

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	I ² C, SPI
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	22
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 5.5V
Data Converters	-
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c62b-04-sp

2.2.2.5 PIR1 REGISTER

This register contains the individual flag bits for the Peripheral interrupts.

Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the global enable bit, GIE (INTCON<7>). User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

REGISTER 2-5: PIR1 REGISTER (ADDRESS 0Ch)

U-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	
_	ADIF ⁽¹⁾	1	1	SSPIF	CCP1IF	TMR2IF	TMR1IF	R = Readable bit
bit7							bit0	W = Writable bit U = Unimplemented bit, read as '0' n = Value at POR reset
bit 7:	Unimpler	nented: R	ead as '0	,				
bit 6:	ADIF ⁽¹⁾ : A 1 = An A/ 0 = The A	D convers	ion compl	eted (mus	t be cleared	d in softwa	re)	
bit 5-4:	Unimpler	nented: R	ead as '0	,				

Note:

- SSPIF: Synchronous Serial Port Interrupt Flag bit bit 3:
 - 1 = The transmission/reception is complete (must be cleared in software)
 - 0 = Waiting to transmit/receive
- CCP1IF: CCP1 Interrupt Flag bit bit 2:

Capture Mode

- 1 = A TMR1 register capture occurred (must be cleared in software)
- 0 = No TMR1 register capture occurred

Compare Mode

- 1 = A TMR1 register compare match occurred (must be cleared in software)
- 0 = No TMR1 register compare match occurred

PWM Mode

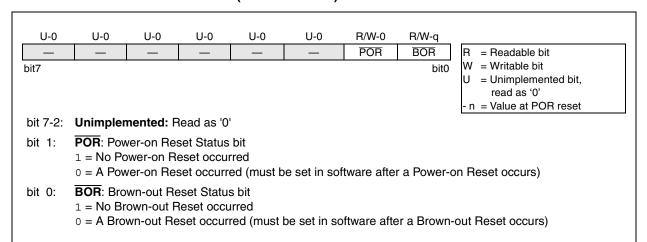
Unused in this mode

- bit 1: TMR2IF: TMR2 to PR2 Match Interrupt Flag bit
 - 1 = TMR2 to PR2 match occurred (must be cleared in software)
 - 0 = No TMR2 to PR2 match occurred
- bit 0: TMR1IF: TMR1 Overflow Interrupt Flag bit
 - 1 = TMR1 register overflowed (must be cleared in software)
 - 0 = TMR1 register did not overflow
- Note 1: The PIC16C62B does not have an A/D module. This bit location is reserved on these devices. Always maintain this bit clear.

PIC16C62B/72A

2.2.2.6 PCON REGISTER

The Power Control register (PCON) contains flag bits to allow differentiation between a Power-on Reset (POR), Brown-Out Reset (BOR) and resets from other sources. .


Note: On Power-on Reset, the state of the BOR bit is unknown and is not predictable.

If the BODEN bit in the configuration word is set, the user must first set the BOR bit on a POR, and check it on subsequent resets.

If BOR is cleared while POR remains set, a Brown-out reset has occurred.

If the BODEN bit is clear, the BOR bit may be ignored.

REGISTER 2-6: PCON REGISTER (ADDRESS 8Eh)

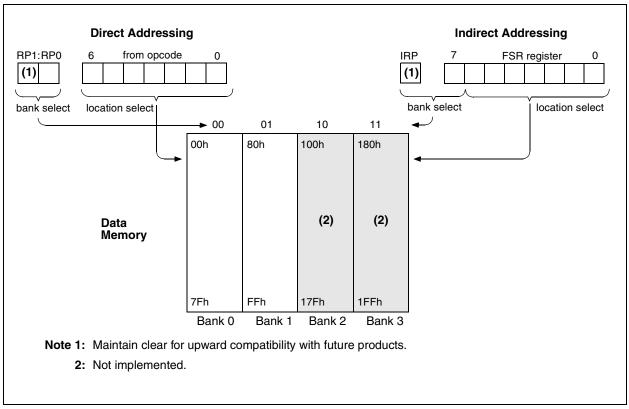
2.5 <u>Indirect Addressing, INDF and FSR</u> <u>Registers</u>

The INDF register is not a physical register. Addressing INDF actually addresses the register whose address is contained in the FSR register (FSR is a pointer).

Reading INDF itself indirectly (FSR = 0) will produce 00h. Writing to the INDF register indirectly results in a no-operation (although STATUS bits may be affected).

A simple program to clear RAM locations 20h-2Fh using indirect addressing is shown in Example 2-1.

EXAMPLE 2-1: HOW TO CLEAR RAM USING INDIRECT ADDRESSING


movlw 0x20 ;initialize pointer
movwf FSR ; to RAM

NEXT clrf INDF ;clear INDF register
incf FSR ;inc pointer
btfss FSR,4 ;all done?
goto NEXT ;NO, clear next

CONTINUE
: ;YES, continue

An effective 9-bit address is obtained by concatenating the 8-bit FSR register and the IRP bit (STATUS<7>), as shown in Figure 2-3. However, IRP is not used in the PIC16C62B/72A.

FIGURE 2-3: DIRECT/INDIRECT ADDRESSING

3.0 I/O PORTS

Some I/O port pins are multiplexed with an alternate function for the peripheral features on the device. In general, when a peripheral is enabled, that pin may not be used as a general purpose I/O pin.

Additional information on I/O ports may be found in the $PIC^{@}$ MCU Mid-Range Reference Manual, (DS33023).

3.1 PORTA and the TRISA Register

PORTA is a 6-bit wide bi-directional port. The corresponding data direction register is TRISA. Setting a TRISA bit (=1) will make the corresponding PORTA pin an input, i.e., put the corresponding output driver in a hi-impedance mode. Clearing a TRISA bit (=0) will make the corresponding PORTA pin an output, (i.e., put the contents of the output latch on the selected pin).

