

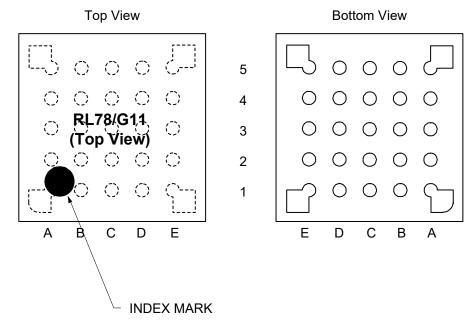
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


Details	
Product Status	Active
Core Processor	RL78
Core Size	16-Bit
Speed	24MHz
Connectivity	CSI, I ² C, UART/USART
Peripherals	LVD, POR, WDT
Number of I/O	21
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	1.5K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 11x10b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	25-WFLGA
Supplier Device Package	25-LGA (3x3)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f1058agla-u0

Email: info@E-XFL.COM

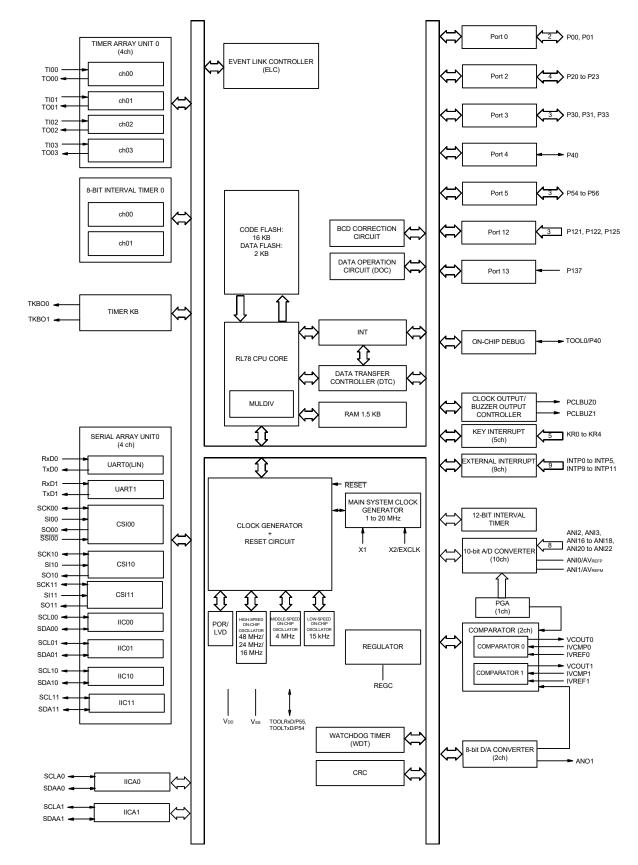
Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.3.5 25-pin products

• 25-pin plastic WFLGA (3 × 3 mm, 0.5 mm pitch)

	А	В	С	D	E	
5	P40/TOOL0/TO03/(PC LBUZ0)/SCK10/SCL10 /VCOUT0/VCOUT1/IN TFO/(SCLA1)	P125/RESET/INTP9	P01/ANI16/INTP5/SO1 0/TxD1	P20/ANI0/AVREFP/IV REF1/(SO10/TxD1)	P21/ANI1/AVREFM/IV REF0	5
4	P122/X2/EXCLK/(SI10 /RxD1)/(TI02)/INTP1	P137/INTP0/SSI00/(TI 03)	P00/ANI17/PCLBUZ1/ TI03/(VCOUT1)/SI10/ RxD1/SDA10/(SDAA1)	P22/ANI2/PGAI/IVCM P0	P23/ANI3/ANO1/PGA GND	4
3	P121/X1/(TI01)/INTP2/ (SI01)	Vdd	EVDD	P33/ANI18/IVCMP1/(I NTP11)/(SCLA1)	P32/ANI19/SO11/(INT P10)/(VCOUT1)/(SDA A1)	3
2	REGC	Vss	P30/ANI21/KR1/TI00/T O01/INTP3/SCK11/SC L11/(TxD0)/PCLBUZ0/ TKBO1/(SDAA0)	P31/ANI20/KR0/TI01/T O00/INTP4/TKBO0/(R xD0)/SI11/SDA11/(SC LA0)	P56/ANI22/KR2/SCK0 0/SCL00/(SO11)/INTP 10/(TO03)/(INTFO)/SC LA1	2
1	P51/KR7/INTP8/(TI02) /(TO02)/SCK01/SCL01 /(TxD0)	P52/KR6/INTP7/SI01/ SDA01/(RxD0)/(SDAA 0)	P53/KR5/INTP6/SO01/ SDAA0	P54/KR4/SO00/TxD0/ TOOLTXD/(TI03)/(TO0 3)/SCLA0	P55/KR3/SI00/RxD0/S DA00/TOOLRXD/TI02/ TO02/INTP11/(VCOUT 0)/SDAA1	1
	А	В	С	D	E	

Caution Connect the REGC pin to Vss pin via a capacitor (0.47 to 1 μ F).


Remark 1. For pin identification, see 1.4 Pin Identification.

Remark 2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register 0 to 3 (PIOR0 to PIOR3).

<R>

1.5.3 20-pin products

2.2 Oscillator Characteristics

2.2.1 X1 characteristics

(TA = -40 to +85°C, 1.6 V \leq VDD \leq 5.5 V, Vss = 0 V)

Resonator	Resonator	Conditions	MIN.	TYP.	MAX.	Unit
X1 clock oscillation frequency (fx) Note	Ceramic resonator/	$2.7~V \leq V_{DD} \leq 5.5~V$	1.0		20.0	MHz
	crystal resonator	$2.4~V \leq V \text{DD} < 2.7~V$	1.0		16.0	
		$1.8~V \leq V \text{DD} < 2.4~V$	1.0		8.0	
		$1.6~V \leq V \text{DD} < 1.8~V$	1.0		4.0	

Note Indicates only permissible oscillator frequency ranges. Refer to 2.4 AC Characteristics for instruction execution time. Request evaluation by the manufacturer of the oscillator circuit mounted on a board to check the oscillator characteristics.

