

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	I²C, SPI
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	22
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 5.5V
Data Converters	-
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c62b-04-ss

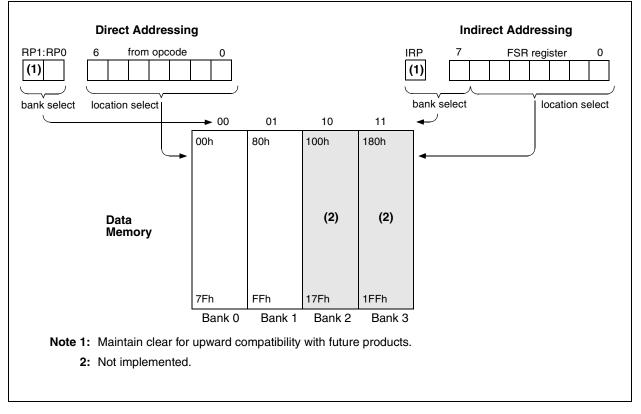
Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.5 Indirect Addressing, INDF and FSR Registers

The INDF register is not a physical register. Addressing INDF actually addresses the register whose address is contained in the FSR register (FSR is a *pointer*).

Reading INDF itself indirectly (FSR = 0) will produce 00h. Writing to the INDF register indirectly results in a no-operation (although STATUS bits may be affected).


A simple program to clear RAM locations 20h-2Fh using indirect addressing is shown in Example 2-1.

EXAMPLE 2-1: HOW TO CLEAR RAM USING INDIRECT ADDRESSING

	movlw movwf		;initialize pointer ; to RAM
NEXT	clrf	INDF	;clear INDF register
	incf	FSR	;inc pointer
	btfss	FSR,4	;all done?
	goto	NEXT	;NO, clear next
CONTINUE			
	:		;YES, continue

An effective 9-bit address is obtained by concatenating the 8-bit FSR register and the IRP bit (STATUS<7>), as shown in Figure 2-3. However, IRP is not used in the PIC16C62B/72A.

FIGURE 2-3: DIRECT/INDIRECT ADDRESSING

3.0 I/O PORTS

Some I/O port pins are multiplexed with an alternate function for the peripheral features on the device. In general, when a peripheral is enabled, that pin may not be used as a general purpose I/O pin.

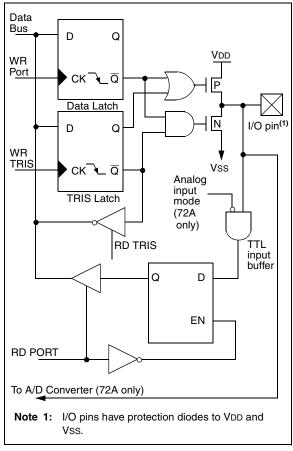
Additional information on I/O ports may be found in the PIC[®] MCU Mid-Range Reference Manual, (DS33023).

3.1 PORTA and the TRISA Register

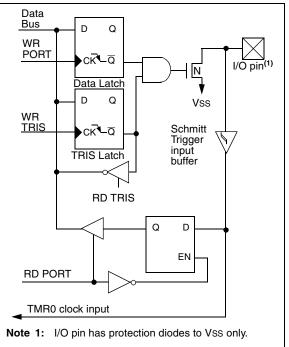
PORTA is a 6-bit wide bi-directional port. The corresponding data direction register is TRISA. Setting a TRISA bit (=1) will make the corresponding PORTA pin an input, i.e., put the corresponding output driver in a hi-impedance mode. Clearing a TRISA bit (=0) will make the corresponding PORTA pin an output, (i.e., put the contents of the output latch on the selected pin).

The PORTA register reads the state of the pins, whereas writing to it will write to the port latch. All write operations are read-modify-write operations. Therefore, a write to a port implies that the port pins are read, this value is modified, and then written to the port data latch.

Pin RA4 is multiplexed with the Timer0 module clock input to become the RA4/T0CKI pin. The RA4/T0CKI pin is a Schmitt Trigger input and an open drain output. All other RA port pins have TTL input levels and full CMOS output drivers.


Pin RA5 is multiplexed with the SSP to become the RA5/SS pin.

On the PIC16C72A device, other PORTA pins are multiplexed with analog inputs and analog VREF input. The operation of each pin is selected by clearing/setting the control bits in the ADCON1 register (A/D Control Register1).


Note:	On a Power-on Reset, pins with analog				
	functions are configured as analog inputs				
	with digital input buffers disabled . A digital				
	read of these pins will return '0'.				

The TRISA register controls the direction of the RA pins, even when they are being used as analog inputs. The user must ensure the bits in the TRISA register are maintained set when using them as analog inputs.

FIGURE 3-1: BLOCK DIAGRAM OF RA3:RA0 AND RA5 PINS

FIGURE 3-2: BLOCK DIAGRAM OF RA4/T0CKI PIN

© 1998-2013 Microchip Technology Inc.

TABLE 3-1 PORTA FUNCTIONS

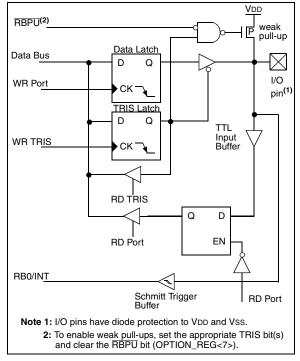
Name	Bit#	Buffer	Function
RA0/AN0	bit0	TTL	Input/output or analog input ⁽¹⁾
RA1/AN1	bit1	TTL	Input/output or analog input ⁽¹⁾
RA2/AN2	bit2	TTL	Input/output or analog input ⁽¹⁾
RA3/AN3/VREF	bit3	TTL	Input/output or analog input ⁽¹⁾ or VREF ⁽¹⁾
RA4/T0CKI	bit4	ST	Input/output or external clock input for Timer0 Output is open drain type
RA5/SS/AN4	bit5	TTL	Input/output or slave select input for synchronous serial port or analog input ⁽¹⁾

Legend: TTL = TTL input, ST = Schmitt Trigger input

Note 1: The PIC16C62B does not implement the A/D module.

TABLE 3-2 SUMMARY OF REGISTERS ASSOCIATED WITH PORTA

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other resets
05h	PORTA (for PIC16C72A only)	—	—	RA5	RA4	RA3	RA2	RA1	RA0	0x 0000	0u 0000
05h	PORTA (for PIC16C62B only)	—	—	RA5	RA4	RA3	RA2	RA1	RA0	xx xxxx	uu uuuu
85h	TRISA			PORTA Data Direction Register						11 1111	11 1111
9Fh	ADCON1 ⁽¹⁾						PCFG2	PCFG1	PCFG0	000	000


Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTA. Note 1: The PIC16C62B does not implement the A/D module. Maintain this register clear.

3.2 PORTB and the TRISB Register

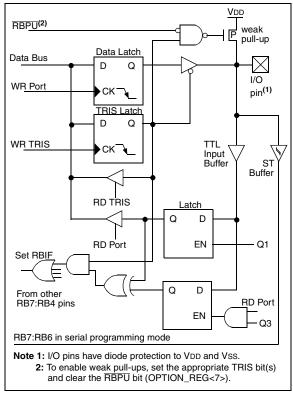
PORTB is an 8-bit wide bi-directional port. The corresponding data direction register is TRISB. Setting a TRISB bit (=1) will make the corresponding PORTB pin an input, (i.e., put the corresponding output driver in a hi-impedance mode). Clearing a TRISB bit (=0) will make the corresponding PORTB pin an output, (i.e., put the contents of the output latch on the selected pin).

