

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

XF

Product Status	Obsolete
Core Processor	RL78
Core Size	16-Bit
Speed	24MHz
Connectivity	CSI, I ² C, UART/USART
Peripherals	LVD, POR, WDT
Number of I/O	21
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	1.5K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 11x10b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	24-WFQFN Exposed Pad
Supplier Device Package	24-HWQFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f1057aana-w0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.6 **Outline of Functions**

This outline describes the functions at the time when Peripheral I/O redirection register 0 to 3 (PIOR0 to PIOR3) are set to 00H.

						(1/2)						
	Itom	10-pin	16-pin	20-pin	24-pin	25-pin						
	Item	R5F1051A	R5F1054A	R5F1056A	R5F1057A	R5F1058A						
Code flash r	nemory (KB)			16 Kbytes								
Data flash m	emory (KB)	2 Kbytes										
RAM		1.5 Kbytes										
Address spa	ice	1 Mbytes										
Main system clock	High-speed system clock (fмx)	X1 (crystal/ceramic) os 1 to 20 MHz: VDD = 2.7 = 1.6 to 1.8 V	scillation ^{Note} , external n 7 to 5.5 V, 1 to 16 MHz:	nain system clock inpu VDD = 2.4 to 2.7 V, 1 f	ut (EXCLK) to 8 MHz: VDD = 1.8 to 2	.4 V, 1 to 4 MHz: Vdd						
	High-speed on-chipHS (High-speed main) mode: 1 to 24 MHz (VDb = 2.7 to 5.5 V),oscillator clock (fiH)HS (High-speed main) mode: 1 to 16 MHz (VDb = 2.4 to 5.5 V),Max: 24 MHzLS (Low-speed main) mode: 1 to 8 MHz (VDb = 1.8 to 5.5 V),Middle-speed on- chip oscillator clock (fiM) Max: 4 MHzLV (Low-voltage main) mode: 1 to 4 MHz (VDb = 1.8 to 5.5 V),LP (Low-power main) mode: 1 MHz (VDb = 1.8 to 5.5 V)											
Subsystem clock	Low-speed on-chip oscillator clock (fiL)	15 kHz (typ.): VDD = 1	15 kHz (typ.): VDD = 1.6 to 5.5 V									
General-pur	pose register	8 bits × 32 registers (8	bits \times 8 registers \times 4 b	anks)								
Minimum ins	truction execution	0.04167 μs (High-speed on-chip oscillator clock: fiн = 24 MHz operation)										
time		0.05 μs (High-speed system clock: fмx = 20 MHz operation)										
Instruction s	ət	 Data transfer (8/16 bits) Adder and subtractor/logical operation (8/16 bits) Multiplication (8 bits × 8 bits, 16 bits × 16 bits), Division (16 bits ÷ 16 bits, 32 bits ÷ 32 bits) Multiplication and Accumulation (16 bits × 16 bits + 32 bits) Rotate, barrel shift, and bit manipulation (Set, reset, test, and Boolean operation), etc. 										
I/O port	Total	7	13	17	2	1						
	CMOS I/O	4	9	13	1	7						
	CMOS input	3			4							
Timer	16-bit timer	4 channels										
	Watchdog timer	1 channel										
	Timer KB 1 channel											
	12-bit interval timer	1 channel										
	8/16-bit interval timer	2 channels (8 bit)/1 ch	annel (16 bit)									
	Timer output	3	5		6							

Note 16, 20, 24, 25-pin products

Caution The flash library uses RAM in self-programming and rewriting of the data flash memory. The target products and start address of the RAM areas used by the flash library are shown below.

R5F105xA (x = 1, 4, 6, 7, 8): Start address FF900H

For the RAM areas used by the flash library, see Self RAM list of Flash Self-Programming Library for RL78 Family (R20UT2944).

2.2 Oscillator Characteristics

2.2.1 X1 characteristics

(TA = -40 to +85°C, 1.6 V \leq VDD \leq 5.5 V, Vss = 0 V)

Resonator	Conditions	MIN.	TYP.	MAX.	Unit	
X1 clock oscillation frequency (fx) Note	Ceramic resonator/	$2.7~V \le V \text{DD} \le 5.5~V$	1.0		20.0	MHz
	crystal resonator	$2.4~V \leq V \text{DD} < 2.7~V$	1.0		16.0	
		$1.8 \ V \leq V \text{DD} < 2.4 \ V$	1.0		8.0	
		$1.6~V \leq V \text{DD} < 1.8~V$	1.0		4.0	

Note Indicates only permissible oscillator frequency ranges. Refer to 2.4 AC Characteristics for instruction execution time. Request evaluation by the manufacturer of the oscillator circuit mounted on a board to check the oscillator characteristics.

Caution Since the CPU is started by the high-speed on-chip oscillator clock after a reset release, check the X1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user. Determine the oscillation stabilization time of the OSTC register and the oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.

Remark When using the X1 oscillator, refer to 6.4 System Clock Oscillator in the RL78/G11 User's Manual.