The PORTA register reads the state of the pins, whereas writing to it will write to the port latch. All write operations are read-modify-write operations. Therefore, a write to a port implies that the port pins are read, this value is modified, and then written to the port data latch.

Pin RA4 is multiplexed with the Timer0 module clock input to become the RA4/T0CKI pin. The RA4/T0CKI pin is a Schmitt Trigger input and an open drain output. All other RA port pins have TTL input levels and full CMOS output drivers.

Pin RA5 is multiplexed with the SSP to become the RA5/SS pin.

On the PIC16C72A device, other PORTA pins are multiplexed with analog inputs and analog VREF input. The operation of each pin is selected by clearing/setting the control bits in the ADCON1 register (A/D Control Register1).

Note: On a Power-on Reset, pins with analog functions are configured as analog inputs with digital input buffers disabled. A digital read of these pins will return '0'.

The TRISA register controls the direction of the RA pins, even when they are being used as analog inputs. The user must ensure the bits in the TRISA register are maintained set when using them as analog inputs.

FIGURE 3-1: BLOCK DIAGRAM OF RA3:RA0 AND RA5 PINS

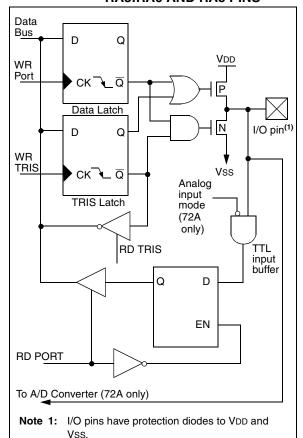
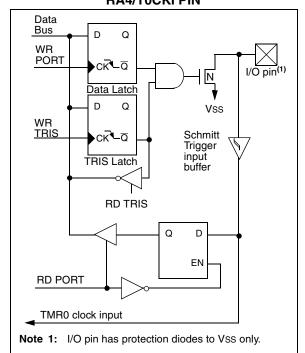
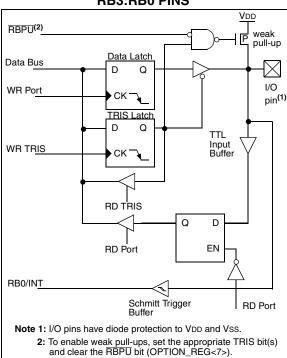



FIGURE 3-2: BLOCK DIAGRAM OF RA4/T0CKI PIN



3.2 PORTB and the TRISB Register

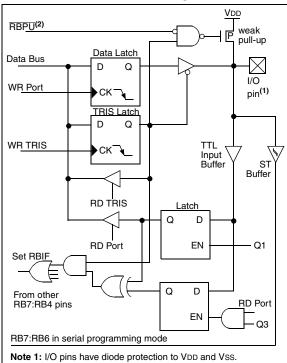
PORTB is an 8-bit wide bi-directional port. The corresponding data direction register is TRISB. Setting a TRISB bit (=1) will make the corresponding PORTB pin an input, (i.e., put the corresponding output driver in a hi-impedance mode). Clearing a TRISB bit (=0) will make the corresponding PORTB pin an output, (i.e., put the contents of the output latch on the selected pin).

Each of the PORTB pins has a weak internal pull-up. A single control bit can turn on all the pull-ups. This is performed by clearing bit RBPU (OPTION_REG<7>). The weak pull-up is automatically turned off when the port pin is configured as an output. The pull-ups are disabled on a Power-on Reset.

FIGURE 3-3: BLOCK DIAGRAM OF RB3:RB0 PINS

Four of PORTB's pins, RB7:RB4, have an interrupt on change feature. Only pins configured as inputs can cause this interrupt to occur (i.e. any RB7:RB4 pin configured as an output is excluded from the interrupt on change comparison). The input pins (of RB7:RB4) are compared with the old value latched on the last read of PORTB. The "mismatch" outputs of RB7:RB4 are OR'ed together to generate the RB Port Change Interrupt with flag bit RBIF (INTCON<0>).

This interrupt can wake the device from SLEEP. The user, in the interrupt service routine, can clear the interrupt in the following manner:


- Any read or write of PORTB. This will end the mismatch condition.
- Clear flag bit RBIF.

A mismatch condition will continue to set flag bit RBIF. Reading PORTB will end the mismatch condition and allow flag bit RBIF to be cleared.

The interrupt on change feature is recommended for wake-up on key depression operation and operations where PORTB is only used for the interrupt on change feature. Polling of PORTB is not recommended while using the interrupt on change feature.

RB0/INT is an external interupt pin and is configured using the INTEDG bit (OPTION_REG<6>). RB0/INT is discussed in detail in Section 10.10.1.

FIGURE 3-4: **BLOCK DIAGRAM OF RB7:RB4 PINS**

2: To enable weak pull-ups, set the appropriate TRIS bit(s) and clear the RBPU bit (OPTION_REG<7>).

PIC16C62B/72A

TABLE 3-3 PORTB FUNCTIONS

Name	Bit#	Buffer	Function
RB0/INT	bit0	TTL/ST ⁽¹⁾	Input/output pin or external interrupt input. Internal software programmable weak pull-up.
RB1	bit1	TTL	Input/output pin. Internal software programmable weak pull-up.
RB2	bit2	TTL	Input/output pin. Internal software programmable weak pull-up.
RB3	bit3	TTL	Input/output pin. Internal software programmable weak pull-up.
RB4	bit4	TTL	Input/output pin (with interrupt on change). Internal software programmable weak pull-up.
RB5	bit5	TTL	Input/output pin (with interrupt on change). Internal software programmable weak pull-up.
RB6	bit6	TTL/ST ⁽²⁾	Input/output pin (with interrupt on change). Internal software programmable weak pull-up. Serial programming clock.
RB7	bit7	TTL/ST ⁽²⁾	Input/output pin (with interrupt on change). Internal software programmable weak pull-up. Serial programming data.