Each of the PORTB pins has a weak internal pull-up. A single control bit can turn on all the pull-ups. This is performed by clearing bit $\overline{\text{RBPU}}$ (OPTION_REG<7>). The weak pull-up is automatically turned off when the port pin is configured as an output. The pull-ups are disabled on a Power-on Reset.

FIGURE 3-3: BLOCK DIAGRAM OF RB3:RB0 PINS

Four of PORTB's pins, RB7:RB4, have an interrupt on change feature. Only pins configured as inputs can cause this interrupt to occur (i.e. any RB7:RB4 pin configured as an output is excluded from the interrupt on change comparison). The input pins (of RB7:RB4) are compared with the old value latched on the last read of PORTB. The "mismatch" outputs of RB7:RB4 are OR'ed together to generate the RB Port Change Interrupt with flag bit RBIF (INTCON<0>).

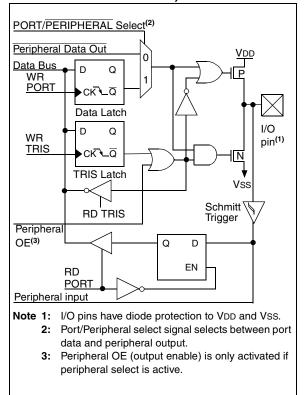
This interrupt can wake the device from SLEEP. The user, in the interrupt service routine, can clear the interrupt in the following manner:


- a) Any read or write of PORTB. This will end the mismatch condition.
- b) Clear flag bit RBIF.

A mismatch condition will continue to set flag bit RBIF. Reading PORTB will end the mismatch condition and allow flag bit RBIF to be cleared.

The interrupt on change feature is recommended for wake-up on key depression operation and operations where PORTB is only used for the interrupt on change feature. Polling of PORTB is not recommended while using the interrupt on change feature.

RB0/INT is an external interupt pin and is configured using the INTEDG bit (OPTION_REG<6>). RB0/INT is discussed in detail in Section 10.10.1.


3.3 PORTC and the TRISC Register

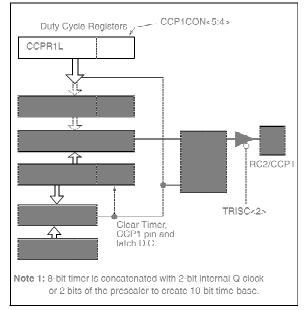
PORTC is an 8-bit wide bi-directional port. The corresponding data direction register is TRISC. Setting a TRISC bit (=1) will make the corresponding PORTC pin an input, (i.e., put the corresponding output driver in a hi-impedance mode). Clearing a TRISC bit (=0) will make the corresponding PORTC pin an output, (i.e., put the contents of the output latch on the selected pin).

PORTC is multiplexed with several peripheral functions (Table 3-5). PORTC pins have Schmitt Trigger input buffers.

When enabling peripheral functions, care should be taken in defining TRIS bits for each PORTC pin. Some peripherals override the TRIS bit to make a pin an output, while other peripherals override the TRIS bit to make a pin an input. Since the TRIS bit override maybe in effect while the peripheral is enabled, read-modify-write instructions (BSF, BCF, XORWF) with TRISC as destination should be avoided. The user should refer to the corresponding peripheral section for the correct TRIS bit settings.

FIGURE 3-5: PORTC BLOCK DIAGRAM (PERIPHERAL OUTPUT OVERRIDE)

7.3 <u>PWM Mode</u>


In Pulse Width Modulation (PWM) mode, the CCP1 pin produces up to a 10-bit resolution PWM output. Since the CCP1 pin is multiplexed with the PORTC data latch, the TRISC<2> bit must be cleared to make the CCP1 pin an output.

Note:	Clearing the CCP1CON register will force
	the CCP1 PWM output latch to the default
	low level. This is not the PORTC I/O data
	latch.

Figure 7-3 shows a simplified block diagram of the CCP module in PWM mode.

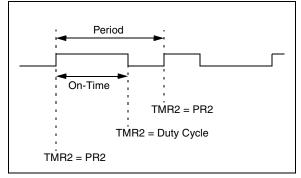

For a step by step procedure on how to set up the CCP module for PWM operation, see Section 7.3.3.

FIGURE 7-3: SIMPLIFIED PWM BLOCK DIAGRAM

A PWM output (Figure 7-4) has a time base (period) and a time that the output stays high (on-time). The frequency of the PWM is the inverse of the period (1/period).

FIGURE 7-4: PWM OUTPUT

7.3.1 PWM PERIOD

The PWM period is specified by writing to the PR2 register. The PWM period can be calculated using the following formula:

PWM frequency is defined as 1 / [PWM period].

When TMR2 is equal to PR2, the following three events occur on the next increment cycle:

- TMR2 is cleared
- The CCP1 pin is set (exception: if PWM duty cycle = 0%, the CCP1 pin will not be set)
- The PWM duty cycle is latched from CCPR1L into CCPR1H

Note:	The Timer2 postscaler (see Section 6.0) is
	not used in the determination of the PWM
	frequency. The postscaler could be used to
	have a servo update rate at a different fre-
	quency than the PWM output.

7.3.2 PWM ON-TIME

The PWM on-time is specified by writing to the CCPR1L register and to the CCP1CON<5:4> bits. Up to 10-bit resolution is available. CCPR1L contains eight MSbs and CCP1CON<5:4> contains two LSbs. This 10-bit value is represented by CCPR1L:CCP1CON<5:4>. The following equation is used to calculate the PWM duty cycle in time:

CCPR1L and CCP1CON<5:4> can be written to at any time, but the on-time value is not latched into CCPR1H until after a match between PR2 and TMR2 occurs (i.e., the period is complete). In PWM mode, CCPR1H is a read-only register.

The CCPR1H register and a 2-bit internal latch are used to double buffer the PWM on-time. This double buffering is essential for glitchless PWM operation.

When the CCPR1H and 2-bit latch match TMR2 concatenated with an internal 2-bit Q clock or 2 bits of the TMR2 prescaler, the CCP1 pin is cleared.

Maximum PWM resolution (bits) for a given PWM frequency:

Resolution =
$$\frac{\log(\frac{Fosc}{Fpwm})}{\log(2)}$$
 bits

Note: If the PWM on-time value is larger than the PWM period, the CCP1 pin will not be cleared.

For an example PWM period and on-time calculation, see the PIC[®] MCU Mid-Range Reference Manual, (DS33023).

8.3.1.2 RECEPTION

When the R/\overline{W} bit of the address byte is clear and an address match occurs, the R/\overline{W} bit of the SSPSTAT register is cleared. The received address is loaded into the SSPBUF register.

When the address byte overflow condition exists, then no acknowledge (\overline{ACK}) pulse is given. An overflow condition is defined as either bit BF (SSPSTAT<0>) is set or bit SSPOV (SSPCON<6>) is set.

An SSP interrupt is generated for each data transfer byte. Flag bit SSPIF (PIR1<3>) must be cleared in software. The SSPSTAT register is used to determine the status of the byte.