2.2.2 On-chip oscillator characteristics

(TA = -40 to +85°C, 1.6 V \leq VDD \leq 5.5 V, Vss = 0 V)

Oscillators		Conditions			MAX.	Unit	
High-speed on-chip oscillator clock frequency Notes 1, 2	fін	$2.7~V \leq V_{DD} \leq$	5.5 V	1		24	MHz
		$2.4~V \leq V_{DD} \leq$	5.5 V	1		16	
		$1.8~V \leq V_{DD} \leq$	5.5 V	1		8	
		$1.6~V \leq V_{DD} \leq$	5.5 V	1		4	
High-speed on-chip oscillator clock frequency accuracy		TA = -20 to	$1.8~V \leq V_{DD} \leq 5.5~V$	-1		1	%
		+85°C	$1.6~V \leq V_{DD} < 1.8~V$	-5		5	
		TA = -40 to -20°C	$1.8~V \leq V_{DD} \leq 5.5~V$	-1.5		1.5	%
			$1.6~V \leq V \text{dd} < 1.8~V$	-5.5		5.5	
Middle-speed on-chip oscillator oscillation frequency Note 2	fім			1		4	MHz
Middle-speed on-chip oscillator oscillation frequency accuracy				-12		+12	%
Temperature drift of Middle-speed on-chip oscillator oscillation frequency accuracy	DIMT				0.008		%/°C
Voltage drift of Middle-speed on-chip oscillator oscillation	Ым∨	TA = 25°C	$2.1~V \leq V_{DD} \leq 5.5~V$		0.02		%/V
frequency accuracy			$2.0~V \leq V_{DD} < 2.1~V$		-12		
			$1.6~V \leq V_{DD} < 2.0~V$		10		
Low-speed on-chip oscillator clock frequency Note 2	fı∟				15		kHz
Low-speed on-chip oscillator clock frequency accuracy				-15		+15	%

Note 1. High-speed on-chip oscillator frequency is selected with bits 0 to 3 of the option byte (000C2H) and bits 0 to 2 of the HOCODIV register.

Note 2. This only indicates the oscillator characteristics. Refer to 2.4 AC Characteristics for instruction execution time.

2.4 **AC Characteristics**

(TA = -40 to +85°C, 1.6 V \leq EVDD \leq VDD \leq 5.5 V, Vss = 0 V)									
Items	Symbol		Conditions		MIN.	TYP.	MAX.	Unit	
Instruction cycle	Тсү	Main system clock	HS (high-speed main)	$2.7~V \leq V\text{DD} \leq 5.5~V$	0.04167		1	μs	
(minimum instruction		(fMAIN) operation	mode	$2.4~V \leq V_{DD} < 2.7~V$	0.0625		1	μs	
execution time)			LS (low-speed main)	$1.8~V \le V \text{DD} \le 5.5~V$	0.125		1	μs	
			mode	PMMC. MCSEL = 0					
				$1.8 \text{ V} \leq \text{VDD} \leq 5.5 \text{ V}$	0.25		1		
				PMMC. MCSEL = 1					
			LP (low-power main) mode	$1.8 \text{ V} \leq \text{VDD} \leq 5.5 \text{ V}$		1		μS	
			LV (low-voltage main) mode	$1.6 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$	0.25		1	μS	
		Subsystem clock (fsub) operation	fiL	$1.8 \text{ V} \leq \text{VDD} \leq 5.5 \text{ V}$		66.7		μS	
		In the self-	HS (high-speed main)	$2.7~V \leq V\text{DD} \leq 5.5~V$	0.04167		1	μs	
		programming	mode	$2.4~V \leq V_{DD} < 2.7~V$	0.0625		1	μs	
		mode	LS (low-speed main) mode	$1.8 \text{ V} \leq \text{VDD} \leq 5.5 \text{ V}$	0.125		1	μs	
			LV (low-voltage main) mode	$1.8 \text{ V} \leq \text{V}\text{DD} \leq 5.5 \text{ V}$	0.25		1	μs	
External system	fEX	$2.7 \text{ V} \leq \text{VDD} \leq 5.5 \text{ V}$	/	-4	1		20	MHz	
clock frequency		$2.4 \text{ V} \leq \text{V}_{DD} < 2.7 \text{ V}$	/		1		16	MHz	
		$1.8 \text{ V} \leq \text{V}_{DD} < 2.4 \text{ V}_{DD}$	/		1		8	MHz	
		$1.6 \text{ V} \leq \text{V}_{DD} < 1.8 \text{ V}_{DD}$	/		1		4	MHz	
External system	texн,	$2.7 \text{ V} \leq \text{VDD} \leq 5.5 \text{ V}$	/		24			ns	
clock input high-/low-	t EXL	$2.4 \text{ V} \leq \text{V}_{DD} < 2.7 \text{ V}$	/		30			ns	
level width		$1.8 \text{ V} \leq \text{V}_{DD} < 2.4 \text{ V}_{DD}$	/		60			ns	
		$1.6 \text{ V} \leq \text{V}_{DD} < 1.8 \text{ V}_{DD}$	/	120			ns		
TI00 to TI03 input	tтıн,				1/fмск +			ns	
high-/low-level width	t TIL ^{Note}				10				

(TA = -40 to +85°C, 1.6 V \leq EVDD \leq VDD \leq 5.5 V, Vss = 0 V)

Note Following conditions must be satisfied on low level interface of EVDD < VDD. $1.8~V \leq EV\text{DD} \leq 2.7~V\text{:}$ MIN. 125 ns $1.6~V \leq EV_{DD}$ < 1.8 V: MIN. 250 ns