Legend: TTL = TTL input, ST = Schmitt Trigger input

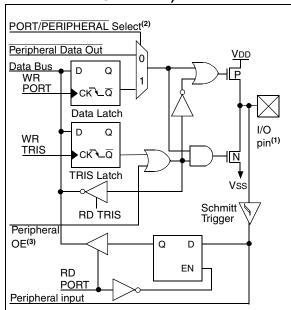
Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.

2: This buffer is a Schmitt Trigger input when used in serial programming mode.

TABLE 3-4 SUMMARY OF REGISTERS ASSOCIATED WITH PORTB

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets
06h	PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxx xxxx	uuuu uuuu
86h	TRISB	PORTB I	Data Direction	on Regist	er					1111 1111	1111 1111
81h	OPTION_REG	RBPU	INTEDG	T0CS	T0SE	PSA	PS2	PS1	PS0	1111 1111	1111 1111

Legend: x = unknown, u = unchanged. Shaded cells are not used by PORTB.


3.3 PORTC and the TRISC Register

PORTC is an 8-bit wide bi-directional port. The corresponding data direction register is TRISC. Setting a TRISC bit (=1) will make the corresponding PORTC pin an input, (i.e., put the corresponding output driver in a hi-impedance mode). Clearing a TRISC bit (=0) will make the corresponding PORTC pin an output, (i.e., put the contents of the output latch on the selected pin).

PORTC is multiplexed with several peripheral functions (Table 3-5). PORTC pins have Schmitt Trigger input buffers.

When enabling peripheral functions, care should be taken in defining TRIS bits for each PORTC pin. Some peripherals override the TRIS bit to make a pin an output, while other peripherals override the TRIS bit to make a pin an input. Since the TRIS bit override maybe in effect while the peripheral is enabled, read-modify-write instructions (BSF, BCF, XORWF) with TRISC as destination should be avoided. The user should refer to the corresponding peripheral section for the correct TRIS bit settings.

FIGURE 3-5: PORTC BLOCK DIAGRAM (PERIPHERAL OUTPUT OVERRIDE)

- Note 1: I/O pins have diode protection to VDD and Vss.
 - 2: Port/Peripheral select signal selects between port data and peripheral output.
 - **3:** Peripheral OE (output enable) is only activated if peripheral select is active.

4.0 TIMERO MODULE

The Timer0 module timer/counter has the following features:

- 8-bit timer/counter
 - Read and write
 - INT on overflow
- · 8-bit software programmable prescaler
- · INT or EXT clock select
 - EXT clock edge select

Figure 4-1 is a simplified block diagram of the Timer0 module.

Additional information on timer modules is available in the PIC[®] MCU Mid-Range Reference Manual, (DS33023).

4.1 <u>Timer0 Operation</u>

Timer0 can operate as a timer or as a counter.

Timer mode is selected by clearing bit TOCS (OPTION_REG<5>). In timer mode, the Timer0 module will increment every instruction cycle (without prescaler). If the TMR0 register is written, the increment is inhibited for the following two instruction cycles. The user can work around this by writing an adjusted value to the TMR0 register.

Counter mode is selected by setting bit T0CS (OPTION_REG<5>). In counter mode, Timer0 will increment either on every rising or falling edge of pin RA4/T0CKI. The incrementing edge is determined by the Timer0 Source Edge Select bit T0SE (OPTION_REG<4>). Clearing bit T0SE selects the rising edge. Restrictions on the external clock input are discussed below.

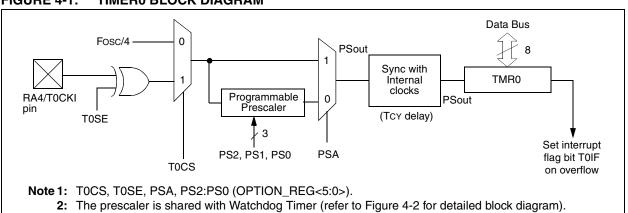
When an external clock input is used for Timer0, it must meet certain requirements. The requirements ensure the external clock can be synchronized with the internal phase clock (Tosc). Also, there is a delay in the actual incrementing of Timer0 after synchronization. Additional information on external clock requirements is available in the Electrical Specifications section of this manual, and in the PIC® MCU Mid-Range Reference Manual, (DS33023).

4.2 Prescaler

An 8-bit counter is available as a prescaler for the Timer0 module, or as a postscaler for the Watchdog Timer, respectively (Figure 4-2). For simplicity, this counter is being referred to as "prescaler" throughout this data sheet. There is only one prescaler available which is shared between the Timer0 module and the Watchdog Timer. A prescaler assignment for the Timer0 module means that there is no prescaler for the Watchdog Timer, and vice-versa.

The prescaler is not readable or writable.

The PSA and PS2:PS0 bits (OPTION_REG<3:0>) determine the prescaler assignment and prescale ratio.


Clearing bit PSA will assign the prescaler to the Timer0 module. When the prescaler is assigned to the Timer0 module, prescale values of 1:2, 1:4, ..., 1:256 are selectable.

Setting bit PSA will assign the prescaler to the Watchdog Timer (WDT). When the prescaler is assigned to the WDT, prescale values of 1:1, 1:2, ..., 1:128 are selectable.

When assigned to the Timer0 module, all instructions writing to the TMR0 register (e.g. CLRF 1, MOVWF 1, BSF 1, x....etc.) will clear the prescaler. When assigned to WDT, a CLRWDT instruction will clear the prescaler along with the WDT.

Note: Writing to TMR0 when the prescaler is assigned to Timer0 will clear the prescaler count, but will not change the prescaler assignment or ratio.