FIGURE 8-3: I²C WAVEFORMS FOR RECEPTION (7-BIT ADDRESS)

Receiving Address R/W SDA - </th <th>=0Receiving Data _ACK_D7XD6XD5XD4XD3XD2XD1XE </th> <th></th> <th></th>	=0Receiving Data _ACK_D7XD6XD5XD4XD3XD2XD1XE 		
SSPI <u>F (PIR1<3>)</u> BF (<u>SSPSTAT<0>)</u>	 Cleared in software SSPBUF register is read 		Bus Master terminates transfer
SSP <u>OV (SSPCON<6>)</u>	Bit SSPOV is set b	ecause the SSPBUF register is still f	

REGISTER 8-1: SSPSTAT: SYNC SERIAL PORT STATUS REGISTER (ADDRESS 94h)

R/W-0	R/W-0	R-0	R-0	R-0	R-0	R-0	R-0	
SMP	CKE	D/A	Р	S	R/W	UA	BF	R = Readable bit
bit7							bit0	W = Writable bit U = Unimplemented bit, read as '0' - n =Value at POR reset
bit 7:	$\frac{\text{SPI Ma}}{1 = \text{Inpl}}$ $0 = \text{Inpl}$ $\frac{\text{SPI Sla}}{\text{SMP m}}$ $\frac{l^2 C \text{ Mod}}{l^2 C \text{ Mod}}$	<u>ister Oper</u> ut data sa ut data sa <u>uve Mode</u> ust be cle <u>de</u>	ampled at ampled at	end of data middle of d n SPI is us	i output time ata output tii ed in slave n	me		
bit 6:	$\frac{\text{SPI Mo}}{\text{CKP} =}$ $1 = \text{Dat}$ $0 = \text{Dat}$ $1 = \text{Dat}$ $0 = \text{Dat}$ $\frac{1^2 \text{C Mos}}{1^2 \text{C Mos}}$	<u>de</u> 0 ta transmi ta transmi ta transmi ta transmi <u>de</u>	tted on fa tted on fa	sing edge o Iling edge c Iling edge c sing edge o	of SCK of SCK			
bit 5:	1 = Indi	icates tha	t the last l		r) ed or transm ed or transm			
bit 4:	detecte 1 = Indi	d last, SS icates tha	SPEN is cl	eared) it has been	cleared whe			disabled, or when the Start bit ET)
bit 3:	detecte 1 = Indi	d last, SS icates tha	SPEN is cl	eared) it has been	cleared who			disabled, or when the Stop bit ET)
bit 2:	This bit	t holds th s match to ad	e R/W bi				dress match	n. This bit is only valid from th
bit 1:	1 = Indi	icates tha	t the user	it I ² C mode needs to u d to be upd	pdate the ac	ldress in the	e SSPADD i	register
bit 0:	BF: But	ffer Full S	tatus bit					
	1 = Red 0 = Red	ceive com ceive not	complete,	es) PBUF is ful SSPBUF is				
	1 = Tra		rogress, S	SPBUF is PBUF is er				