Remark fмск: Timer array unit operation clock frequency (Operation clock to be set by the CKSmn bit of timer mode register mn (TMRmn). m: Unit number (m = 0), n: Channel number (n = 0 to 3))

AC Timing Test Points

External System Clock Timing

TI/TO Timing

2.5.1 Serial array unit

(1) During communication at same potential (UART mode)

When P01, P30, P31 and P54 are used as TxDq pins (Ta = -40 to +85°C, 1.6 V \leq EVDD \leq VDD \leq 5.5 V, Vss = 0 V)

Parameter	Symbol	Conditions HS (high-speed main Mode		peed main) ode	LS (low-speed main) Mode		LP (Low-power main) mode		LV (low-voltage main) Mode		Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Transfer rate		$2.7~V \le EV_{DD} \le 5.5V$		fмск/6		fмск/6		fмск/6		fмск/6	bps
Note 1, 2		Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK} Note 3$		4.0		1.3		0.1		0.6	Mbps
		$1.8~V \le EV_{DD} \le 5.5~V$		fмск/6		fмск/6		fмск/6		fмск/6	bps
		Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK} Note 3$		4.0		1.3		0.1		0.6	Mbps
		$1.7~V \leq EV_{DD} \leq 5.5~V$		fмск/6		fмск/6		fмск/6		fмск/6	bps
		Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}$ Note 3		4.0		1.3		0.1		0.6	Mbps
		$1.6~V \le EV_{DD} \le 5.5~V$	-	_		fмск/6		fмск/6		fмск/6	bps
		Theoretical value of the maximum transfer rate fMCK = f _{CLK} Note 3	-	_		1.3		0.1		0.6	Mbps

Note 1. Transfer rate in the SNOOZE mode is 4800 bps only.

Note 2. Following conditions must be satisfied on low level interface of EVDD < VDD.

 $2.4~V \leq EV_{DD} \leq 2.7~V:~MAX.2.6~Mbps$

 $1.8 \text{ V} \leq \text{EV}_{\text{DD}} \leq 2.4 \text{ V}$: MAX.1.3 Mbps

 $1.6 \text{ V} \le \text{EV}_{\text{DD}} \le 1.8 \text{ V}$: MAX.0.6 Mbps

 $\label{eq:Note 3.} \qquad \mbox{The maximum operating frequencies of the CPU/peripheral hardware clock (fclk) are:}$

HS (high-speed main) mode:	24 MHz (2.7 V \leq EVDD \leq 5.5 V)
	16 MHz (2.4 V \leq EVDD \leq 5.5 V)
LS (low-speed main) mode:	8 MHz (1.8 V \leq EVDD \leq 5.5 V)
LP (low-power main) mode:	1 MHz (1.8 V \leq EVDD \leq 5.5 V)
LV (low-voltage main) mode:	4 MHz (1.6 V \leq EVDD \leq 5.5 V)

Caution Select the normal input buffer for the RxDq pin and the normal output mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg).

When P20 is used as SO10 pin

(TA = -40 to +85°C, 1.6 V \leq EVDD \leq VDD \leq 5.5 V, Vss = 0 V)

Parameter	Symbol	ol Conditions		HS (higl main)	h-speed Mode	LS (low main)	/-speed Mode	LP (Lov main)	v-power mode	LV (low- main)	-voltage Mode	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle	tkCY1	tkcy1 ≥ 4/fclk	$4.0~V \leq V_{DD} \leq 5.5~V$	600		600		4000		1000		ns
time			$2.7~V \leq V \text{DD} \leq 5.5~V$	850		850						
			$2.4~V \leq V_{DD} \leq 5.5~V$	1000		1000						
			$1.8~V \leq V \text{DD} \leq 5.5~V$	—		1500				1500		
			$1.7~V \leq V_{DD} \leq 5.5~V$	—		—		—		2000		
			$1.6~V \leq V \text{DD} \leq 5.5~V$	—		—		—				
SCKp high-/ low-level	tĸнı, tĸ∟ı	$4.0 V \le V_{DD} \le 3$	5.5 V	tксү1/2 - 12		tксү1/2 - 50		tксү1/2 - 50		tксү1/2 - 50		ns
width		$2.7 \text{ V} \leq \text{V}_{DD} \leq 3$	5.5 V	tксү1/2 - 18								
		$2.4 \text{ V} \leq \text{Vdd} \leq 5.5 \text{ V}$		tксү1/2 - 38								
		$1.8 \text{ V} \leq \text{Vdd} \leq 5.5 \text{ V}$		_								
		$1.7~V \leq V_{DD} \leq$	5.5 V	—		—		—		tксү1/2		
		$1.6~V \leq V_{DD} \leq 5.5~V$		—		—		—		- 100		
SIp setup	tsik1	$4.0~V \leq V_{DD} \leq 5.5~V$		44		110		110		110		ns
time (to SCKpt)		$2.7~V \leq V \text{dd} \leq 5.5~V$										
Note 1		$2.4~V \leq V_{DD} \leq$	5.5 V	75								
		$1.8~V \le V_{DD} \le$	5.5 V	_								
		$1.7~V \leq V_{DD} \leq$	5.5 V	—		—		—		220		
		$1.6 \text{ V} \leq \text{V}_{\text{DD}} \leq 1.6 \text{ V}$	5.5 V	—		_		_				
SIp hold	tksi1	$2.4~V \leq V_{DD} \leq$	5.5 V	19		19		19		19		ns
time (from		$1.8~V \le V_{DD} \le$	5.5 V	—								
Note 2		$1.6~V \le V_{DD} \le$	5.5 V	—		—		—				
Delay time	tkso1	C = 30 pF	$2.4~V \leq V_{DD} \leq 5.5~V$		150		250		250		300	ns
from SCKp↓		Note 4	$1.8~V \le V_{DD} \le 5.5~V$		_							
output Note 3			$1.6~V \leq V_{DD} \leq 5.5~V$		—		—		—			

Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The Slp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 4. C is the load capacitance of the SCKp and SOp output lines.

Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remark 1. p: CSI number (p = 00, 01, 10 and 11), m: Unit number (m = 0), n: Channel number (n = 0 to 3), g: PIM and POM numbers (g = 0, 4 and 12)

Remark 2. fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03))

CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

Remark 1. p: CSI number (p = 00, 01, 10 and 11) **Remark 2.** m: Unit number, n: Channel number (mn = 00 to 03)

(2/2)

-		_				-		-				
Parameter Symbol			Conditions		HS (high-speed main) Mode		LS (low-speed main) Mode		w-power) mode	LV (low-voltage main) Mode		Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Transfer rate		Transmission			Note 1		Note 1		Note 1		Note 1	bps
			Theoretical value of the maximum transfer rate C_b = 50 pF, R_b = 1.4 k Ω , V_b = 2.7 V		2.8 Note 2		2.8 Note 2		2.8 Note 2		2.8 Note 2	Mbps
			$2.7 \text{ V} \le \text{EV}_{\text{DD}} < 4.0 \text{ V},$ $2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V}$		Note 3		Note 3		Note 3		Note 3	bps
			Theoretical value of the maximum transfer rate C_b = 50 pF, R_b = 2.7 k Ω , V_b = 2.3 V		1.2 Note 4		1.2 Note 4		1.2 Note 4		1.2 Note 4	Mbps
			$\begin{array}{l} 1.8 \ V \leq EV_{DD} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V \end{array}$		Notes 5, 6		Notes 5, 6		Notes 5, 6		Notes 5, 6	bps
			Theoretical value of the maximum transfer rate C_b = 50 pF, R_b = 5.5 kΩ, V_b = 1.6 V		0.43 Note 7		0.43 Note 7		0.43 Note 7		0.43 Note 7	Mbps

$(TA = -40 \text{ to } +85^{\circ}C, 1.8 \text{ V} \le EVDD \le VDD \le 5.5 \text{ V}, \text{ Vss} = 0 \text{ V})$

Note 1. The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate. Expression for calculating the transfer rate when 4.0 V \leq EVDD \leq 5.5 V and 2.7 V \leq Vb \leq 4.0 V

Maximum transfer rate =

$$\frac{}{\{-C_b \times R_b \times ln (1 - \frac{2.2}{V_b})\} \times 3}$$
[bps]

1

Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{2.2}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}}$$

* This value is the theoretical value of the relative difference between the transmission and reception sides

Note 2. This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 1 above to calculate the maximum transfer rate under conditions of the customer.

Note 3. The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate. Expression for calculating the transfer rate when 2.7 V \leq EVDD \leq 4.0 V and 2.3 V \leq Vb \leq 2.7 V

$$= \frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.0}{V_b})\} \times 3}$$

1

Baud rate error (theoretical value) = $(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}$

* This value is the theoretical value of the relative difference between the transmission and reception sides

Note 4. This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 3 above to calculate the maximum transfer rate under conditions of the customer.

Note 5. Use it with $EVDD \ge Vb$.

Maximum

CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

Remark p: CSI number (p = 00, 01, 10 and 11), m: Unit number (m = 0), n: Channel number (n = 0 to 3), g: PIM and POM numbers (g = 0, 2, 3 to 5 and 12)

(9) Communication at different potential (1.8 V, 2.5 V, 3.0 V) (CSI mode) (slave mode, SCKp... external clock input)