FIGURE 4-1: TIMERO BLOCK DIAGRAM

PIC16C62B/72A

8.3.1.1 ADDRESSING

Once the SSP module has been enabled, it waits for a START condition to occur. Following the START condition, 8 bits are shifted into the SSPSR register. All incoming bits are sampled with the rising edge of the clock (SCL) line. The value of register SSPSR<7:1> is compared to the value of the SSPADD register. The address is compared on the falling edge of the eighth clock (SCL) pulse. If the addresses match and the BF and SSPOV bits are clear, the following events occur:

- a) The SSPSR register value is loaded into the SSPBUF register.
- b) The buffer full bit, BF is set.
- c) An ACK pulse is generated.
- d) SSP interrupt flag bit, SSPIF (PIR1<3>), is set (interrupt is generated if enabled) on the falling edge of the ninth SCL pulse.

In 10-bit address mode, two address bytes need to be received by the slave. The five Most Significant bits (MSbs) of the first address byte specify if this is a 10-bit address. Bit R/\overline{W} (SSPSTAT<2>) must specify a write so the slave device will receive the second address byte. For a 10-bit address, the first byte would equal

'1111 0 A9 A8 0', where A9 and A8 are the two MSbs of the address. The sequence of events for 10-bit address is as follows, with steps 7- 9 for slave-transmitter:

- Receive first (high) byte of Address (bits SSPIF, BF, and bit UA (SSPSTAT<1>) are set).
- Update the SSPADD register with second (low) byte of Address (clears bit UA and releases the SCL line).
- Read the SSPBUF register (clears bit BF) and clear flag bit SSPIF.
- Receive second (low) byte of Address (bits SSPIF, BF, and UA are set).
- Update the SSPADD register with the first (high) byte of Address, if match releases SCL line, this will clear bit UA.
- Read the SSPBUF register (clears bit BF) and clear flag bit SSPIF.
- 7. Receive repeated START condition.
- Receive first (high) byte of Address (bits SSPIF and BF are set).
- Read the SSPBUF register (clears bit BF) and clear flag bit SSPIF.

TABLE 8-2 DATA TRANSFER RECEIVED BYTE ACTIONS

	ts as Data s Received			Set bit SSPIF
BF	SSPOV	$SSPSR \to SSPBUF$	Generate ACK Pulse	(SSP Interrupt occurs if enabled)
0	0	Yes	Yes	Yes
1	0	No	No	Yes
1	1	No	No	Yes
0	1	Yes	No	Yes

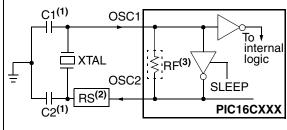
Note: Shaded cells show the conditions where the user software did not properly clear the overflow condition.

10.2 Oscillator Configurations

10.2.1 OSCILLATOR TYPES

The PIC16CXXX can be operated in four different oscillator modes. The user can program two configuration bits (FOSC1 and FOSC0) to select one of these four modes:

LP Low Power CrystalXT Crystal/Resonator


HS High Speed Crystal/Resonator

RC Resistor/Capacitor

10.2.2 CRYSTAL OSCILLATOR/CERAMIC RESONATORS

In XT, LP or HS modes, a crystal or ceramic resonator is connected to the OSC1/CLKIN and OSC2/CLKOUT pins to establish oscillation (Figure 10-2). The PIC16CXXX oscillator design requires the use of a parallel cut crystal. Use of a series cut crystal may give a frequency out of the crystal manufacturers specifications. When in XT, LP or HS modes, the device can use an external clock source to drive the OSC1/CLKIN pin (Figure 10-3).

FIGURE 10-2: CRYSTAL/CERAMIC
RESONATOR OPERATION
(HS, XT OR LP
OSC CONFIGURATION)

Note1: See Table 10-1 and Table 10-2 for recommended values of C1 and C2.

- A series resistor (RS) may be required for AT strip cut crystals.
- 3: RF varies with the crystal chosen.

FIGURE 10-3: EXTERNAL CLOCK INPUT OPERATION (HS, XT OR LP OSC CONFIGURATION)

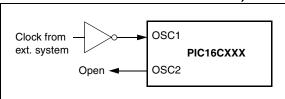


TABLE 10-1 CERAMIC RESONATORS

Ranges Tested:				
Mode	Freq	OSC1	O\$C2	
XT	455 kHz	68 - 100 pF	68 - 100 pF	
	2.0 MHz	15 - 68 pF 🤇	15 - 68 pF	
	4.0 MHz	15 - 68 pF	15 - 68 pF	
HS	8.0 MHz	10 - 68/pF	10 - 68 pF	
	16.0 MHz	10,-22.pF	10 - 22 pF	
The	These values are for design guidance only. See			
	es at bottom of			
Resonator	rs Used: 🚫			
455 kHz	Panasonie E	FO-A455K04B	± 0.3%	
2.0 MHz	Murata Erie (CSA2.00MG	± 0.5%	
4.0 MHz	Murata Erie CSA4.00MG ± 0.5%			
8.0 MHz	Murata Erie CSA8.00MT ± 0.5%			
16.0 MHz	Murata Erie CSA16.00MX ± 0.5%			
Resona	ators did not hav	ve built-in capacito	ors.	