TABLE 11-2 PIC16CXXX INSTRUCTION SET

Operands MSb LSb Affected BYTE-ORIENTED FILE REGISTER OPERATIONS	Mnemonic,		Description		14-Bit Opcode				Status	Notes
ADDWF f, d Add W and f 1 00 0111 dfff ffff C,DC,Z ANDWF f, d AND W with f 1 00 0101 dfff ffff Z CLRF f Clear W 1 00 0001 lfff ffff Z COMF f, d Complement f 1 00 0011 dfff ffff Z COMF f, d Decrement f 1 00 1011 dfff ffff Z DECFS f, d Decrement f, Skip if 0 1(2) 00 1010 dfff fff INCF5 f, d Increment f, Skip if 0 1(2) 00 1101 dfff fff Z INCFSZ f, d Move f 1 00 0000 diff fff Z MOVF f, d Move f 1 00 0000 0xx0 0000 R GR f, d Rotate Leift fff urough Carry 1	Operands				MSb			LSb	Affected	
ANDWF f, d AND W with f 1 00 0101 dfff ffff Z CLRF f Clear W 1 00 0001 1fff ffff Z COMF f, d Complement f 1 00 0011 dfff ffff Z COMF f, d Decrement f, Skip if 0 1(2) 00 1011 dfff ffff Z DECFSZ f, d Increment f, Skip if 0 1(2) 00 111 dfff ffff Z MOVF f, d Move f 1 00 000 dffff Z MOVF f d Move f 1 00 000 000 000 000 000 000 RF f, d Rotate Left fhrough Carry 1 00 100 dfff ffff Z SUBWF f, d Swap nibbles in f 1 00 010 dfff ffff Z SUBWF f, b </th <th>BYTE-ORIE</th> <th>NTED</th> <th>FILE REGISTER OPERATIONS</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	BYTE-ORIE	NTED	FILE REGISTER OPERATIONS							
CLRF f Clear f Clear f 1 00 0001 lfff ffff Z COMF f, d Complement f 1 00 0001 dff ffff Z DECF f, d Decrement f 1 00 1001 dff ffff Z DECF f, d Decrement f, Skip if 0 1(2) 00 1010 dff ffff Z INCFSZ f, d Increment f, Skip if 0 1(2) 00 1010 dfff fff Z INCFSZ f, d Increment f, Skip if 0 1(2) 00 111 dfff Z INCFSZ f, d Increment f, Skip if C 1 00 000 dfff Z INCFSZ f, d Increment f, Skip if C 1 00 100 dfff Z MOVF f, d Move W to f 1 00 100 000 000 000 R GR GR GR GR	ADDWF	f, d	Add W and f	1	00	0111	dfff	ffff	C,DC,Z	1,2
CLRW - Clear W 1 00 0001 0000 0011 Z COMF f, d Cormplement f 1 00 0011 dff ffff Z DECF f, d Decrement f, Skip if 0 1(2) 00 0011 dff ffff Z INCF f, d Increment f, Skip if 0 1(2) 00 1010 dff ffff Z INCF f, d Increment f, Skip if 0 1(2) 00 1010 dff ffff Z INCF f, d Increment f, Skip if 0 1(2) 00 1011 dff ffff Z INCF f, d Increment f, Skip if 0 1 00 0000 dff ffff Z MOVF f, d Move f 1 00 0000 dff ffff Z SUBWF f, d Rotate Left ftmough Carry 1 00 0010 dff ffff C,DC,Z SUBWF f, d Subtract W from f 1 00 1010 dfff fffff Z Z SUBWF	ANDWF	f, d	AND W with f	1	00	0101	dfff	ffff	Z	1,2
COMF f, d Complement f 1 00 1001 dfff ffff Z DECFSZ f, d Decrement f, Skip if 0 1(2) 00 1011 dfff ffff Z INCF f, d Increment f 1 00 1010 dfff fffff Z INCFSZ f, d Increment f, Skip if 0 1(2) 00 1111 dfff fffff Z IORWF f, d Increment f, Skip if 0 1(2) 00 1111 dfff fffff Z MOVF f Move f 1 00 0000 dfff fffff Z MOVF f Move V to f 1 00 0000 dfff fffff Z SUBWF f, d Subtract W from f 1 00 100 dfff fffff C,DC,Z SWAPF f, d Subtract W from f 1 00 0101 dfff fffff Z BIT-ORIENTED FILE Ecolusive OR W w	CLRF	f	Clear f	1	00	0001	lfff	ffff	Z	2
DECF f, d Decrement f 1 00 0011 dfff fff Z DECFSZ f, d Increment f 1 00 1010 dfff fff Z INCF f, d Increment f 1 00 1010 dfff ffff Z INCFSZ f, d Increment f, Skip if 0 1(2) 00 1111 dfff fff Z INCFSZ f, d Inclusive OR W with f 1 00 0100 dfff fff Z MOVF f, d Move f 1 00 1000 dfff ffff Z MOVWF f, d Rotate Left fthrough Carry 1 00 1101 dfff fff C C Z SUBWF f, d Rotate Left fthrough Carry 1 00 1100 dfff fff C C C C C C C C C C C C C C	CLRW	-	Clear W	1	00	0001	0000	0011		
DECFSZ f, d Decrement f, Skip if 0 1(2) 0 1011 dfff ffff INCF f, d Increment f 1 0 1010 dfff ffff Z INCFSZ f, d Increment f, Skip if 0 1(2) 0 1111 dfff ffff Z INCFSZ f, d Inclusive CR W with f 1 0 0.000 dfff ffff Z MOVF f, d Move f 1 0 0.000 dfff ffff Z MOVWF f Move W to f 1 0 0.0000 0.000 C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.	COMF	f, d	Complement f		00	1001	dfff	ffff	Z	1,2
INCF f, d Increment f 1 00 1010 dfff fff Z INCFSZ f, d Increment f, Skip if 0 1(2) 00 1111 dfff fff Z IORWF f, d Move OR W with f 1 00 0100 dfff fff Z MOVF f, d Move W to f 1 00 0000 lfff fff Z MOVF f Move W to f 1 00 0000 lfff Gff Z MOVF f Rotate Left fthrough Carry 1 00 1100 dfff Gff C C SUBWF f, d Rotate Left fthrough Carry 1 00 1100 dfff fff C C,DC,Z SUBWF f, d Subtract W from f 1 00 1010 dfff ffff C C,DC,Z SUBWF f, d Subtract W from f 1 01 010 bb bfff fffff	DECF	f, d	Decrement f	1	00	0011	dfff	ffff	Z	1,2
INCFSZ f, d Increment f, Skip if 0 1(2) 00 1111 dff ffff Z MOVF f, d Inclusive OR W with f 1 00 0100 dfff ffff Z MOVF f, d Move f 1 00 0000 dfff ffff Z MOVF f, d Move f 1 00 0000 dfff ffff Z MOVF f, d Move f 1 00 0000 dfff ffff NOP No Operation 1 00 100 dfff ffff C SUBWF f, d Rotate Left fthrough Carry 1 00 1100 dfff ffff C C,DC,Z SWAPF f, d Swap nibbles in f 1 00 110 dfff ffff Z BIT-ORIENTED FILE REGISTER OPERATIONS 1 1 01 0bb bfff fffff Z BTFSS f, b Bit Test f, Skip if Set 1 1 1	DECFSZ	f, d	Decrement f, Skip if 0	1(2)	00	1011	dfff	ffff		1,2,3
IORWF f, d Inclusive OR W with f 1 00 0100 dfff ffff Z MOVF f, d Move f 1 00 0100 dfff ffff Z MOVWF f Move W to f 1 00 0000 lfff ffff Z MOVWF f Move W to f 1 00 0000 lfff ffff Z NOP No Operation 1 00 1000 dfff ffff C RRF f, d Rotate Left fthrough Carry 1 00 1100 dfff ffff C,DC,Z SWAPF f, d Subtract W from f 1 00 110 dfff ffff C,DC,Z SWAPF f, d Exclusive OR W with f 1 01 00bb bfff ffff Z BIT-ORIENTED FILE REGISTER OPERATIONS 1 11 01 01bb bfff ffff BTFSS f, b Bit Test f, S	INCF	f, d	Increment f		00	1010	dfff	ffff	Z	1,2
MOVF f, d Move f Move f 1 00 1000 dfff ffff Z MOVWF f Move W to f 1 00 0000 0kx0 0000 Rff ffff C NOP - No Operation 1 00 0000 0kx0 0000 Rk ffff C C RFF f, d Rotate Left fthrough Carry 1 00 1100 dfff ffff C	INCFSZ			1(2)	00	1111	dfff	ffff		1,2,3
MOVWF f Move W to f 1 00 00000 lfff ffff NOP - No Operation 1 00 0000 0xx0 0000 RLF f, d Rotate Left fthrough Carry 1 00 1101 dfff ffff C SUBWF f, d Subtract W from f 1 00 1100 dfff ffff C D C,DC,Z D C,DC,Z D D D 1100 dfff ffff C D<		,		-		0100			—	1,2
NOP - No Operation 1 00 0000 0xxx 0000 RLF f, d Rotate Left f through Carry 1 00 1101 dfff ffff C SUBWF f, d Subtract W from f 1 00 0100 dfff ffff C SWAPF f, d Swap nibbles in f 1 00 0110 dfff ffff C C,DC,Z SWAPF f, d Swap nibbles in f 1 00 0110 dfff ffff C C,DC,Z XORWF f, d Exclusive OR W with f 1 00 0110 dfff ffff Z BIT-ORIENTED FILE REGISTER OPERATIONS Bit Clear f 1 01 010bb bfff fffff Z BFFSC f, b Bit Test f, Skip if Clear 1 1 11 11bb bfff ffff LITERAL AND CONTROL OPERATIONS Interal with W 1 11 111 111k kkkk kkkk Z ADDLW k Add literal and W 1	MOVF	f, d	Move f	-	00	1000	dfff	ffff	Z	1,2
RLF f, d Rotate Leff through Carry 1 00 1101 dff ffff C RRF f, d State Right f through Carry 1 00 1101 dff ffff C SUBWF f, d Subtract W from f 1 00 1100 dff ffff C C,DC,Z SWAPF f, d Swap nibbles in f 1 00 1101 dff ffff C,DC,Z SWAPF f, d Swap nibbles in f 1 00 1101 dff ffff C,DC,Z SWAPF f, d Swap nibbles in f 1 00 1101 dff fffff Z BIT-ORIENTED FILE REGISTER OPERATIONS 1 01 00bb bfff ffff BTFSC f, b Bit Test f, Skip if Clear 1 1 111 111b bfff G ILTERAL AND CONTROL OPERATIONS ILTERAL AND CONTROL OPERATIONS 1 1 111 111b Kkkk kkkk Z CALL k Call subroutine 2 </td <td></td> <td>f</td> <td></td> <td>-</td> <td>00</td> <td>0000</td> <td>lfff</td> <td>ffff</td> <td></td> <td></td>		f		-	00	0000	lfff	ffff		
RRFf, dRotate Right f through Carry1001100dfffffffCSUBWFf, dSubtract W from f1000010dfffffffC,DC,ZSWAPFf, dSwap nibbles in f1001110dfffffffC,DC,ZSWAPFf, dExclusive OR W with f1000110dfffffffZBIT-ORIENTED FILEREGISTER OPERATIONSBCFf, bBit Clear f10100bbbfffffffBSFf, bBit Set f10110bbbfffffffBTFSSf, bBit Test f, Skip if Clear1 (2)0111bbbfffffffBTFSSf, bBit Test f, Skip if Set1 (2)0111bbbfffffffLITERAL AND CONTROL OPERATIONSADDLWkAdd literal and W111111kkkkkkkkZADDLWkAdd literal and W111111kkkk kkkkZClaulkCall subroutine2100kkk kkkkkTO,PDGOTOkGo to address2101kkk kkkkkZIORLWkInclusive OR literal with W1111000kkkk kkkkRETURReturn from interrupt20000000100IO,PDRETURNReturn from Subroutine200000000001000SLEEPGo into standby mode100 <td< td=""><td>NOP</td><td>-</td><td>No Operation</td><td>-</td><td>00</td><td>0000</td><td>0xx0</td><td>0000</td><td></td><td></td></td<>	NOP	-	No Operation	-	00	0000	0xx0	0000		
SUBWFf, dSubtract W from f1000010dfffffffC,DC,ZSWAPFf, dSwap nibbles in f1001110dfffffffZBIT-ORIENTED FILE REGISTER OPERATIONSBCFf, bBit Clear f10100bbbfffffffBSFf, bBit Clear f10101bbbfffffffBTFSCf, bBit Test f, Skip if Clear1 (2)0110bbbfffffffBTFSSf, bBit Test f, Skip if Set1 (2)0111bbbfffffffLITERAL AND CONTROL OPERATIONSADDLWkAdd literal and W111111111xkkkkkkkkZCALLkCall subroutine2100kkkkkkkZCALLkGo to address2101kkkkkkkZGOTOkGo to address210111100xkkkkZMOVLWkInclusive OR literal with W1111100xkkkkZMOVLWkReturn from interrupt20000001001TO,PDRETFIE-Return from interrupt21101xxkkkkkkkkRETURN-Return from Subroutine21101xxkkkkkkkkRETURN-Go into standby mode10000000101TO,PD	RLF	,	o ,	-	00	1101	dfff	ffff	С	1,2