Caution Since the CPU is started by the high-speed on-chip oscillator clock after a reset release, check the X1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user. Determine the oscillation stabilization time of the OSTC register and the oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.

Remark When using the X1 oscillator, refer to 6.4 System Clock Oscillator in the RL78/G11 User's Manual.

2.2.2 On-chip oscillator characteristics

(TA = -40 to +85°C, 1.6 V \leq VDD \leq 5.5 V, Vss = 0 V)

Oscillators	Parameters		Conditions	MIN.	TYP.	MAX.	Unit
High-speed on-chip oscillator clock frequency Notes 1, 2	fін	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq$	5.5 V	1		24	MHz
		$2.4 \text{ V} \leq \text{VDD} \leq$	5.5 V	1		16	
		$1.8 \text{ V} \leq \text{VDD} \leq$	5.5 V	1		8	
		$1.6 \text{ V} \leq \text{VDD} \leq$	5.5 V	1		4	
High-speed on-chip oscillator clock frequency accuracy		TA = -20 to	$1.8~V \leq V_{DD} \leq 5.5~V$	-1		1	%
		+85°C	$1.6 \ V \leq V \text{DD} < 1.8 \ V$	-5		5	
		$1.8~V \leq V_{DD} \leq 5.5~V$	-1.5		1.5	%	
		-20°C	$1.6~V \leq V \text{DD} < 1.8~V$	-5.5		5.5	
Middle-speed on-chip oscillator oscillation frequency Note 2	fıм			1		4	MHz
Middle-speed on-chip oscillator oscillation frequency accuracy				-12		+12	%
Temperature drift of Middle-speed on-chip oscillator oscillation frequency accuracy	DIMT				0.008		%/°C
Voltage drift of Middle-speed on-chip oscillator oscillation	Dimv	TA = 25°C	$2.1~V \leq V_{DD} \leq 5.5~V$		0.02		%/V
frequency accuracy			$2.0~V \leq V_{DD} < 2.1~V$		-12		
			$1.6~V \leq V_{DD} < 2.0~V$		10		1
Low-speed on-chip oscillator clock frequency Note 2	fı∟		1		15		kHz
Low-speed on-chip oscillator clock frequency accuracy				-15	1	+15	%

Note 1. High-speed on-chip oscillator frequency is selected with bits 0 to 3 of the option byte (000C2H) and bits 0 to 2 of the HOCODIV register.

Note 2. This only indicates the oscillator characteristics. Refer to 2.4 AC Characteristics for instruction execution time.

When P20 is used as TxD1 pin

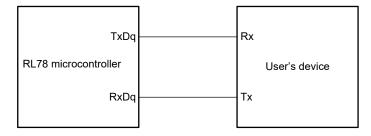
(TA = -40 to +85°C, 1.6 V \leq EVDD = VDD \leq 5.5 V, Vss = 0 V)

Parameter	Sym bol	Conditions		jh-speed) Mode		beed main) bde	• •	ower main) ode	•	ltage main) ode	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Transfer rate		$4.0~V \leq V_{DD} \leq 5.5~V$		fмск/6 Notes 1, 2, 3		fмск/6 Notes 1, 2		fмск/6 Notes 1, 2		fмск/6 Notes 1, 2	bps
		Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Notes 1, 3}$		1.5		1.3		0.1		0.6	Mbps
		$2.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$		fмск/6 Notes 1, 2, 3		fмск/6 Notes 1, 2		fмск/6 Notes 1, 2		fмск/6 Notes 1, 2	bps
		Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Notes 1, 3}$		1.2		1.2		0.1		0.6	Mbps
		$2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$		fмск/6 Notes 1, 2, 3		fмск/6 Notes 1, 2		fмск/6 Notes 1, 2		fмск/6 Notes 1, 2	bps
		Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Notes 1, 3}$		1.0		1.0		0.1		0.6	Mbps
		$1.8 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$				fмск/6 Notes 1, 2		fмск/6 Notes 1, 2		fмск/6 Notes 1, 2	bps
		Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Notes 1, 3}$				0.6		0.1		0.6	Mbps
		$1.7~V \leq V_{DD} \leq 5.5~V$								fмск/6 Notes 1, 2	bps
		Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Notes 1, 3}$		Using prohibited		Using		Using		0.5	Mbps
		$1.6~V \le V_{DD} \le 5.5~V$				prohibited		prohibited		fмск/6 Notes 1, 2	bps
		Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Notes 1, 3}$								0.5	Mbps

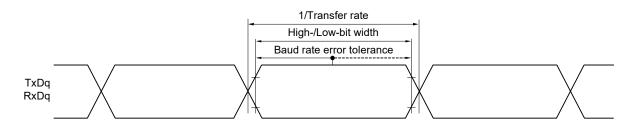
Note 1. fMCK is a frequency selected by setting the CKS bit in the SPS and SMR registers.

Note 2. The transfer rate of 4800 bps is only supported in the SNOOZE mode.

Note that the SNOOZE mode is not supported when fHOCO is 48 MHz.


Note 3. fclk in each operating mode is as follows.:

HS (high-speed main) mode:	24 MHz (2.7 V \leq VDD \leq 5.5 V)
	16 MHz (2.4 V \leq VDD \leq 5.5 V)
LS (low-speed main) mode:	8 MHz (1.8 V \leq VDD \leq 5.5 V)
LP (low-power main) mode:	1 MHz (1.8 V \leq VDD \leq 5.5 V)
LV (low-voltage main) mode:	4 MHz (1.6 V \leq VDD \leq 5.5 V)

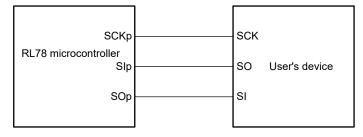

Caution Select the normal input buffer for the RxDq pin and the normal output mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg).

