD \leq 5.5 V, VSS = 0 V)

Parameter	Symbol	Conditions			MIN.	TYP.	MAX.	Unit
Interrupt and	VLVDD0	VPOC0,	VPOC0, VPOC1, VPOC2 = 0, 1, 1, falling reset voltage			2.75	2.86	V
reset mode	VLVDD1		LVIS0, LVIS1 = 1, 0	Rising release reset voltage	2.81	2.92	3.03	V
				Falling interrupt voltage	2.75	2.86	2.97	V
	VLVDD2		LVIS0, LVIS1 = 0, 1	Rising release reset voltage	2.90	3.02	3.14	V
				Falling interrupt voltage	2.85	2.96	3.07	V
	VLVDD3	LVIS0, LVIS1 = 0, 0	Rising release reset voltage	3.90	4.06	4.22	V	
				Falling interrupt voltage	3.83	3.98	4.13	V

3.6.8 Power supply voltage rising slope characteristics

(TA = -40 to +105°C, Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Power supply voltage rising slope	SVDD				54	V/ms

Caution Make sure to keep the internal reset state by the LVD circuit or an external reset until VDD reaches the operating voltage range shown in 3.4 AC Characteristics.

4. PACKAGE DRAWINGS

4.1 10-pin products

R5F1051AGSP, R5F1051AASP

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]	
P-LSSOP10-4.4x3.6-0.65	PLSP0010JA-A	P10MA-65-CAC-2	0.05	

Each lead centerline is located within 0.13 mm of its true position (T.P.) at maximum material condition.

	(UNIT:mm)		
ITEM	DIMENSIONS		
А	3.60±0.10		
В	0.50		
С	0.65 (T.P.)		
D	0.24 ± 0.08		
Е	0.10±0.05		
F	1.45 MAX.		
G	1.20±0.10		
Н	6.40±0.20		
I	4.40±0.10		
J	1.00±0.20		
К	$0.17^{+0.08}_{-0.07}$		
L	0.50		
М	0.13		
Ν	0.10		
Р	3° +5° -3°		
Т	0.25 (T.P.)		
U	0.60 ± 0.15		
V	0.25 MAX.		
W	0.15 MAX.		

©2012 Renesas Electronics Corporation. All rights reserved.

4.5 25-pin products

R5F1058AGLA, R5F1058AALA

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]	
P-WFLGA25-3x3-0.50	PWLG0025KA-A	P25FC-50-2N2-2	0.01	

© 2012 Renesas Electronics Corporation. All rights reserved.