SWAPFf, dSwap nibbles in f1001110dfffffffZBIT-ORIENTED FILE REGISTER OPERATIONSBCFf, bBit Clear f10100bbbfffffffZBSFf, bBit Clear f10101bbbfffffffZBTFSCf, bBit Test f, Skip if Clear110101bbbfffffffBTFSSf, bBit Test f, Skip if Set1120111bbbfffFfffLITERAL AND COVTROL OPERATIONSADDLWkAdd literal and W111111101kkkkkkkkZADDLWkAdd literal with W1111100kkkkkkkkZCALLkCall subroutine2101kkkkkkkZClear Watchdog Timer110000000100TO,PDGOTOkGo to address2101kkkkkkkZIORLWkInclusive OR literal with W1111000kkkkKkkMOVLWkMove literal to W1110000000001001RETFIE-Return with literal in W21101xxkkkkkkkkRETURN -Return from SubroutineSection for into standby mode100	RRF	,			00	1100	dfff	ffff	-	1,2
XORWFf, dExclusive OR W with f1000110dfffffffZBIT-ORIENTED FILE REGISTER OPERATIONSBCFf, bBit Clear f10100bbbffffffffBSFf, bBit Set f10101bbbffffffffBTFSCf, bBit Test f, Skip if Clear1 (2)0110bbbffffffffBTFSSf, bBit Test f, Skip if Set1 (2)0111bbbfffffffLITERAL AND CONTROL OPERATIONSADDLWkAdd literal and W111111111xkkkkkkkkZCALLkCall subroutine2100kkkkkkkZTO,PDGOTOkGo to address2101kkkkkkkKkkkZMOVLWkInclusive OR literal with W11100xkkkkKkkkZMOVLWkReturn from interrupt20000000001TO,PDRETFIE-Return from Subroutine21101xxkkkkKkkkFO,PDRETURN-Return from Subroutine200000000001001TO,PDRETURN-Return from Subroutine200000000001001TO,PDRETER-Go into standby mode10000001001TO,PD	SUBWF	f, d	Subtract W from f	-	00	0010	dfff	ffff	C,DC,Z	1,2
Bit Clear fBSFf, bBit Clear f10100bbbfffffffBFFSCf, bBit Test f, Skip if Clear1 (2)0110bbbfffffffBTFSCf, bBit Test f, Skip if Clear1 (2)0110bbbfffffffBTFSSf, bBit Test f, Skip if Set1 (2)0110bbbfffffffLITERAL AND CONTROL OPERATIONSADDLWkAdd literal and W111111111.kkkkkkkkZCALLkAdd literal and W1111001kkkkkkkkZCALLkCall subroutine2100kkkkkkkkkkkZCALLkCall subroutine2100kkkkkkkkkkkZCALLkGo to address210111000kkkkkkkkZGOTOkGo to address210111000kkkkZMOVLWkInclusive OR literal with W1111000kkkkZMOVLWkReturn from interrupt20000001001TO,PDGo into standby mode101000000001001TO,PD	SWAPF	f, d	Swap nibbles in f		00	1110	dfff	ffff		1,2
BCFf, bBit Clear f10100bbbfffffffBSFf, bBit Set f10101bbbfffffffBTFSCf, bBit Test f, Skip if Clear110101bbbfffffffBTFSSf, bBit Test f, Skip if Set11111bbbfffffffLITERAL AND CONTROL OPERATIONSADDLWkAdd literal and W111111 xkkkkkkkZADDLWkAdd literal with W1111001 kkkkkkkkC,DC,ZCALLkCall subroutine2100000001101000GOTOkGo to address2101kkkkkkkkkkkZIORLWkInclusive OR literal with W1111000 kkkkkkkkZMOVLWkReturn from interrupt200000000001001RETFIE-Return with literal in W21101xxkkkkkkkkKRETURN-Return from Subroutine200000000001000SLEEP-Go into standby mode10000000110TO,PD	-			1	00	0110	dfff	ffff	Z	1,2
BSFf, bBit Set f10101bbbfffffffBTFSCf, bBit Test f, Skip if Clear110110bbbfffffffBTFSSf, bBit Test f, Skip if Set110110bbbfffffffLITERAL AND CONTROL OPERATIONSADDLWkAdd literal and W111111kkkkkkkC,DC,ZADDLWkAdd literal with W1111001kkkkkkkkZCALLkCall subroutine210000001100100TO,PDGOTOkGo to address21011kkkkkkkkkkkkZIORLWkInclusive OR literal with W1111000kkkkKkkkZMOVLWkReturn from interrupt200000000011001TO,PDRETLWkReturn with literal in W21101xxkkkkkkkkKkkkRETURN-Return from Subroutine200000000001000TO,PDSLEEP-Go into standby mode100000001100101TO,PD	-									
BTFSC BTFSSf, b bBit Test f, Skip if Clear Bit Test f, Skip if Set1 (2) 1 (2)0110bbbfffffffLITERAL AND CONTROL OPERATIONSADDLW ANDLW CALLkAdd literal and W111111111xkkkkkkkkC,DC,ZADDLW ANDLWkAdd literal with W1111111001kkkkkkkkZCALL CALL GOTO GOTO GOTO GOTO KCall subroutine Go to address2100kkkkkkkkkkkZTO,PDGOTO GOTO GOTO GOTO KGo to address2101kkkkkkkZIORLW KInclusive OR literal with W1111000kkkkKkkkZMOVLW RETFIE FTIE <br< td=""><td></td><td>,</td><td></td><td></td><td>01</td><td>00bb</td><td></td><td></td><td></td><td>1,2</td></br<>		,			01	00bb				1,2
BTFSSf, bBit Test f, Skip if Set1 (2)0111bbbfffffffLITERAL AND COVERATIONSADDLWkAdd literal and W111111 x kkkkkkkkC,DC,ZANDLWkAND literal with W111111 x kkkkkkkkC,DC,ZCALLkCall subroutine2100kkkkkkkkkkkZCALLkCall subroutine2100kkkkkkkkkkkZGOTOkGo to address2101kkkkkkkkkkkZIORLWkInclusive OR literal with W1111000kkkkKkkkZMOVLWkMove literal to W1111000kkkkkkkkZRETFIE-Return from interrupt200000000011001RETLWkReturn from Subroutine200000000001000SLEEP-Go into standby mode10000000110TO,PD	-			-	01	01bb	bfff	ffff		1,2
LITERAL AND CONTROL OPERATIONSADDLWkAdd literal and W111111 111xkkkkkkkkC,DC,ZANDLWkAND literal with W1111001kkkkkkkkC,DC,ZCALLkCall subroutine2100kkkkkkkkkkkkkkkZCALLkCall subroutine2100kkkkkkkkkkkZCALLkCall subroutine21000000011001000GOTOkGo to address2101kkkkkkkkkkkZIORLWkInclusive OR literal with W1111000kkkkkkkkZMOVLWkMove literal to W1110000000001001Return from interrupt200000000010011RETLIPReturn from interrupt20000000000100010001000SLEEP-Go into standby mode100000001101001TO,PD					01	10bb	bfff	ffff		3
ADDLWkAdd literal and W111111 x kkkkkkkkC,DC,ZANDLWkAND literal with W1111001 kkkkkkkkZCALLkCall subroutine2100kkkkkkkkkkkZCLRWDT-Clear Watchdog Timer100000001100100TO,PDGOTOkGo to address2101kkkkkkkkkkkZIORLWkInclusive OR literal with W1111000kkkkkkkkZMOVLWkMove literal to W1110000000001001RETFIE-Return from interrupt200000000001001RETURN-Return with literal in W21101xxkkkkkkkkFD,PDSLEEP-Go into standby mode100000001100101TO,PD				1 (2)	01	11bb	bfff	ffff		3
ANDLWkAND literal with W1111001kkkkkkkkZCALLkCall subroutine2100kkkkkkkkkkkKkkkZCLRWDT-Clear Watchdog Timer100000001100100TO,PDGOTOkGo to address2101kkkkkkkkkkkKkkkZIORLWkInclusive OR literal with W1111000kkkkkkkkZMOVLWkMove literal to W111000000001001RETFIE-Return from interrupt200000000001001RETLWReturn with literal in W21101xxkkkkkkkkRETURN-Return from Subroutine200000000001000TO,PDSLEEP-Go into standby mode100000001100011TO,PD		ND CO								•
CALL k Call subroutine 2 10 0kkk kkkk kkkkk kkkk kkkk kkkkk kkkk kkkkk kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk				-	11					
CLRWDT - Clear Watchdog Timer 1 00 0000 0110 100 GOTO k Go to address 2 10 1kkk kkkk kkkk IORLW k Inclusive OR literal with W 1 11 1000 kkkk kkkk Z MOVLW k Move literal to W 1 11 1000 kkkk kkkk Z RETFIE - Return from interrupt 2 00 0000 0000 1001 RETLW k Return with literal in W 2 11 01xx kkkk kkkk RETURN - Return from Subroutine 2 00 0000 0000 1000 SLEEP - Go into standby mode 1 00 0000 0110 TO,PD					11	1001	kkkk	kkkk	Z	
GOTO k Go to address 2 10 1kkk kkkk kkkk IORLW k Inclusive OR literal with W 1 11 1000 kkkk kkkk Z MOVLW k Move literal to W 1 11 1000 kkkk kkkk Z RETFIE - Return from interrupt 2 00 0000 1001 RETLW k Return with literal in W 2 11 01xx kkkk kkkk RETURN - Return from Subroutine 2 00 0000 1000 SLEEP - Go into standby mode 1 00 0000 011 TO, PD	-				10	0kkk	kkkk			
IORLW k Inclusive OR literal with W 1 11 1000 kkkk kkkk Z MOVLW k Move literal to W 1 11 1000 kkkk kkkk Z MOVLW k Move literal to W 1 11 1000 kkkk kkkk kkkk RETFIE - Return from interrupt 2 00 0000 0000 1001 RETLW k Return with literal in W 2 11 01xx kkkk kkkk RETURN - Return from Subroutine 2 00 0000 0000 1000 SLEEP - Go into standby mode 1 00 0000 011 TO,PD			5	-	00				TO,PD	
MOVLW k Move literal to W 1 11 00xx kkkk kkkk RETFIE - Return from interrupt 2 00 0000 0000 1001 RETLW k Return with literal in W 2 11 01xx kkkk kkkk RETURN - Return from Subroutine 2 00 0000 0000 1000 SLEEP - Go into standby mode 1 00 0000 011 TO,PD					10	1kkk				
RETFIE - Return from interrupt 2 00 0000 0000 1001 RETLW k Return with literal in W 2 11 01xx kkkk kkkk RETURN - Return from Subroutine 2 00 0000 0000 1000 SLEEP - Go into standby mode 1 00 0000 011 TO,PD	-				11				Z	
RETLW k Return with literal in W 2 11 01xx kkkk kkkk RETURN - Return from Subroutine 2 00 0000 0000 1000 SLEEP - Go into standby mode 1 00 0000 011 TO,PD	-	k		-	11	00xx	kkkk	kkkk		
RETURN - Return from Subroutine 2 00 0000 1000 SLEEP - Go into standby mode 1 00 0000 0110 TO,PD		-	•		00	0000				
SLEEP - Go into standby mode 1 00 0000 0110 TO, PD		k			11	01xx	kkkk	kkkk		
	RETURN	-			00	0000	0000	1000		
SUBLW k Subtract W from literal 1 11 11 0 w kikiki kikiki CDC 7	SLEEP	-	Go into standby mode	1	00	0000	0110	0011	TO,PD	
	SUBLW	k	Subtract W from literal	1	11	110x	kkkk	kkkk	C,DC,Z	
XORLW k Exclusive OR literal with W 1 11 1010 kkkk Kkkk Z	XORLW	k	Exclusive OR literal with W	1	11	1010	kkkk	kkkk	Z	