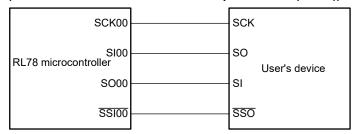
UART mode connection diagram (during communication at same potential)

UART mode bit width (during communication at same potential) (reference)

Remark 1. q: UART number (q = 0 and 1), g: PIM and POM number (g = 0, 2, 3 and 5)

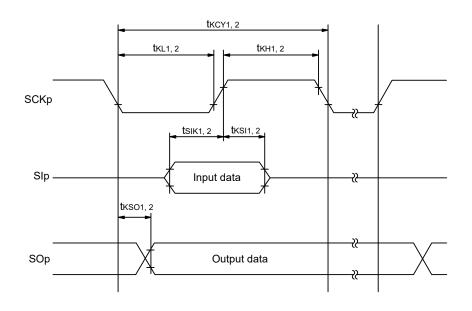
Remark 2. fMCK: Serial array unit operation clock frequency


(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03))

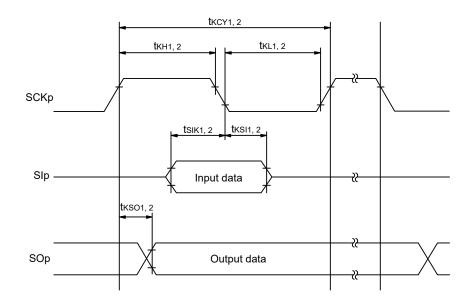

Remark 2. fmck: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03))

CSI mode connection diagram (during communication at same potential)



CSI mode connection diagram (during communication at same potential) (Slave Transmission of slave select input function (CSI00))


Remark p: CSI number (p = 00, 01, 10 and 11)

CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

Remark 1. p: CSI number (p = 00, 01, 10 and 11) **Remark 2.** m: Unit number, n: Channel number (mn = 00 to 03)

RL78/G11

(5) During communication at same potential (simplified I²C mode)