TABLE 10-2 CAPACITOR SELECTION FOR CRYSTAL OSCILLATOR

Osc Type	Crystal Freq	Cap. Range C1	Cap. Range C2
LP	32 kHz	33 pF	33 pF
	200 kHz	15 pF	15/AF
XT	200 kHz	47-68 pF	47-68 pF
	1 MHz	15 pF <	√ 15 pF
	4 MHz	15 pF	15 pF
HS	4 MHz	15 pt	15 pF
	8 MHz	15-33 pE	15-33 pF
	20 MHz	15-33 pF	15-33 pF
	values are	for design guidar page.	nce only. See
	Crys	tals Used	
32 kHz	Epson C-00)1R32.768K-A	± 20 PPM
200 kHz	SÝÓ XTL 2	00.000KHz	± 20 PPM
1 MHz	ECS ECS-1	10-13-1	± 50 PPM
4 MHz	ECS ECS-4	10-20-1	± 50 PPM
8 MHz	EPSON CA	-301 8.000M-C	± 30 PPM
20 MHz	EPSON CA	x-301 20.000M-C	± 30 PPM

- **Note 1:** Higher capacitance increases the stability of the oscillator, but also increases the start-up time.
 - 2: Since each resonator/crystal has its own characteristics, the user should consult the resonator/crystal manufacturer for appropriate values of external components.
 - **3:** Rs may be required in HS mode, as well as XT mode, to avoid overdriving crystals with low drive level specification.
 - 4: Oscillator performance should be verified when migrating between devices (including PIC16C62A to PIC16C62B and PIC16C72 to PIC16C72A)

FIGURE 10-5: SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT

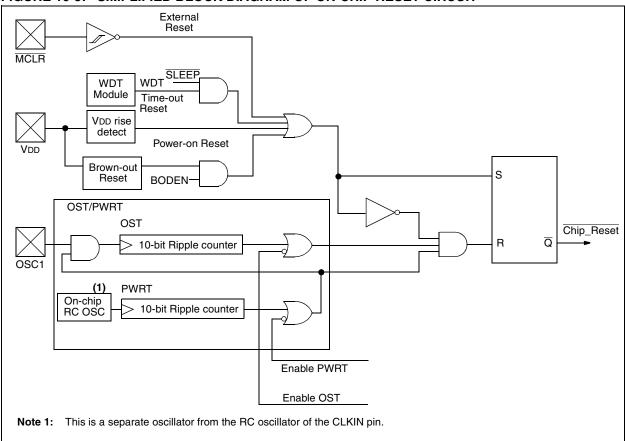


TABLE 10-6 INITIALIZATION CONDITIONS FOR ALL REGISTERS

Register	Appli Dev	cable ices	Power-on Reset, Brown-out Reset	MCLR Resets WDT Reset	Wake-up via WDT or Interrupt
W	62B	72A	xxxx xxxx	uuuu uuuu	uuuu uuuu
INDF	62B	72A	N/A	N/A	N/A
TMR0	62B	72A	xxxx xxxx	uuuu uuuu	uuuu uuuu
PCL	62B	72A	0000h	0000h	PC + 1 (2)
STATUS	62B	72A	0001 1xxx	000q quuu (3)	uuuq quuu(3)
FSR	62B	72A	xxxx xxxx	uuuu uuuu	uuuu uuuu
PORTA ⁽⁴⁾	62B	72A	0x 0000	0u 0000	uu uuuu
PORTB ⁽⁵⁾	62B	72A	xxxx xxxx	uuuu uuuu	uuuu uuuu
PORTC ⁽⁵⁾	62B	72A	xxxx xxxx	uuuu uuuu	uuuu uuuu
PCLATH	62B	72A	0 0000	0 0000	u uuuu
INTCON	62B	72A	0000 000x	0000 000u	uuuu uuuu(1)
DID4	62B	72A	0000	0000	uuuu(1)
PIR1	62B	72A	-0 0000	-0 0000	-u uuuu(1)
TMR1L	62B	72A	xxxx xxxx	uuuu uuuu	uuuu uuuu
TMR1H	62B	72A	xxxx xxxx	uuuu uuuu	uuuu uuuu
T1CON	62B	72A	00 0000	uu uuuu	uu uuuu
TMR2	62B	72A	0000 0000	0000 0000	uuuu uuuu
T2CON	62B	72A	-000 0000	-000 0000	-uuu uuuu
SSPBUF	62B	72A	xxxx xxxx	uuuu uuuu	uuuu uuuu
SSPCON	62B	72A	0000 0000	0000 0000	uuuu uuuu
CCPR1L	62B	72A	xxxx xxxx	uuuu uuuu	uuuu uuuu
CCPR1H	62B	72A	xxxx xxxx	uuuu uuuu	uuuu uuuu
CCP1CON	62B	72A	00 0000	00 0000	uu uuuu
ADRES	62B	72A	xxxx xxxx	uuuu uuuu	uuuu uuuu
ADCON0	62B	72A	0000 00-0	0000 00-0	uuuu uu-u
OPTION_REG	62B	72A	1111 1111	1111 1111	uuuu uuuu
TRISA	62B	72A	11 1111	11 1111	uu uuuu
TRISB	62B	72A	1111 1111	1111 1111	uuuu uuuu
TRISC	62B	72A	1111 1111	1111 1111	uuuu uuuu
DIE	62B	72A	0000	0000	uuuu
PIE1	62B	72A	-0 0000	-0 0000	-u uuuu
PCON	62B	72A	0q	uq	uq
PR2	62B	72A	1111 1111	1111 1111	1111 1111
SSPADD	62B	72A	0000 0000	0000 0000	uuuu uuuu
SSPSTAT	62B	72A	0000 0000	0000 0000	uuuu uuuu
ADCON1	62B	72A	000	000	uuu

 $\mbox{Legend:} \quad \mbox{u} \ = \mbox{unchanged,} \quad \mbox{x} \ = \mbox{unknown,} \quad \mbox{$-$=$ unimplemented bit, read as '0', q = value depends on condition }$

Note 1: One or more bits in INTCON and/or PIR1 will be affected (to cause wake-up).

^{2:} When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

^{3:} See Table 10-5 for reset value for specific condition.

^{4:} On any device reset, these pins are configured as inputs.

^{5:} This is the value that will be in the port output latch.