Note 1: When an I/O register is modified as a function of itself (e.g., MOVF PORTB, 1), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if assigned to the Timer0 Module.

3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

PIC16C62B/72A

RETFIE	Return from Interrupt	RLF	Rotate Left f through Carry
Syntax:	[label] RETFIE	Syntax:	[label] RLF f,d
Operands: Operation:	None $TOS \rightarrow PC$.	Operands:	$0 \le f \le 127$ $d \in [0,1]$
operation	$1 \rightarrow \text{GIE}$	Operation:	See description below
Status Affected:	None	Status Affected:	С
		Description:	The contents of register 'f' are rotated one bit to the left through the Carry Flag. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is stored back in register 'f'.

-	C 🚽	Register f]	

RETLW	Return with Literal in W	RRF	Rotate Right f through Carry
Syntax:	[<i>label</i>] RETLW k	Syntax:	[<i>label</i>] RRF f,d
Operands:	$0 \le k \le 255$	Operands:	$0 \le f \le 127$
Operation:	$k \rightarrow (W);$		d ∈ [0,1]
	$TOS \rightarrow PC$	Operation:	See description below
Status Affected:	None	Status Affected:	С
Description:	The W register is loaded with the eight bit literal 'k'. The program counter is loaded from the top of the stack (the return address). This is a two cycle instruction.	Description:	The contents of register 'f' are rotated one bit to the right through the Carry Flag. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in register 'f'.
			C Register f

RETURN	Return from Subroutine
Syntax:	[label] RETURN
Operands:	None
Operation:	$TOS \rightarrow PC$
Status Affected:	None
Description:	Return from subroutine. The stack is POPed and the top of the stack (TOS) is loaded into the program counter. This is a two cycle instruction.

SLEEP	
Syntax:	[label] SLEEP
Operands:	None
Operation:	$\begin{array}{l} 00h \rightarrow WDT, \\ 0 \rightarrow WDT \ \text{prescaler}, \\ 1 \rightarrow \overline{TO}, \\ 0 \rightarrow \overline{PD} \end{array}$
Status Affected:	TO, PD
Description:	The power-down status bit, $\overline{\text{PD}}$ is cleared. Time-out status bit, $\overline{\text{TO}}$ is set. Watchdog Timer and its pres- caler are cleared. The processor is put into SLEEP mode with the oscillator stopped. See Section 10.13 for more details.