Parameter	Symbol	Conditions		speed main) ode	• •	peed main) ode	•	w-power) mode	-	-voltage Mode	Unit
	5		MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCLr clock frequency	fscL	$\label{eq:linear} \begin{array}{l} 2.7 \mbox{ V} \leq EV_{DD} \leq 5.5 \mbox{ V}, \\ C_b = 50 \mbox{ pF}, \mbox{ R}_b = 2.7 \mbox{ k}\Omega \end{array}$		1000 Note 1		400 Note 1		250 Note 1		400 Note 1	kHz
		$\label{eq:VDD} \begin{split} 1.8 \ V &\leq EV_{DD} \leq 5.5 \ V, \\ C_b &= 100 \ p\text{F}, \ R_b = 3 \ k\Omega \end{split}$		400 Note 1							
		$\label{eq:linear} \begin{split} 1.8 \ V &\leq EV_{DD} < 2.7 \ V, \\ C_b &= 100 \ pF, \ R_b = 5 \ k\Omega \end{split}$		300 Note 1		300 Note 1		250 Note 1		300 Note 1	
		$\label{eq:linear} \begin{array}{l} 1.7 \mbox{ V} \leq EV_{DD} < 1.8 \mbox{ V}, \\ C_b = 100 \mbox{ pF}, \mbox{ R}_b = 5 k\Omega \end{array}$		250 Note 1		250 Note 1		250 Note 1		250 Note 1	
		$\label{eq:linear} \begin{split} 1.6 \ V &\leq EV_{DD} < 1.8 \ V, \\ C_b &= 100 \ pF, \ R_b = 5 \ k\Omega \end{split}$		-				-			
Hold time when SCLr = "L"	t∟ow	$\label{eq:states} \begin{array}{l} 2.7 \mbox{ V} \leq EV_{DD} \leq 5.5 \mbox{ V}, \\ C_b = 50 \mbox{ pF}, \mbox{ R}_b = 2.7 \mbox{ k}\Omega \end{array}$	475		1150		1150		1150		ns
		$\label{eq:linear} \begin{array}{l} 1.8 \mbox{ V} \leq EV_{DD} \leq 5.5 \mbox{ V}, \\ C_b = 100 \mbox{ pF}, \mbox{ R}_b = 3 \mbox{ k}\Omega \end{array}$	1150								
		$\label{eq:linear} \begin{array}{l} 1.8 \mbox{ V} \leq EV_{DD} < 2.7 \mbox{ V}, \\ C_b = 100 \mbox{ pF}, \mbox{ R}_b = 5 \mbox{ k}\Omega \end{array}$	1550		1550		1550		1550		
		$\label{eq:linear} \begin{array}{l} 1.7 \mbox{ V} \leq EV_{DD} < 1.8 \mbox{ V}, \\ C_b = 100 \mbox{ pF}, \mbox{ R}_b = 5 \mbox{ k}\Omega \end{array}$	1850		1850		1850		1850		
		$\label{eq:linear} \begin{array}{l} 1.6 \; V \leq EV_{\text{DD}} < 1.8 \; V, \\ C_{b} = 100 \; p\text{F}, \; R_{b} = 5 \; k\Omega \end{array}$	—								
Hold time when SCLr = "H"	tніgн	$\label{eq:linear} \begin{array}{l} 2.7 \mbox{ V} \leq \mbox{EV}_{\mbox{DD}} \leq 5.5 \mbox{ V}, \\ C_b = 50 \mbox{ pF}, \mbox{ R}_b = 2.7 \mbox{ k}\Omega \end{array}$	475		1150		1150		1150		ns
		$\label{eq:VDD} \begin{array}{l} 1.8 \mbox{ V} \leq EV_{\mbox{DD}} \leq 5.5 \mbox{ V}, \\ C_b \mbox{ = 100 pF, } R_b \mbox{ = 3 } k\Omega \end{array}$	1150								
		$\label{eq:linear} \begin{array}{l} 1.8 \mbox{ V} \leq EV_{DD} < 2.7 \mbox{ V}, \\ C_b = 100 \mbox{ pF}, \mbox{ R}_b = 5 \mbox{ k}\Omega \end{array}$	1550		1550		1550		1550		
		$\label{eq:linear} \begin{array}{l} 1.7 \mbox{ V} \leq \mbox{EV}_{\mbox{DD}} < 1.8 \mbox{ V}, \\ C_b = 100 \mbox{ pF}, \mbox{ R}_b = 5 \mbox{ k}\Omega \end{array}$	1850		1850		1850		1850		
		$\label{eq:linear} \begin{array}{l} 1.6 \mbox{ V} \leq EV_{DD} < 1.8 \mbox{ V}, \\ C_b = 100 \mbox{ pF}, \mbox{ R}_b = 5 \mbox{ k}\Omega \end{array}$	-								
Data setup time (reception)	tsu: dat	$\begin{array}{l} 2.7 \ V \leq EV_{DD} \leq 5.5 \ V, \\ C_b = 50 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	1/fмск + 85 Note 2		1/fмск + 145 Note 2		1/fмск + 145 Note 2		1/fмск + 145 Note 2		ns
		$\label{eq:VDD} \begin{array}{l} 1.8 \mbox{ V} \leq EV_{DD} \leq 5.5 \mbox{ V}, \\ C_b = 100 \mbox{ pF}, \mbox{ R}_b = 3 \mbox{ k}\Omega \end{array}$	1/fмск + 145 Note 2								
		$\label{eq:linear} \begin{array}{l} 1.8 \; V \leq EV_{DD} < 2.7 \; V, \\ C_b = 100 \; pF, \; R_b = 5 \; k\Omega \end{array}$	1/fмск + 230 Note 2		1/fмск + 230 Note 2		1/fмск + 230 Note 2		1/fмск + 230 Note 2		
		$\label{eq:linear} \begin{array}{l} 1.7 \mbox{ V} \leq EV_{DD} < 1.8 \mbox{ V}, \\ C_b = 100 \mbox{ pF}, \mbox{ R}_b = 5 \mbox{ k}\Omega \end{array}$	1/fмск + 290 Note 2		1/fмск + 290 Note 2		1/fмск + 290 Note 2		1/fмск + 290 Note 2		
		$\label{eq:linear} \begin{array}{l} 1.6 \mbox{ V} \leq EV_{DD} < 1.8 \mbox{ V}, \\ C_b = 100 \mbox{ pF}, \mbox{ R}_b = 5 \mbox{ k}\Omega \end{array}$	-		-		_				
Data hold time (transmission)	thd: dat	$\label{eq:VDD} \begin{array}{l} 2.7 \mbox{ V} \leq EV_{DD} \leq 5.5 \mbox{ V}, \\ C_b = 50 \mbox{ pF}, \mbox{ R}_b = 2.7 \mbox{ k}\Omega \end{array}$	0	305	0	305	0	305	0	305	ns
		$\label{eq:linear} \begin{array}{l} 1.8 \mbox{ V} \leq EV_{DD} \leq 5.5 \mbox{ V}, \\ C_b = 100 \mbox{ pF}, \mbox{ R}_b = 3 k\Omega \end{array}$		355		355		355		355	
		$\label{eq:linear} \begin{array}{l} 1.8 \mbox{ V} \leq EV_{DD} < 2.7 \mbox{ V}, \\ C_b = 100 \mbox{ pF}, \mbox{ R}_b = 5 \mbox{ k}\Omega \end{array}$		405		405		405		405	
		$\label{eq:linear} \begin{array}{l} 1.7 \mbox{ V} \leq EV_{DD} < 1.8 \mbox{ V}, \\ C_b = 100 \mbox{ pF}, \mbox{ R}_b = 5 \mbox{ k}\Omega \end{array}$									
		$\label{eq:linear} \begin{array}{l} 1.6 \mbox{ V} \leq EV_{DD} < 1.8 \mbox{ V}, \\ C_b = 100 \mbox{ pF}, \mbox{ R}_b = 5 \mbox{ k}\Omega \end{array}$	_	_							

(TA = -40 to +85°C, 1.6 V \leq EVDD = VDD \leq 5.5 V, Vss = 0 V)

RL78/G11

Note 6. The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate. Expression for calculating the transfer rate when 1.8 V \leq EVDD < 3.3 V and 1.6 V \leq Vb \leq 2.0 V

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{1.5}{V_b})\} \times 3}$$
 [bps]
Baud rate error (theoretical value) =
$$\frac{\frac{1}{|\text{Transfer rate} \times 2|} - \{-C_b \times R_b \times \ln (1 - \frac{1.5}{V_b})\}}{(\frac{1}{|\text{Transfer rate}|}) \times \text{Number of transferred bits}}$$

* This value is the theoretical value of the relative difference between the transmission and reception sides

- **Note 7.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 6 above to calculate the maximum transfer rate under conditions of the customer.
- Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (EVDD tolerance) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(2) I²C fast mode

(TA = -40 to +85°C, 1.6 V \leq EVDD \leq VDD \leq 5.5 V, Vss = 0 V)