Parameter	Symb	Ca	Conditions		h-speed Mode	LS (low main)	-speed Mode	LP (Low main)	v-power mode	LV (low- main)	voltage Mode	Unit
	U			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle	t ксү2	$4.0~V \leq EV_{\text{DD}} \leq 5.5~V,$	20 MHz < fmck \leq 24 MHz	12/fмск		_		—		-		ns
time Note 1		$2.7~V \le Vb \le 4.0~V$	8 MHz < fмск ≤ 20 MHz	10/fмск		_		_		—		ns
			4 MHz < fмск ≤ 8 MHz	8/fмск		16/fмск		_		—		ns
			$fMCK \leq 4 \ MHz$	6/fмск		10/fмск		10/fмск		10/fмск		ns
		$2.7~V \leq EV_{\text{DD}}$ < 4.0 V,	20 MHz < fmck \leq 24 MHz	16/f мск		-		_		-		ns
		$2.3~V \leq Vb \leq 2.7~V$	16 MHz < fmck \leq 20 MHz	14/fмск		-		-		-		ns
			8 MHz < fmck \leq 16 MHz	12/fмск				_		-		ns
			$4 \text{ MHz} < f_{\text{MCK}} \le 8 \text{ MHz}$	8/fмск		16/fмск				-		ns
			$fMCK \leq 4 \ MHz$	6/fмск		10/fмск		10/fмск		10/fмск		ns
		$\begin{array}{l} 1.8 \ V \leq EV_{DD} < 2.7 \ V, \\ 1.6 \ V \leq V_{D} \leq 2.0 \ V \\ Note \ 2 \end{array}$	20 MHz < fmck \leq 24 MHz	36/fмск				_		-		ns
			16 MHz < fmck \leq 20 MHz	32/fмск		I				-		ns
			8 MHz < fmck \leq 16 MHz	26/fмск		I		I		-		ns
		$4 \text{ MHz} < f_{\text{MCK}} \le 8 \text{ MHz}$	16/fмск		16/fмск		I		—		ns	
			fмск \leq 4 MHz	10/fмск		10/fмск		10/fмск		10/fмск		ns
SCKp high-/ tkH2, low-level tkL2	tкн2, tкL2	$\begin{array}{l} 4.0 \ V \leq EV_{DD} \leq 5.5 \ V, \ 2.7 \ V \leq V_{b} \leq 4.0 \ V \\ \\ \hline \\ 2.7 \ V \leq EV_{DD} < 4.0 \ V, \ 2.3 \ V \leq V_{b} \leq 2.7 \ V \end{array}$		tксү2/2 - 12		tксү2/2 - 50		tксү2/2 - 50		tксү2/2 - 50		ns
width				tксү2/2 - 18		tксү2/2 - 50		tксү2/2 - 50		tксү2/2 - 50		ns
		$1.8 \text{ V} \le \text{EV}_{\text{DD}} < 3.3 \text{ V}, 1.6$	$V \leq Vb \leq 2.0~V$ Note 2	tксү2/2 - 50		tксү2/2 - 50		tксү2/2 - 50		tксү2/2 - 50		ns
Slp setup time (to	tsıк2	$4.0 \text{ V} \leq \text{EV}_{\text{DD}} \leq 5.5 \text{ V}, 2.7 \text{ V} \leq \text{V}_b \leq 4.0 \text{ V}$		1/fмск + 20		1/fмск + 30		1/fмск + 30		1/fмск + 30		ns
SCKp↑) Note 3		$2.7 \ V \leq EV_{DD} < 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V$				1/fмск + 30		1/fмск + 30		1/fмск + 30		ns
		1.8 V \leq EV_{DD} < 3.3 V, 1.6 V \leq Vb \leq 2.0 V Note 2		1/fмск + 30		1/fмск + 30		1/fмск + 30		1/fмск + 30		ns
SIp hold time (from SCKp↑) Note 3	tksi2			1/fмск + 31		1/fмск + 31		1/fмск + 31		1/fмск + 31		ns
Delay time from SCKp↓	tkso2	$\begin{array}{l} 4.0 \ V \leq EV_{DD} \leq 5.5 \ V, \ 2.7 \\ C_b = 30 \ pF, \ R_b = 1.4 \ k\Omega \end{array}$	$V \leq Vb \leq 4.0 \text{ V},$		2/fмск + 120		2/fмск + 573		2/fмск + 573		2/fмск + 573	ns
to SOp output ^{Note 4}		$\begin{array}{l} 2.7 \ V \leq EV_{DD} < 4.0 \ V, \ 2.3 \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	$V \le Vb \le 2.7 V$,		2/fмск + 214		2/fмск + 573		2/fмск + 573		2/fмск + 573	ns
		$\label{eq:VDD} \begin{array}{l} 1.8 \ V \leq EV_{DD} < 3.3 \ V, \ 1.6 \\ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$	$V \le Vb \le 2.0 V$ Note 2,		2/fмск + 573		2/fмск + 573		2/fмск + 573		2/fмск + 573	ns

(TA = -40 to 85°C, 1.8 V \leq EVDD \leq VDD \leq 5.5 V, Vss = 0 V)

(Notes, Caution and Remarks are listed on the next page.)

2.6 Analog Characteristics

2.6.1 A/D converter characteristics

Classification of A/D converter characteristics

Reference Voltage	Reference voltage (+) = AVREFP Reference voltage (-) = AVREFM	Reference voltage (+) = V _{DD} Reference voltage (-) = Vss	Reference voltage (+) = V _{BGR} Reference voltage (-)= AV _{REFM}
ANI0 to ANI3	Refer to 2.6.1 (1).	Refer to 2.6.1 (3).	Refer to 2.6.1 (4).
ANI16 to ANI22	Refer to 2.6.1 (2).		
Internal reference voltage Temperature sensor output voltage	Refer to 2.6.1 (1) .		_

(1) When reference voltage (+) = AVREFP/ANI0 (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pin: ANI2 and ANI3, internal reference voltage, and temperature sensor output voltage

(TA = -40 to +85°C, 1.6 V \leq AVREFP \leq VDD \leq 5.5 V, Vss = 0 V, Reference voltage (+) = AVREFP, Reference voltage (-) = AVREFM = 0 V)