12.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers are supported with a full range of hardware and software development tools:

- Integrated Development Environment
 - MPLAB™ IDE Software
- Assemblers/Compilers/Linkers
 - MPASM Assembler
 - MPLAB-C17 and MPLAB-C18 C Compilers
 - MPLINK/MPLIB Linker/Librarian
- Simulators
 - MPLAB-SIM Software Simulator
- Emulators
 - MPLAB-ICE Real-Time In-Circuit Emulator
 - PICMASTER[®]/PICMASTER-CE In-Circuit Emulator
 - ICEPIC™
- In-Circuit Debugger
 - MPLAB-ICD for PIC16F877
- Device Programmers
 - PRO MATE[®] II Universal Programmer
 - PICSTART[®] Plus Entry-Level Prototype Programmer
- Low-Cost Demonstration Boards
 - SIMICE
 - PICDEM-1
 - PICDEM-2
 - PICDEM-3
 - PICDEM-17
 - SEEVAL®
 - KEELOQ[®]

12.1 <u>MPLAB Integrated Development</u> <u>Environment Software</u>

- The MPLAB IDE software brings an ease of software development previously unseen in the 8-bit microcontroller market. MPLAB is a Windows[®]-based application which contains:
- Multiple functionality
 - editor
 - simulator
 - programmer (sold separately)
 - emulator (sold separately)
- A full featured editor
- A project manager
- · Customizable tool bar and key mapping
- · A status bar
- On-line help

MPLAB allows you to:

- Edit your source files (either assembly or 'C')
- One touch assemble (or compile) and download to PIC MCU tools (automatically updates all project information)
- Debug using:
 - source files
 - absolute listing file
 - object code

The ability to use MPLAB with Microchip's simulator, MPLAB-SIM, allows a consistent platform and the ability to easily switch from the cost-effective simulator to the full featured emulator with minimal retraining.

12.2 MPASM Assembler

MPASM is a full featured universal macro assembler for all PIC MCUs. It can produce absolute code directly in the form of HEX files for device programmers, or it can generate relocatable objects for MPLINK.

MPASM has a command line interface and a Windows shell and can be used as a standalone application on a Windows 3.x or greater system. MPASM generates relocatable object files, Intel standard HEX files, MAP files to detail memory usage and symbol reference, an absolute LST file which contains source lines and generated machine code, and a COD file for MPLAB debugging.

MPASM features include:

- MPASM and MPLINK are integrated into MPLAB projects.
- MPASM allows user defined macros to be created for streamlined assembly.
- MPASM allows conditional assembly for multi purpose source files.
- MPASM directives allow complete control over the assembly process.

12.3 <u>MPLAB-C17 and MPLAB-C18</u> <u>C Compilers</u>

The MPLAB-C17 and MPLAB-C18 Code Development Systems are complete ANSI 'C' compilers and integrated development environments for Microchip's PIC17CXXX and PIC18CXXX family of microcontrollers, respectively. These compilers provide powerful integration capabilities and ease of use not found with other compilers.

For easier source level debugging, the compilers provide symbol information that is compatible with the MPLAB IDE memory display.

12.4 MPLINK/MPLIB Linker/Librarian

MPLINK is a relocatable linker for MPASM and MPLAB-C17 and MPLAB-C18. It can link relocatable objects from assembly or C source files along with precompiled libraries using directives from a linker script.

PIC16C62B/72A

MPLIB is a librarian for pre-compiled code to be used with MPLINK. When a routine from a library is called from another source file, only the modules that contains that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications. MPLIB manages the creation and modification of library files.

MPLINK features include:

- MPLINK works with MPASM and MPLAB-C17 and MPLAB-C18.
- MPLINK allows all memory areas to be defined as sections to provide link-time flexibility.

MPLIB features include:

- MPLIB makes linking easier because single libraries can be included instead of many smaller files.
- MPLIB helps keep code maintainable by grouping related modules together.
- MPLIB commands allow libraries to be created and modules to be added, listed, replaced, deleted, or extracted.

12.5 MPLAB-SIM Software Simulator

The MPLAB-SIM Software Simulator allows code development in a PC host environment by simulating the PIC series microcontrollers on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a file or user-defined key press to any of the pins. The execution can be performed in single step, execute until break, or trace mode.

MPLAB-SIM fully supports symbolic debugging using MPLAB-C17 and MPLAB-C18 and MPASM. The Software Simulator offers the flexibility to develop and debug code outside of the laboratory environment making it an excellent multi-project software development tool.

12.6 <u>MPLAB-ICE High Performance</u> <u>Universal In-Circuit Emulator with</u> <u>MPLAB IDE</u>

The MPLAB-ICE Universal In-Circuit Emulator is intended to provide the product development engineer with a complete microcontroller design tool set for PIC microcontrollers (MCUs). Software control of MPLAB-ICE is provided by the MPLAB Integrated Development Environment (IDE), which allows editing, "make" and download, and source debugging from a single environment.

Interchangeable processor modules allow the system to be easily reconfigured for emulation of different processors. The universal architecture of the MPLAB-ICE allows expansion to support new PIC microcontrollers.

The MPLAB-ICE Emulator System has been designed as a real-time emulation system with advanced features that are generally found on more expensive development tools. The PC platform and Microsoft[®] Windows 3.x/95/98 environment were chosen to best make these features available to you, the end user.

MPLAB-ICE 2000 is a full-featured emulator system with enhanced trace, trigger, and data monitoring features. Both systems use the same processor modules and will operate across the full operating speed range of the PIC MCU.

12.7 PICMASTER/PICMASTER CE

The PICMASTER system from Microchip Technology is a full-featured, professional quality emulator system. This flexible in-circuit emulator provides a high-quality, universal platform for emulating Microchip 8-bit PIC microcontrollers (MCUs). PICMASTER systems are sold worldwide, with a CE compliant model available for European Union (EU) countries.

12.8 <u>ICEPIC</u>

ICEPIC is a low-cost in-circuit emulation solution for the Microchip Technology PIC16C5X, PIC16C6X, PIC16C7X, and PIC16CXXX families of 8-bit one-timeprogrammable (OTP) microcontrollers. The modular system can support different subsets of PIC16C5X or PIC16CXXX products through the use of interchangeable personality modules or daughter boards. The emulator is capable of emulating without target application circuitry being present.

12.9 MPLAB-ICD In-Circuit Debugger

Microchip's In-Circuit Debugger, MPLAB-ICD, is a powerful, low-cost run-time development tool. This tool is based on the flash PIC16F877 and can be used to develop for this and other PIC microcontrollers from the PIC16CXXX family. MPLAB-ICD utilizes the In-Circuit Debugging capability built into the PIC16F87X. This feature, along with Microchip's In-Circuit Serial Programming protocol, offers cost-effective in-circuit flash programming and debugging from the graphical user interface of the MPLAB Integrated Development Environment. This enables a designer to develop and debug source code by watching variables, single-stepping and setting break points. Running at full speed enables testing hardware in real-time. The MPLAB-ICD is also a programmer for the flash PIC16F87X family.

12.10 PRO MATE II Universal Programmer

The PRO MATE II Universal Programmer is a full-featured programmer capable of operating in stand-alone mode as well as PC-hosted mode. PRO MATE II is CE compliant.

The PRO MATE II has programmable VDD and VPP supplies which allows it to verify programmed memory at VDD min and VDD max for maximum reliability. It has an LCD display for instructions and error messages, keys to enter commands and a modular detachable socket assembly to support various package types. In

stand-alone mode the PRO MATE II can read, verify or program PIC devices. It can also set code-protect bits in this mode.