Parameter	Symbol	Co	onditions	speed	high- l main) ode	speed	(low- l main) ode	power	Low- r main) ode	vol	(low- tage mode	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCLA0 clock frequency	fscL	Fast mode:	$2.7~V \leq EV_{\text{DD}} \leq 5.5~V$	0	400	0	400	0	400	0	400	kHz
		fclk ≥ 3.5 MHz	$1.8~V \leq EV_{DD} \leq 5.5~V$	0	400	0	400	0	400	0	400	kHz
Setup time of restart	tsu: sta	$2.7 \text{ V} \leq EV_{DD} \leq 5$	5.5 V	0.6		0.6		0.6		0.6		μs
condition		$1.8 \text{ V} \leq EV_{DD} \leq 5$	5.5 V	0.6		0.6		0.6		0.6		μs
Hold time Note 1	thd: STA	$2.7~V \leq EV_{DD} \leq 5$	5.5 V	0.6		0.6		0.6		0.6		μs
		$1.8~V \le EV_{DD} \le 5$	5.5 V	0.6		0.6		0.6		0.6		μs
Hold time when SCLA0 = "L"	tLOW	$2.7~V \leq EV_{DD} \leq 5$	5.5 V	1.3		1.3		1.3		1.3		μs
		$1.8 \text{ V} \leq EV_{DD} \leq 5$	5.5 V	1.3		1.3		1.3		1.3		μs
Hold time when SCLA0 = "H"	tніgн	$2.7~V \leq EV_{DD} \leq 5$	5.5 V	0.6		0.6		0.6		0.6		μs
		$1.8 \text{ V} \leq EV_{DD} \leq 5$	5.5 V	0.6		0.6		0.6		0.6		μs
Data setup time (reception)	tsu: dat	$2.7~V \leq EV_{DD} \leq 5$	5.5 V	100		100		100		100		ns
		$1.8 \text{ V} \leq EV_{DD} \leq 5$	5.5 V	100		100		100		100		ns
Data hold time (transmission)	thd: dat	$2.7~V \leq EV_{DD} \leq 5$	5.5 V	0	0.9	0	0.9	0	0.9	0	0.9	μs
Note 2		$1.8~V \le EV_{DD} \le 5$	5.5 V	0	0.9	0	0.9	0	0.9	0	0.9	μs
Setup time of stop condition	tsu: sto	$2.7 \text{ V} \leq EV_{DD} \leq 5$	5.5 V	0.6		0.6		0.6		0.6		μs
		$1.8~V \le EV_{DD} \le 5$	5.5 V	0.6		0.6		0.6		0.6		μs
Bus-free time	t BUF	$2.7 \text{ V} \leq EV_{DD} \leq 5$	5.5 V	1.3		1.3		1.3		1.3		μs
		$1.8 \text{ V} \leq EV_{DD} \leq 5$	5.5 V	1.3		1.3		1.3		1.3		μs

Note 1. The first clock pulse is generated after this period when the start/restart condition is detected.

Note 2. The maximum value (MAX.) of the DEAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

Caution The values in the above table are applied even when bit 2 (PIOR02) in the peripheral I/O redirection register 0 (PIOR0) is 1. At this time, the pin characteristics (IOH1, IOL1, VOH1, VOL1) must satisfy the values in the redirect destination.

Remark The maximum value of C_b (communication line capacitance) and the value of R_b (communication line pull-up resistor) at that time in each mode are as follows.

Fast mode: Cb = 320 pF, Rb = 1.1 k Ω

(4) When reference voltage (+) = Internal reference voltage (ADREFP1 = 1, ADREFP0 = 0), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pin: ANI0, ANI2 and ANI3, ANI16 to ANI22

(TA = -40 to +85°C, 1.8 V \leq VDD \leq 5.5 V, 1.6 V \leq EVDD \leq VDD, Vss = 0 V, Reference voltage (+) = VBGR Note 3, Reference voltage (-) = AVREFM = 0 V Note 4, HS (high-speed main) mode)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution	RES			8		bit
Conversion time	tconv		17		39	μs
Zero-scale error Notes 1, 2	Ezs				±0.60	% FSR
Integral linearity error Note 1	ILE				±2.0	LSB
Differential linearity error Note 1	DLE				±1.0	LSB
Analog input voltage	Vain		0		VBGR Note 3	V

Note 1. Excludes quantization error (±1/2 LSB).

Note 2. This value is indicated as a ratio (% FSR) to the full-scale value.

Note 3. Refer to 2.6.2 Temperature sensor characteristics/internal reference voltage characteristic.

Note 4. When reference voltage (-) = Vss, the MAX. values are as follows.

Zero-scale error:Add ±0.35%FSR to the MAX. value when reference voltage (-) = AVREFM.Integral linearity error:Add ±0.5 LSB to the MAX. value when reference voltage (-) = AVREFM.Differential linearity error:Add ±0.2 LSB to the MAX. value when reference voltage (-) = AVREFM.

3.1 Absolute Maximum Ratings

				(1/2
Parameter	Symbols	Conditions	Ratings	Unit
Supply voltage	Vdd, EVdd	$VDD \leq EVDD$	-0.5 to + 6.5	V
	AVREFP		0.3 to V _{DD} + 0.3 Note 2	V
	AVREFM		-0.3 to V _{DD} + 0.3 Note 2 and AVREFM ≤ AVREFP	V
REGC pin input voltage	VIREGC	REGC	-0.3 to + 2.8 and -0.3 to V _{DD} + 0.3 ^{Note 1}	V
Input voltage	VI1	P00, P01, P30 to P33, P40, and P51 to P56	-0.3 to EVDD + 0.3 and -0.3 to VDD + 0.3 ^{Note 2}	V
	V12	P20 to P23, P121, P122, P125, P137, EXCLK, RESET	-0.3 to VDD + 0.3 Note 2	V
Output voltage	Vo1	P00, P01, P30 to P33, P40, and P51 to P56	-0.3 to EVDD + 0.3 and -0.3 to VDD + 0.3 ^{Note 2}	V
	Vo2	P20 to P23	-0.3 to VDD + 0.3 Note 2	V
Analog input voltage	Vai1	ANI16 to ANI22	-0.3 to EVDD + 0.3 and -0.3 to AVREF(+) + 0.3 ^{Notes 2, 3}	V
	VAI2	ANI0 to ANI3	-0.3 to VDD + 0.3 and -0.3 to AVREF(+) + 0.3 Notes 2, 3	V

Note 1. Connect the REGC pin to Vss via a capacitor (0.47 to 1 μF). This value regulates the absolute maximum rating of the REGC pin. Do not use this pin with voltage applied to it.