Parameter	Symbol	Conditions			TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error Note 1	AINL	10-bit resolution	$1.8~V \leq AV_{\text{REFP}} \leq 5.5~V$		1.2	±3.5	LSB
		AVREFP = VDD Note 3	$1.6~V \leq AV_{REFP} \leq 5.5~V~^{Note~4}$		1.2	±7.0	LSB
Conversion time	tCONV	10-bit resolution	$3.6~V \leq V_{DD} \leq 5.5~V$	2.125		39	μs
		Target pin: ANI2 and ANI3	$2.7~V \leq V_{DD} \leq 5.5~V$	3.1875		39	μs
			$1.8~V \leq V_{DD} \leq 5.5~V$	17		39	μs
			$1.6~V \leq V_{DD} \leq 5.5~V$	57		95	μs
		10-bit resolution	$3.6~V \leq V_{DD} \leq 5.5~V$	2.375		39	μs
		Target pin: Internal reference voltage,	$2.7~V \leq V_{DD} \leq 5.5~V$	3.5625		39	μs
		and temperature sensor output voltage	$1.8~V \leq V_{DD} \leq 5.5~V$	17		39	μs
Zero-scale error Notes 1, 2	Ezs	10-bit resolution	$1.8~V \leq AV_{\text{REFP}} \leq 5.5~V$			±0.25	%FSR
		AVREFP = VDD Note 3	$1.6~V \leq AV_{\text{REFP}} \leq 5.5~V~^{Note~4}$			±0.50	%FSR
Full-scale error Notes 1, 2	Ers	10-bit resolution	$1.8~V \leq AV_{\text{REFP}} \leq 5.5~V$			±0.25	%FSR
		AVREFP = VDD Note 3	$1.6~V \leq AV_{\text{REFP}} \leq 5.5~V~^{Note~4}$			±0.50	%FSR
Integral linearity error Note 1	ILE	10-bit resolution	$1.8~V \leq AV_{\text{REFP}} \leq 5.5~V$			±2.5	LSB
		AVREFP = VDD Note 3	$1.6~V \leq AV_{\text{REFP}} \leq 5.5~V~^{Note~4}$			±5.0	LSB
Differential linearity error Note 1	DLE	10-bit resolution	$1.8~V \leq AV_{REFP} \leq 5.5~V$			±1.5	LSB
		AVREFP = VDD Note 3	$1.6~V \leq \text{AV}_{\text{REFP}} \leq 5.5~V~^{\text{Note}~4}$			±2.0	LSB
Analog input voltage	VAIN	ANI2 and ANI3		0		AVREFP	V
		Internal reference voltage $(1.8 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V})$		١	/BGR Note	5	V
		Temperature sensor output voltage (1.8 V \leq V _{DD} \leq 5.5 V)			MPS25 Not	e 5	V

Note 1. Excludes quantization error (±1/2 LSB).

Note 2. This value is indicated as a ratio (%FSR) to the full-scale value.

Note 3.	When AVREFP < VDD, the MAX. values are as follows	ows.
	Overall error:	Add ± 1.0 LSB to the MAX. value when AV _{REFP} = V _{DD} .
	Zero-scale error/Full-scale error:	Add $\pm 0.05\%$ FSR to the MAX. value when AVREFP = VDD.
	Integral linearity error/ Differential linearity error:	Add ± 0.5 LSB to the MAX. value when AVREFP = VDD.
Note 4.	Values when the conversion time is set to 57 μs ((min.) and 95 μs (max.).

Note 5. Refer to 2.6.2 Temperature sensor characteristics/internal reference voltage characteristic.

(TA = -40 to +10)5°C, 2.4	$V \le EVDD \le VDD \le 5.5 V$, Vss = 0) V)					(5/5)
Items	Symbol	Cond	litions		MIN.	TYP.	MAX.	Unit
Input leakage current, high	Ілн1	P00, P01, P30 to P33, P40, and P51 to P56	VI = EVDD				1	μA
	ILIH2	P20 to P23, P125, P137, RESET	VI = VDD				1	μA
	Ілнз	P121, P122, X1, X2, EXCLK	VI = VDD	In input port or external clock input			1	μA
				In resonator connection			10	μA
Input leakage current, low	ILIL1	P00, P01, P30 to P33, P40, and P51 to P56	VI = Vss				-1	μA
	ILIL2	P20 to P23, P125, P137, RESET	VI = Vss				-1	μA
	Ilil3	P121, P122, X1, X2, EXCLK	VI = Vss	In input port or external clock input			-1	μA
				In resonator connection			-10	μA
On-chip pull-up resistance	Ru	P00, P01, P30 to P33, P40, P51 to P56, P125	Vı = Vss, In	input port	10	20	100	kΩ

(TA = -40 to +105°C, 2.4 V \leq EVDD \leq VDD \leq 5.5 V, Vss = 0 V)

Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins. Remark

Simplified I²C mode connection diagram (during communication at same potential)

Simplified I²C mode serial transfer timing (during communication at same potential)

 $\label{eq:result} \textbf{Remark 1. } Rb[\Omega]: Communication line (SDAr) pull-up resistance, Cb[F]: Communication line (SDAr, SCLr) load capacitance and capacitance$

Remark 2. r: IIC number (r = 00, 01, 10 and 11), g: PIM number (g = 0, 3 and 5), h: POM number (h = 0, 3 and 5)