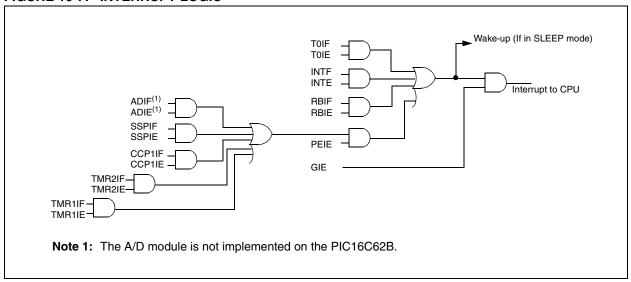
10.10 Interrupts

The interrupt control register (INTCON) records individual interrupt requests in flag bits. It also has individual and global interrupt enable bits.

Note: Individual interrupt flag bits are set regardless of the status of their corresponding mask bit or the GIE bit.

A global interrupt enable bit, GIE (INTCON<7>) enables or disables all interrupts. When bit GIE is enabled, and an interrupt's flag bit and mask bit are set, the interrupt will vector immediately. Individual interrupts can be disabled through their corresponding enable bits in various registers. Individual interrupt flag bits are set regardless of the status of the GIE bit. The GIE bit is cleared on reset.

The "return from interrupt" instruction, RETFIE, exits the interrupt routine and sets the GIE bit, which reenables interrupts.


The RB0/INT pin interrupt, the RB port change interrupt and the TMR0 overflow interrupt flags are contained in the INTCON register.

The peripheral interrupt flags are contained in the special function registers PIR1 and PIR2. The corresponding interrupt enable bits are contained in special function registers PIE1 and PIE2, and the peripheral interrupt enable bit is contained in special function register INTCON.

When an interrupt is responded to, the GIE bit is cleared to disable any further interrupts, the return address is pushed onto the stack and the PC is loaded with 0004h. Once in the interrupt service routine, the source of the interrupt can be determined by polling the interrupt flag bits. The interrupt flag bit must be cleared in software before re-enabling interrupts to avoid recursive interrupts.

For external interrupt events, such as the INT pin or PORTB change interrupt, the interrupt latency will be three or four instruction cycles, depending on when the interrupt event occurs. The latency is the same for one or two cycle instructions. Individual interrupt flag bits are set regardless of the status of their corresponding mask bit or the GIE bit

FIGURE 10-7: INTERRUPT LOGIC

COMF	Complement f	GOTO	Unconditional Branch
Syntax:	[label] COMF f,d	Syntax:	[label] GOTO k
Operands:	$0 \leq f \leq 127$	Operands:	$0 \leq k \leq 2047$
	$d \in [0,1]$	Operation:	$k \rightarrow PC < 10:0 >$
Operation:	$(\bar{f}) \to (destination)$		$PCLATH<4:3> \rightarrow PC<12:11>$
Status Affected:	Z	Status Affected:	None
Description:	The contents of register 'f' are complemented. If 'd' is 0, the result is stored in W. If 'd' is 1, the result is stored back in register 'f'.	Description:	GOTO is an unconditional branch. The eleven bit immediate value is loaded into PC bits <10:0>. The upper bits of PC are loaded from PCLATH<4:3>. GOTO is a two cycle instruction.

DECF	Decrement f	INCF	Increment f
Syntax:	[label] DECF f,d	Syntax:	[label] INCF f,d
Operands:	$0 \le f \le 127$ $d \in [0,1]$	Operands:	$0 \le f \le 127$ $d \in [0,1]$
Operation:	(f) - 1 \rightarrow (destination)	Operation:	(f) + 1 \rightarrow (destination)
Status Affected:	Z	Status Affected:	Z
Description:	Decrement register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'.	Description:	The contents of register 'f' are incremented. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in register 'f'.

DECFSZ	Decrement f, Skip if 0	INCFSZ	Increment f, Skip if 0
Syntax:	[label] DECFSZ f,d	Syntax:	[label] INCFSZ f,d
Operands:	$0 \le f \le 127$ $d \in [0,1]$	Operands:	$0 \le f \le 127$ $d \in [0,1]$
Operation:	(f) - 1 \rightarrow (destination); skip if result = 0	Operation:	(f) + 1 \rightarrow (destination), skip if result = 0
Status Affected:	None	Status Affected:	None
Description:	The contents of register 'f' are decremented. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in register 'f'. If the result is 1, the next instruction, is executed. If the result is 0, then a NOP is executed instead making it a 2TCY instruction.	Description:	The contents of register 'f' are incremented. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in register 'f'. If the result is 1, the next instruction is executed. If the result is 0, a NOP is executed instead making it a 2TCY instruction.

RETFIE	Return from Interrupt
Syntax:	[label] RETFIE
Operands:	None
Operation:	$TOS \rightarrow PC$, $1 \rightarrow GIE$
Status Affected:	None

RLF	Rotate Left f through Carry							
Syntax:	[label] RLF f,d							
Operands:	$0 \le f \le 127$ $d \in [0,1]$							
Operation:	See description below							
Status Affected:	С							
Description:	The contents of register 'f' are rotated one bit to the left through the Carry Flag. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is stored back in register 'f'.							
	C Register f							

RETLW	Return with Literal in W
Syntax:	[label] RETLW k
Operands:	$0 \leq k \leq 255$
Operation:	$k \rightarrow (W);$ TOS \rightarrow PC
Status Affected:	None
Description:	The W register is loaded with the eight bit literal 'k'. The program counter is loaded from the top of the stack (the return address). This is a two cycle instruction.

RRF	Rotate Right f through Carry								
Syntax:	[label] RRF f,d								
Operands:	$0 \le f \le 127$ $d \in [0,1]$								
Operation:	See description below								
Status Affected:	С								
Description:	The contents of register 'f' are rotated one bit to the right through the Carry Flag. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in register 'f'.								
	C → Register f								

RETURN	Return from Subroutine
Syntax:	[label] RETURN
Operands:	None
Operation:	$TOS \to PC$
Status Affected:	None
Description:	Return from subroutine. The stack is POPed and the top of the stack (TOS) is loaded into the program counter. This is a two cycle instruction.