Note 2. Must be 6.5 V or lower.

Note 3. Do not exceed AVREF (+) + 0.3 V in case of A/D conversion target pin.

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

- Remark 1. Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.
- **Remark 2.** AVREF (+): + side reference voltage of the A/D converter.

Remark 3. Vss: Reference voltage

<R>

(2/5)

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, low Note 1	IOL1	Per pin for P00, P01, P30 to P33, P40, and P51 to P56				8.5 Note 2	mA
Output current, low Note 1		Total of P00, P01, and P40	$4.0~V \leq EV\text{DD} \leq 5.5~V$			-36.0	mA
		(When duty \leq 70% ^{Note 3})	$2.7~V \leq EV_{DD} < 4.0~V$			15.0	mA
			$2.4 \text{ V} \le \text{EV}_{\text{DD}} < 2.7 \text{ V}$			9.0	mA
		Total of P30 to P33, and P51 to P56 (When duty \leq 70% ^{Note 3})	$4.0~V \leq EV_{DD} \leq 5.5~V$			40.0	mA
			$2.7~V \leq EV_{DD} < 4.0~V$			35.0	mA
			$2.4 \text{ V} \le \text{EV}_{\text{DD}} < 2.7 \text{ V}$			20.0	mA
		Total of all pins (When duty \leq 70% ^{Note 3})				76.0	mA
	IOL2 Per pin for P20 to P23	Per pin for P20 to P23				0.4 Note 2	mA
		Total of all pins (When duty \leq 70% ^{Note 3})	$2.4~V \le V \text{DD} \le 5.5~V$			1.6	mA

(TA = -40 to +105°C, 2.4 V \leq EVDD \leq VDD \leq 5.5 V, Vss = 0 V)

Note 1. Value of current at which the device operation is guaranteed even if the current flows from an output pin to the Vss pin.

Note 2. Do not exceed the total current value.

Note 3. Specification under conditions where the duty factor ≤ 70%. The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).

• Total output current of pins = $(I_{OL} \times 0.7)/(n \times 0.01)$

<Example> Where n = 80% and IoL = 10.0 mA

Total output current of pins = (10.0 × 0.7)/(80 × 0.01) \approx 8.7 mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

(TA = -40 to +105°C	, 2.4 V ≤	EVDD = VDD \leq 5.5 V, VSS = () V)				(4/5
Items	Symbol	Conc	MIN.	TYP.	MAX.	Unit	
Output voltage, high	VOH1	P00, P01, P30 to P33, P40, and P51 to P56	4.0 V ≤ EVDD ≤ 5.5 V, Іон = -3.0 mA	EVDD - 0.7			V
Output voltage, low			2.7 V \leq EVDD \leq 5.5 V, Іон = -2.0 mA	EVDD - 0.6			V
			2.4 V ≤ EVDD ≤ 5.5 V Іон = -1.5 mA	EVDD - 0.5			V
	Voh2	P20 to P23	2.4 V ≤ VDD ≤ 5.5 V, Іон = -100 µА	Vdd - 0.5			V
Output voltage, low	VOL1	P00, P01, P30 to P33, P40, and P51 to P56	$\begin{array}{l} 4.0 \ \text{V} \leq \text{EV}_{\text{DD}} \leq 5.5 \ \text{V}, \\ \\ \text{IoL} = 8.5 \ \text{mA} \end{array}$			0.7	V
			$\begin{array}{l} 2.7 \ \text{V} \leq \text{EV}_{\text{DD}} \leq 5.5 \ \text{V}, \\ \\ \text{IoL} = 3.0 \ \text{mA} \end{array}$			0.6	V
			$2.7 \text{ V} \leq \text{EV}_{\text{DD}} \leq 5.5 \text{ V},$ $\text{IoL} = 1.5 \text{ mA}$			0.4	V
			$2.4 \text{ V} \leq \text{EV}_{\text{DD}} \leq 5.5 \text{ V},$ $\text{IoL} = 0.6 \text{ mA}$			0.4	V
	Vol2	P20 to P23	2.4 V \leq VDD \leq 5.5 V, IOL = 400 μ A			0.4	V

(TA = -40 to +105°C, 2.4 V \leq EVDD = VDD \leq 5.5 V, Vss = 0 V)

P00, P01, P20, P30 to P33, P40 and P51 to P56 do not output high level in N-ch open-drain mode. Caution

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

3.5.1 Serial array unit

(1) during communication at same potential (UART mode) When P01, P30, P31 and P54 are used as TxDq pin

(TA = -40 to +105°C, 2.4 V \leq EVDD \leq VDD \leq 5.5 V, VSS = 0 V)

Parameter	Symbol	Conditions	HS (high-speed main) Mode		Unit	
Falanetei	Symbol	Conditions	MIN.	MAX.	Onit	
Transfer rate		Theoretical value of the maximum transfer		fмск/12 ^{Notes} 1, 2	bps	
		rate fмск = fclк = 24 MHz		2.0	Mbps	

Note 1. Transfer rate in the SNOOZE mode is 4800 bps only.

Note 2. The maximum operating frequencies of the CPU/peripheral hardware clock (fcLK) are: HS (high-speed main) mode: $2.4 \text{ V} \le \text{EV}\text{DD} \le 2.7 \text{ V}$: MAX. 1.3 Mbps

Caution Select the normal input buffer for the RxDq pin and the normal output mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg).