Remark 3. fmck: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0), n: Channel number (n = 0 to 3), mn = 00 to 03)

CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

Remark p: CSI number (p = 00, 01, 10 and 11), m: Unit number (m = 0), n: Channel number (n = 0 to 3), g: PIM and POM numbers (g = 0, 2, 3 to 5 and 12)

3.5.2 Serial interface IICA

$(TA = -40 \text{ to } +105^{\circ}C, 2.4 \text{ V} \le EVDD \le VDD \le 5.5 \text{ V}, \text{ Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	HS (high-speed main) mode		Unit		
			Standar	d mode	Fast	mode	
			MIN.	MAX.	MIN.	MAX.	
SCLA0 clock frequency	fscL	Fast mode: fc∟κ ≥ 3.5 MHz	_	—	0	400	kHz
		Standard mode: fc∟ĸ ≥ 1 MHz	0	100	_	—	kHz
Setup time of restart condition	tsu: sta		4.7		0.6		μs
Hold time Note 1	thd: STA		4.0		0.6		μs
Hold time when SCLA0 = "L"	tLow		4.7		1.3		μs
Hold time when SCLA0 = "H"	tнigн		4.0		0.6		μs
Data setup time (reception)	tsu: dat		250		100		ns
Data hold time (transmission) Note 2	thd: dat		0	3.45	0	0.9	μs
Setup time of stop condition	tsu: sto		4.0		0.6		μs
Bus-free time	t BUF		4.7		1.3		μs

Note 1. The first clock pulse is generated after this period when the start/restart condition is detected.

Note 2. The maximum value (MAX.) of tHD: DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

Caution The values in the above table are applied even when bit 2 (PIOR02) in the peripheral I/O redirection register 0 (PIOR0) is 1. At this time, the pin characteristics (IOH1, IOL1, VOH1, VOL1) must satisfy the values in the redirect destination.

Remark The maximum value of C_b (communication line capacitance) and the value of R_b (communication line pull-up resistor) at that time in each mode are as follows.

Standard mode: $C_b = 400 \text{ pF}, R_b = 2.7 \text{ k}\Omega$ Fast mode: $C_b = 320 \text{ pF}, R_b = 1.1 \text{ k}\Omega$

IICA serial transfer timing

Remark n = 0, 1

(2) When reference voltage (+) = AVREFP/ANIO (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pin: ANI16 to ANI22

Parameter	Symbol	Conc	litions	MIN.	TYP.	MAX.	Unit
Resolution	RES		8		10	bit	
Overall error ^{Note 1}	AINL	10-bit resolution EVDD \leq AVREFP = VDD Notes 3, 4	$2.4~V \le AV_{REFP} \le 5.5~V$		1.2	±5.0	LSB
Conversion time	tconv	10-bit resolution	$3.6~V \leq V_{DD} \leq 5.5~V$	2.125		39	μs
		Target ANI pin: ANI16 to ANI22	$2.7~V \leq V_{DD} \leq 5.5~V$	3.1875		39	μs
			$2.4~\text{V} \leq \text{V}_{\text{DD}} \leq 5.5~\text{V}$	17		39	μs
Zero-scale error Notes 1, 2	Ezs	10-bit resolution EVDD \leq AVREFP = VDD Notes 3, 4	$2.4 \text{ V} \le \text{AV}_{\text{REFP}} \le 5.5 \text{ V}$			±0.35	%FSR
Full-scale error Notes 1, 2	Efs	10-bit resolution EVDD \leq AVREFP = VDD Notes 3, 4	$2.4~V \leq AV_{REFP} \leq 5.5~V$			±0.35	%FSR
Integral linearity error ^{Note 1}	ILE	10-bit resolution EVDD \leq AVREFP = VDD Notes 3, 4	$2.4~V \leq AV_{REFP} \leq 5.5~V$			±3.5	LSB
Differential linearity error ^{Note 1}	DLE	10-bit resolution EVDD \leq AVREFP = VDD Notes 3, 4	$2.4~V \leq AV_{REFP} \leq 5.5~V$			±2.0	LSB
Analog input voltage	VAIN	ANI16 to ANI22		0		AVREFP and EVDD	V

(TA = -40 to +105°C, 2.4 V \leq EVDD \leq VDD \leq 5.5 V, 2.4 V \leq AVREFP \leq VDD \leq 5.5 V, Vss = 0 V, Reference voltage (+) = AVREFP, Reference voltage (-) = AVREFM = 0 V)

Excludes quantization error (±1/2 LSB). Note 1.

Note 2. This value is indicated as a ratio (%FSR) to the full-scale value.

Note 3. When $EVDD \le AVREFP \le VDD$, the MAX. values are as follows.

	Overall error:	Add ±1.0 LSB to the MAX. value when AVREFP = VDD.
	Zero-scale error/Full-scale error:	Add $\pm 0.05\%$ FSR to the MAX. value when AVREFP = VDD.
	Integral linearity error/ Differential linearity error:	Add ±0.5 LSB to the MAX. value when AVREFP = VDD.
Note 4.	When AVREFP < EVDD \leq VDD, the MAX. values an	e as follows.
	Overall error:	Add ±4.0 LSB to the MAX. value when AVREFP = VDD.