SLEEP	
Syntax:	[label] SLEEP
Operands:	None
Operation:	$\begin{array}{l} \text{00h} \rightarrow \text{WDT,} \\ \text{0} \rightarrow \text{WDT prescaler,} \\ \text{1} \rightarrow \overline{\text{TO}}, \\ \text{0} \rightarrow \overline{\text{PD}} \end{array}$
Status Affected:	TO, PD
Description:	The power-down status bit, \overline{PD} is cleared. Time-out status bit, \overline{TO} is set. Watchdog Timer and its prescaler are cleared. The processor is put into SLEEP mode with the oscillator stopped. See Section 10.13 for more details.

13.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings (†)

Ambient temperature under bias	55°C to +125°C
Storage temperature	65°C to +150°C
Voltage on any pin with respect to Vss (except VDD, MCLR, and RA4)	0.3V to (VDD + 0.3V)
Voltage on VDD with respect to Vss	0.3V to +7.5V
Voltage on MCLR with respect to Vss (Note 2)	0V to +13.25V
Voltage on RA4 with respect to Vss	0V to +8.5V
Total power dissipation (Note 1)	1.0W
Maximum current out of Vss pin	300 mA
Maximum current into VDD pin	
Input clamp current, IIK (VI < 0 or VI > VDD)	±20 mA
Output clamp current, loк (Vo < 0 or Vo > VDD)	±20 mA
Maximum output current sunk by any I/O pin	25 mA
Maximum output current sourced by any I/O pin	25 mA
Maximum current sunk by PORTA and PORTB (combined)	200 mA
Maximum current sourced by PORTA and PORTB (combined)	200 mA
Maximum current sunk by PORTC	200 mA
Maximum current sourced by PORTC	200 mA

Note 1: Power dissipation is calculated as follows: Pdis = VDD x {IDD - \sum IOH} + \sum {(VDD-VOH) x IOH} + \sum (VOI x IOL)

2: Voltage spikes below Vss at the $\overline{\text{MCLR}/\text{VPP}}$ pin, inducing currents greater than 80 mA, may cause latch-up. Thus, a series resistor of 50-100 Ω should be used when applying a "low" level to the $\overline{\text{MCLR}/\text{VPP}}$ pin, rather than pulling this pin directly to Vss.

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

13.4.3 TIMING DIAGRAMS AND SPECIFICATIONS

FIGURE 13-5: EXTERNAL CLOCK TIMING

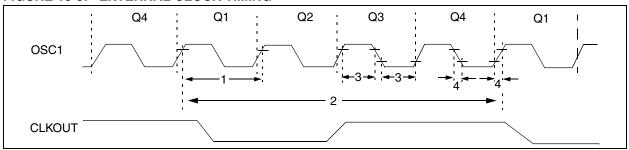


TABLE 13-2: EXTERNAL CLOCK TIMING REQUIREMENTS

Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
1A	Fosc	External CLKIN Frequency		_	4	MHz	RC and XT osc modes
		(Note 1)	DC	_	4	MHz	HS osc mode (-04)
			DC	_	20	MHz	HS osc mode (-20)
			DC		200	kHz	LP osc mode
		Oscillator Frequency	DC		4	MHz	RC osc mode
		(Note 1)	0.1	_	4	MHz	XT osc mode
			4	_	20	MHz	HS osc mode
			5		200	kHz	LP osc mode
1	Tosc	External CLKIN Period	250	_	_	ns	RC and XT osc modes
		(Note 1)	250	_	_	ns	HS osc mode (-04)
				_	_	ns	HS osc mode (-20)
			5	_		μS	LP osc mode
		Oscillator Period (Note 1)	250	_	_	ns	RC osc mode
			250	_	10,000	ns	XT osc mode
			250	_	250	ns	HS osc mode (-04)
			50	_	250	ns	HS osc mode (-20)
			5			μS	LP osc mode
2	TCY	Instruction Cycle Time (Note 1)	200		DC	ns	Tcy = 4/Fosc
3*	TosL,	External Clock in (OSC1) High	100	_	_	ns	XT oscillator
	TosH	or Low Time	2.5	_		μS	LP oscillator
			15			ns	HS oscillator
4*	TosR,	External Clock in (OSC1) Rise	_	_	25	ns	XT oscillator
	TosF	or Fall Time	_	_	50	ns	LP oscillator
			_	_	15	ns	HS oscillator

^{*} These parameters are characterized but not tested.

Note 1: Instruction cycle period (TcY) equals four times the input oscillator time-base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKIN pin.

When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices.

[†] Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

T0CKI T1OSO/T1CKI 48 TMR0 or TMR1 Note: Refer to Figure 13-4 for load conditions.