When P20 is used as TxD1 pin

(TA = -40 to +105°C, 2.4 V \leq EVDD \leq VDD \leq 5.5 V, Vss = 0 V)

Parameter	Symbol	Conditions	HS (high-speed main) Mode		Unit
		Conditions	MIN.	MAX.	Onit
Transfer rate		$4.0~V \leq V \text{dd} \leq 5.5~V$		fмск/16 ^{Note}	bps
		Theoretical value of the maximum transfer rate fMCK = fCLK = 24 MHz		1.5	Mbps
		$2.7~V \leq V_{DD} \leq 5.5~V$		fмск/20 ^{Note}	bps
		Theoretical value of the maximum transfer rate fMCK = fCLK = 24 MHz		1.2	Mbps
		$2.4~V \leq V \text{dd} \leq 5.5~V$		fмск/16 ^{Note}	bps
		Theoretical value of the maximum transfer rate fмcκ = fcLκ = 16 MHz		1.0	Mbps

<R>

Note

Transfer rate in the SNOOZE mode is 4800 bps only. When fHOCO = 48 MHz, SNOOZE mode is not supported.

(3) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input)

When P01, P32, P53, P54 and P56 are used as SOmn pins (Ta = -40 to +105°C, 2.4 V \leq EVDD \leq VDD \leq 5.5 V, Vss = 0 V)

(1/2)

Parameter	Symbol	Conditions		HS (high-speed main) Mode		Unit
Falanielei	Symbol			MIN.	MAX.	Unit
SCKp cycle time Note 4	tксү2	$4.0~V \leq EV_{DD} \leq 5.5~V$	fмск > 20 MHz	16/fмск		ns
			fмск \leq 20 MHz	12/fмск		ns
		$2.7~V \leq EV_{DD} < 4.0~V$	fмск > 16 MHz	16/fмск		ns
			fмск ≤ 16 MHz	12/fмск		ns
		$2.4~V \leq EV_{DD} < 2.7~V$	•	12/fмск and 1000		ns
SCKp high-/low-level width	tĸн₂, tĸ∟₂	$4.0~V \leq EV_{DD} \leq 5.5~V$		tксү2/2 - 14		ns
	tkh2, tkl2	$2.7~V \leq EV_{DD} < 4.0~V$		tксү2/2 - 16		ns
		$2.4~V \leq EV_{DD} < 2.7~V$		tkcy2/2 - 36		ns
SIp setup time (to SCKp↑) ^{Note 1}	tsık2	$2.7~V \leq EV_{DD} \leq 5.5~V$		1/fмск + 40		ns
		$2.4~V \leq EV_{DD} < 2.7~V$		1/fмск + 60		ns
SIp hold time (from SCKp↑) ^{Note 1}	tksi2			1/fмск + 62		ns
Delay time from SCKp↓ to SOp output ^{Note 2}	tkso2	C = 30 pF Note 3	$2.7~V \le EV_{\text{DD}} \le 5.5~V$		2/fмск + 66	ns
			$2.4~V \leq EV_{\text{DD}} < 2.7~V$		2/fмск + 113	ns

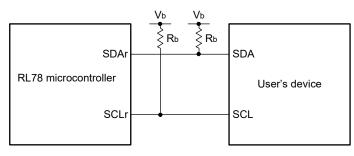
Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The Slp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

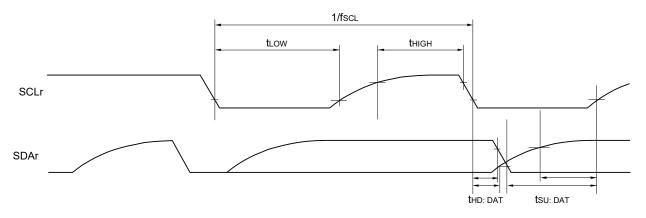
Note 3. C is the load capacitance of the SOp output lines.

Note 4. The maximum transfer rate when using the SNOOZE mode is 1 Mbps.

Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).


Remark 1. p: CSI number (p = 00, 01, 10 and 11), m: Unit number (m = 0), n: Channel number (n = 0 to 3), g: PIM and POM numbers (g = 0, 2, 3 to 5 and 12)

Remark 2. fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03))

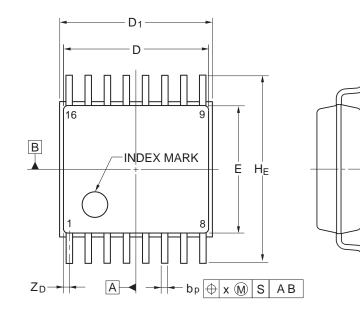


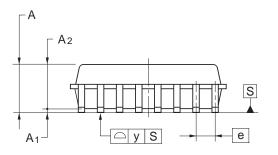
- **Note 1.** The value must be equal to or less than fMCK/4.
- Note 2. Use it with $EV_{DD} \ge V_b$.
- Note 3. Set the fMCK value to keep the hold time of SCLr = "L" and SCLr = "H".
- Caution Select the TTL input buffer and the N-ch open drain output (EVDD tolerance) mode for the SDAr pin and the N-ch open drain output (EVDD tolerance) mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

Simplified I²C mode connection diagram (during communication at different potential)

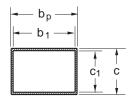
Simplified I²C mode serial transfer timing (during communication at different potential)

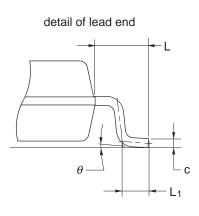
- **Remark 1.** Rb[Ω]: Communication line (SDAr, SCLr) pull-up resistance, Cb[F]: Communication line (SDAr, SCLr) load capacitance, Vb[V]: Communication line voltage
- Remark 2. r: IIC number (r = 00, 01, 10 and 11), g: PIM, POM number (g = 0, 3 and 5)
- Remark 3. fMCK: Serial array unit operation clock frequency