Zero-scale error/Full-scale error:

Add $\pm 0.20\%$ FSR to the MAX. value when AVREFP = VDD. Integral linearity error/ Differential linearity error: Add ±2.0 LSB to the MAX. value when AVREFP = VDD.

3.6.7 LVD circuit characteristics

(1) LVD Detection Voltage of Reset Mode and Interrupt Mode

Pa	arameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	Supply voltage level	VLVD0	Power supply rise time	3.90	4.06	4.22	V
			Power supply fall time	3.83	3.98	4.13	V
		VLVD1	Power supply rise time	3.60	3.75	3.90	V
			Power supply fall time	3.53	3.67	3.81	V
		Vlvd2	Power supply rise time	3.01	3.13	3.25	V
			Power supply fall time	2.94	3.06	3.18	V
		Vlvd3	Power supply rise time	2.90	3.02	3.14	V
			Power supply fall time	2.85	2.96	3.07	V
		VLVD4	Power supply rise time	2.81	2.92	3.03	V
			Power supply fall time	2.75	2.86	2.97	V
		Vlvd5	Power supply rise time	2.71	2.81	2.92	V
			Power supply fall time	2.64	2.75	2.86	V
		Vlvd6	Power supply rise time	2.61	2.71	2.81	V
			Power supply fall time	2.55	2.65	2.75	V
		Vlvd7	Power supply rise time	2.51	2.61	2.71	V
			Power supply fall time	2.45	2.55	2.65	V
Minimum pulse width	-	tLW		300			μs
Detection delay time						300	μs

(TA = -40 to +105°C, VPDR \leq EVDD = VDD \leq .5.5 V, Vss = 0 V)

(2) LVD Detection Voltage of Interrupt & Reset Mode

(TA = -40 to +105°C, VPDR \leq EVDD \leq VDD \leq 5.5 V, Vss = 0 V)

Parameter	Symbol		Con	ditions	MIN.	TYP.	MAX.	Unit
Interrupt and	VLVDD0	VPOC0,	VPOC1, VPOC2 = 0, 1, 1, fa	alling reset voltage	2.64	2.75	2.86	V
reset mode	VLVDD1		LVIS0, LVIS1 = 1, 0 Rising release reset voltage		2.81	2.92	3.03	V
				Falling interrupt voltage	2.75	2.86	2.97	V
	VLVDD2		LVIS0, LVIS1 = 0, 1	Rising release reset voltage	2.90	3.02	3.14	V
				Falling interrupt voltage	2.85	2.96	3.07	V
	VLVDD3		LVIS0, LVIS1 = 0, 0	Rising release reset voltage	3.90	4.06	4.22	V
				Falling interrupt voltage	3.83	3.98	4.13	V

3.6.8 Power supply voltage rising slope characteristics

(TA = -40 to +105°C, Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Power supply voltage rising slope	SVDD				54	V/ms

Caution Make sure to keep the internal reset state by the LVD circuit or an external reset until VDD reaches the operating voltage range shown in 3.4 AC Characteristics.

4.2 16-pin products

R5F1054AGSP, R5F1054AASP

JEITA Package code RENESAS code		Previous code	MASS(TYP.)[g]
P-SSOP16-4.4x5-0.65	PRSP0016JC-B	P16MA-65-FAB	0.08

Terminal cross section

Referance	Dimens	sion in Mil	limeters
Symbol	Min	Nom	Max
D	4.85	5.00	5.15
D ₁	5.05	5.20	5.35
E	4.20	4.40	4.60
A ₂		1.50	
A ₁	0.075	0.125	0.175
А			1.725
bp	0.17	0.24	0.32
b1		0.22	
С	0.14	0.17	0.20
C ₁		0.15	
θ	0°		8°
H _E	6.20	6.40	6.60
е		0.65	
х			0.13
у			0.10
ZD		0.225	
L	0.35	0.50	0.65
L ₁		1.00	

4.5 25-pin products

R5F1058AGLA, R5F1058AALA

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-WFLGA25-3x3-0.50	PWLG0025KA-A	P25FC-50-2N2-2	0.01

© 2012 Renesas Electronics Corporation. All rights reserved.

Rev.	Date	Description	
		Page	Summary
2.00	Feb 15, 2018	p.13, 14	Modification of table in 1.6 Outline of Functions
		p.18	Modification of 2.2.2 On-chip oscillator characteristics
		p.19, 21	Modification of 2.3.1 Pin characteristics
		p.24	Modification of 2.3.2 Supply current characteristics
		p.32	Modification of 2.4 AC Characteristics
		p.79	Modification of figure in 2.10 Timing of Entry to Flash Memory Programming Modes
		p.84	Modification of 3.2.1 X1 characteristics
		p.84	Modification of 3.2.2 On-chip oscillator characteristics
		p.85, 86, 87	Modification of 3.3.1 Pin characteristics
		p.95	Modification of 3.4 AC Characteristics
		p.99	Modification of note in 3.5.1 Serial array unit (1)
		p.134	Modification of figure in 3.10 Timing of Entry to Flash Memory Programming Modes

SuperFlash is a registered trademark of Silicon Storage Technology, Inc. in several countries including the United States and Japan.

Caution: This product uses SuperFlash[®] technology licensed from Silicon Storage Technology, Inc.

All trademarks and registered trademarks are the property of their respective owners.