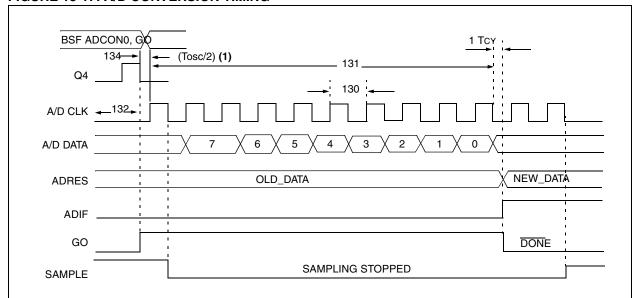

FIGURE 13-9: TIMERO AND TIMER1 EXTERNAL CLOCK TIMINGS

TABLE 13-5: TIMERO AND TIMER1 EXTERNAL CLOCK REQUIREMENTS

Param No.	Sym		Characteristic		Min	Typ†	Max	Units	Conditions
40*	Tt0H			No Prescaler	0.5Tcy + 20	_	_	ns	Must also meet
				With Prescaler	10	_	_	ns	parameter 42
41*	TtOL	T0CKI Low Pulse W	idth	No Prescaler	0.5Tcy + 20	_	_	ns	Must also meet parameter 42
				With Prescaler	10	_	_	ns	
42*	Tt0P	T0CKI Period		No Prescaler	Tcy + 40	_	_	ns	
				With Prescaler	Greater of: 20 or <u>TCY + 40</u> N	_	_	ns	N = prescale value (2, 4,, 256)
45*	Tt1H	T1CKI High Time	Synchronous, Pr	rescaler = 1	0.5Tcy + 20	_	_	ns	Must also meet
			Synchronous,	PIC16CXX	15	_	_	ns	parameter 47
			Prescaler = 2,4,8	PIC16LCXX	25	_	_	ns	
			Asynchronous	PIC16CXX	30	_	_	ns	
				PIC16LCXX	50	_	_	ns	
46*	Tt1L	T1CKI Low Time	Synchronous, Pr	rescaler = 1	0.5Tcy + 20	_	_	ns	Must also meet
			Synchronous, Prescaler = 2,4,8	PIC16CXX	15	_	_	ns	parameter 47
				PIC16LCXX	25	_	_	ns	
			Asynchronous	PIC16CXX	30	_	_	ns	
				PIC16LCXX	50	_	_	ns	
47*	Tt1P	T1CKI input period	Synchronous	PIC16CXX	GREATER OF: 30 OR <u>TCY + 40</u> N		_	ns	N = prescale value (1, 2, 4, 8)
				PIC16LCXX	GREATER OF: 50 OR TCY + 40 N				N = prescale value (1, 2, 4, 8)
	Asynchro		Asynchronous	PIC16CXX	60	_	_	ns	
				PIC16LCXX	100	_	_	ns	
	Ft1		Timer1 oscillator input frequency range (oscillator enabled by setting bit T1OSCEN)		DC	_	200	kHz	
48	TCKEZtmr1	Delay from external	2Tosc	_	7Tosc	_			

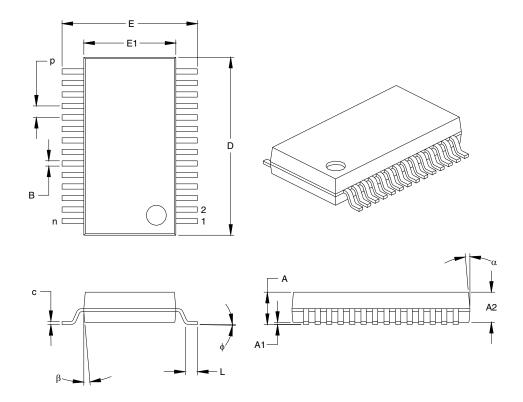
 ^{*} These parameters are characterized but not tested.
 † Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 13-17: A/D CONVERSION TIMING

Note 1: If the A/D clock source is selected as RC, a time of TcY is added before the A/D clock starts. This allows the SLEEP instruction to be executed.

TABLE 13-14: A/D CONVERSION REQUIREMENTS

Param No.	Sym	Characteristic		Min	Тур†	Max	Unit s	Conditions
130	TAD	A/D clock period	PIC16CXX	1.6	_	_	μS	Tosc based, VREF ≥ 3.0V
			PIC16LCXX	2.0			μS	Tosc based, VREF full range
			PIC16CXX	2.0	4.0	6.0	μS	A/D RC Mode
			PIC16LCXX	3.0	6.0	9.0	μS	A/D RC Mode
131	TCNV	Conversion time (not time) (Note 1)	including S/H	11	_	11	TAD	
132	TACQ	Acquisition time		Note 2	20	_	μS	
				5*	1		μѕ	The minimum time is the amplifier settling time. This may be used if the "new" input voltage has not changed by more than 1 LSb (i.e., 20.0 mV @ 5.12V) from the last sampled voltage (as stated on CHOLD).
134	TGO	Q4 to A/D clock start		_	Tosc/2	_	_	If the A/D clock source is selected as RC, a time of Tcy is added before the A/D clock starts. This allows the SLEEP instruction to be executed.
135	Tswc	Switching from conve time	$\operatorname{ert} o \operatorname{sample}$	1.5		1	TAD	


^{*} These parameters are characterized but not tested.

Note 1: ADRES register may be read on the following TcY cycle.

2: See Section 9.1 for min conditions.

[†] Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

28-Lead Plastic Shrink Small Outline (SS) - 209 mil, 5.30 mm (SSOP) 15.5

	Units		INCHES		MILLIMETERS*			
Dimension	Limits	MIN	NOM	MAX	MIN	NOM	MAX	
Number of Pins	n		28			28		
Pitch	р		.026			0.66		
Overall Height	Α	.068	.073	.078	1.73	1.85	1.98	
Molded Package Thickness	A2	.064	.068	.072	1.63	1.73	1.83	
Standoff	A1	.002	.006	.010	0.05	0.15	0.25	
Overall Width	E	.299	.309	.319	7.59	7.85	8.10	
Molded Package Width	E1	.201	.207	.212	5.11	5.25	5.38	
Overall Length	D	.396	.402	.407	10.06	10.20	10.34	
Foot Length	L	.022	.030	.037	0.56	0.75	0.94	
Lead Thickness	С	.004	.007	.010	0.10	0.18	0.25	
Foot Angle	ф	0	4	8	0.00	101.60	203.20	
Lead Width	В	.010	.013	.015	0.25	0.32	0.38	
Mold Draft Angle Top	α	0	5	10	0	5	10	
Mold Draft Angle Bottom	β	0	5	10	0	5	10	
*O								

^{*}Controlling Parameter

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side.

JEDEC Equivalent: MS-150

Drawing No. C04-073