(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0), n: Channel number (n = 0 to 3), mn = 00 to 03)



4.2 16-pin products


R5F1054AGSP, R5F1054AASP


JEITA Package code	RENESAS code	Previous code	MASS(TYP.)[g]	
P-SSOP16-4.4x5-0.65	PRSP0016JC-B	P16MA-65-FAB	0.08	

Terminal cross section

Referance	Dimens	sion in Mil	limeters
Symbol	Min	Nom	Max
D	4.85	5.00	5.15
D ₁	5.05	5.20	5.35
E	4.20	4.40	4.60
A ₂		1.50	
A ₁	0.075	0.125	0.175
A			1.725
bp	0.17	0.24	0.32
b1		0.22	
С	0.14	0.17	0.20
C ₁		0.15	
θ	0°		8°
H _E	6.20	6.40	6.60
е		0.65	
х			0.13
У			0.10
Z _D		0.225	
L	0.35	0.50	0.65
L ₁		1.00	


```
REVISION HISTORY
```

RL78/G11 Datasheet

		Description		
Rev. Date		Page	Summary	
0.50	Mar 31 2016	—	First Edition issued	
1.00	Sep 28 2016	p.7	Modification of Pin Configuration in 1.3.3 25-pin products	
	p.9		Addition of 1.5.1 20-pin products	
		p.10	Addition of product name and Modification of Block Diagram in 1.5.2 24-pin, 25- pin products	
		p.12	Addition of I ² C bus in 1.6 Outline of Functions	
		p.15	Modification of Conditions of I _{OH1} , I _{OL1} in 2.1 Absolute Maximum Ratings	
		p.16	Modification of High-speed on-chip oscillator clock frequency accuracy and addition of D_{IMT} , D_{IMV} in 2.2.2 On-chip oscillator characteristics	
		p.17	Modification of Caution in 2.3.1 Pin characteristics	
		p.19	Modification of Input voltage, high and Input voltage, low in 2.3.1 Pin characteristics	
		p.19, 20	Modification of Caution in 2.3.1 Pin characteristics	
		p.22, 23, 24, 26, 27	Modification of specifications in 2.3.2 Supply current characteristics	
		p.29, 30	Modification of specification in 2.4 AC Characteristics	
		p.35	Modification of specifications in 2.5.1 Serial array unit (1)	
		p.39	Modification of specifications in 2.5.1 Serial array unit (3)	
		p.40, 42	Modification of specification in 2.5.1 Serial array unit (4)	
		p.62	Addition of LP (Low-power main) mode in 2.5.2 Serial interface IICA (1)	
		p.64	Addition of LP (Low-power main) mode in 2.5.2 Serial interface IICA (2)	
		p.65	Addition of LP (Low-power main) mode in 2.5.2 Serial interface IICA (3)	
		p.70	Modification of Conditions in 2.6.2 Temperature sensor haracteristics/internal reference voltage characteristic	
		p.79	Addition of description in 3 ELECTRICAL SPECIFICATIONS (TA = -40 to $+105^{\circ}$ C)	
		p.82	Modification of High-speed on-chip oscillator clock frequency accuracy and addition of D_{IMT} , D_{IMV} in 3.2.2 On-chip oscillator characteristics	
		p.83	Modification of Caution in 3.3.1 Pin characteristics	
		p.85	Modification of Input voltage, high and Input voltage, low in 3.3.1 Pin characteristics	
		p.85, 86	Modification of Caution in 3.3.1 Pin characteristics	
		p.88 to 91	Modification of specifications in 3.3.2 Supply current characteristics	
		p.97	Modification of specifications and specification table in 3.5.1 Serial array unit (1)	
		p.103	Modification of specifications in 3.5.1 Serial array unit (3)	
		p.125	Modification of Conditions in 3.6.1 A/D converter characteristics (4)	
		p.126	Modification of Conditions in 3.6.2 Temperature sensor haracteristics/internal reference voltage characteristic	
1.10	Dec 28 2016	p.4	Modification of 1.2 Ordering Information	
2.00	Feb 15, 2018	Throughout	Addition of specifications of 10-pin and 16-pin products	
		p.2	Modification of description in 1.1 Features	
		p.6	Modification of figure in 1.3.4 24-pin products	
		p.11	Modification of figure in 1.5.3 20-pin products	
		p.12	Modification of figure in 1.5.4 24-pin, 25-pin products	

Rev. Date			Description		
Nev.	Date	Page	Summary		
2.00	Feb 15, 2018	p.13, 14	Modification of table in 1.6 Outline of Functions		
		p.18	Modification of 2.2.2 On-chip oscillator characteristics		
		p.19, 21	Modification of 2.3.1 Pin characteristics		
		p.24	Modification of 2.3.2 Supply current characteristics		
		p.32	Modification of 2.4 AC Characteristics		
		p.79	Modification of figure in 2.10 Timing of Entry to Flash Memory Programming Modes		
		p.84	Modification of 3.2.1 X1 characteristics		
		p.84	Modification of 3.2.2 On-chip oscillator characteristics		
		p.85, 86, 87	Modification of 3.3.1 Pin characteristics		
	p.95 p.99		Modification of 3.4 AC Characteristics		
			Modification of note in 3.5.1 Serial array unit (1)		
		p.134	Modification of figure in 3.10 Timing of Entry to Flash Memory Programming Modes		

SuperFlash is a registered trademark of Silicon Storage Technology, Inc. in several countries including the United States and Japan.

Caution: This product uses SuperFlash[®] technology licensed from Silicon Storage Technology, Inc.

All trademarks and registered trademarks are the property of their respective owners.