12.11 <u>PICSTART Plus Entry Level</u> <u>Development System</u>

The PICSTART programmer is an easy-to-use, lowcost prototype programmer. It connects to the PC via one of the COM (RS-232) ports. MPLAB Integrated Development Environment software makes using the programmer simple and efficient.

PICSTART Plus supports all PIC devices with up to 40 pins. Larger pin count devices such as the PIC16C92X, and PIC17C76X may be supported with an adapter socket. PICSTART Plus is CE compliant.

12.12 <u>SIMICE Entry-Level</u> <u>Hardware Simulator</u>

SIMICE is an entry-level hardware development system designed to operate in a PC-based environment with Microchip's simulator MPLAB-SIM. Both SIMICE and MPLAB-SIM run under Microchip Technology's MPLAB Integrated Development Environment (IDE) software. Specifically, SIMICE provides hardware simulation for Microchip's PIC12C5XX, PIC12CE5XX, and PIC16C5X families of PIC 8-bit microcontrollers. SIM-ICE works in conjunction with MPLAB-SIM to provide non-real-time I/O port emulation. SIMICE enables a developer to run simulator code for driving the target system. In addition, the target system can provide input to the simulator code. This capability allows for simple and interactive debugging without having to manually generate MPLAB-SIM stimulus files. SIMICE is a valuable debugging tool for entry-level system development.

12.13 <u>PICDEM-1 Low-Cost PIC MCU</u> <u>Demonstration Board</u>

The PICDEM-1 is a simple board which demonstrates the capabilities of several of Microchip's microcontrollers. The microcontrollers supported are: PIC16C5X (PIC16C54 to PIC16C58A), PIC16C61, PIC16C62X, PIC16C71, PIC16C8X, PIC17C42, PIC17C43 and PIC17C44. All necessary hardware and software is included to run basic demo programs. The users can program the sample microcontrollers provided with the PICDEM-1 board, on a PRO MATE II or PICSTART-Plus programmer, and easily test firmware. The user can also connect the PICDEM-1 board to the MPLAB-ICE emulator and download the firmware to the emulator for testing. Additional prototype area is available for the user to build some additional hardware and connect it to the microcontroller socket(s). Some of the features include an RS-232 interface, a potentiometer for simulated analog input, push-button switches and eight LEDs connected to PORTB.

12.14 PICDEM-2 Low-Cost PIC16CXX Demonstration Board

The PICDEM-2 is a simple demonstration board that supports the PIC16C62, PIC16C64, PIC16C65, PIC16C73 and PIC16C74 microcontrollers. All the necessary hardware and software is included to run the basic demonstration programs. The user can program the sample microcontrollers provided with the PICDEM-2 board, on a PRO MATE II programmer or PICSTART-Plus, and easily test firmware. The MPLAB-ICE emulator may also be used with the PICDEM-2 board to test firmware. Additional prototype area has been provided to the user for adding additional hardware and connecting it to the microcontroller socket(s). Some of the features include a RS-232 interface, push-button switches, a potentiometer for simulated analog input, a Serial EEPROM to demonstrate usage of the I²C bus and separate headers for connection to an LCD module and a keypad.

12.15 <u>PICDEM-3 Low-Cost PIC16CXXX</u> <u>Demonstration Board</u>

The PICDEM-3 is a simple demonstration board that supports the PIC16C923 and PIC16C924 in the PLCC package. It will also support future 44-pin PLCC microcontrollers with a LCD Module. All the necessary hardware and software is included to run the basic demonstration programs. The user can program the sample microcontrollers provided with the PICDEM-3 board, on a PRO MATE II programmer or PICSTART Plus with an adapter socket, and easily test firmware. The MPLAB-ICE emulator may also be used with the PICDEM-3 board to test firmware. Additional prototype area has been provided to the user for adding hardware and connecting it to the microcontroller socket(s). Some of the features include an RS-232 interface, push-button switches, a potentiometer for simulated analog input, a thermistor and separate headers for connection to an external LCD module and a keypad. Also provided on the PICDEM-3 board is an LCD panel, with 4 commons and 12 segments, that is capable of displaying time, temperature and day of the week. The PICDEM-3 provides an additional RS-232 interface and Windows 3.1 software for showing the demultiplexed LCD signals on a PC. A simple serial interface allows the user to construct a hardware demultiplexer for the LCD signals.

12.16 PICDEM-17

The PICDEM-17 is an evaluation board that demonstrates the capabilities of several Microchip microcontrollers, including PIC17C752, PIC17C756, PIC17C762, and PIC17C766. All necessary hardware is included to run basic demo programs, which are supplied on a 3.5-inch disk. A programmed sample is included, and the user may erase it and program it with the other sample programs using the PRO MATE II or PICSTART Plus device programmers and easily debug

© 1998-2013 Microchip Technology Inc.

	PIC12CXX	PIC14000	PIC16C5X	PIC16C68	KXO910Id	PIC16F62	(20910Id	X7Oðfolg	PIC16C8)	PIC16F8X	PIC16C9X	(4)71219	(XTOTTOI9	PIC18CXX	63CXX 52CXX/ 54CXX/	хххзэн	мсвеххх	MCP2510
MPLAB™ Integrated Development Environment	>	>	`	>	>	>	>	>	`	>	`	>	>	>				
MPLAB TM C17 Compiler												>	>					
MPLAB TM C18 Compiler														>				
MPASM/MPLINK	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>		
MPLAB [™] -ICE	>	>	>	>	>	**^	>	>	>	>	>	>	>	>				
PICMASTER/PICMASTER-CE	~	>	>	>	>		>	>	>		>	>	>					
E ICEPIC™ Low-Cost II In-Circuit Emulator	>		>	>	>		>	>	>		>							
et MPLAB-ICD In-Circuit Debugger De				* >			*>			>								
PICSTART [®] Plus Low-Cost Universal Dev. Kit	^	`	`	>	>	**^	>	>	`	`	`	`	~	`				
ଅଟେ PRO MATE® II Universal Programmer	^	>	^	>	>	**/	>	>	>	>	>	>	>	>	>	>		
SIMICE	>		>															
PICDEM-1			>		>		+√		>			>						
PICDEM-2				+∕			+∕							>				
PICDEM-3											>							
PICDEM-14A		>																
PICDEM-17													>					
KEELoq [®] Evaluation Kit																>		
KEELoo Transponder Kit																>		
microlD TM Programmer's Kit																	>	
125 kHz microID Developer's Kit																	>	
125 kHz Anticollision microlD Developer's Kit																	>	
13.56 MHz Anticollision microID Developer's Kit							<u> </u>										>	
MCP2510 CAN Developer's Kit																		>

TABLE 12-1: DEVELOPMENT TOOLS FROM MICROCHIP

 $\ensuremath{\textcircled{}^{\odot}}$ 1998-2013 Microchip Technology Inc.

PIC16C62B/72A

NOTES:

13.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings (†)

Ambient temperature under bias	55°C to +125°C
Storage temperature	
Voltage on any pin with respect to Vss (except VDD, MCLR, and RA4)	
Voltage on VDD with respect to VSS	
Voltage on MCLR with respect to Vss (Note 2)	
Voltage on RA4 with respect to Vss	
Total power dissipation (Note 1)	
Maximum current out of Vss pin	
Maximum current into VDD pin	
Input clamp current, Iк (VI < 0 or VI > VDD)	
Output clamp current, loк (Vo < 0 or Vo > VDD)	
Maximum output current sunk by any I/O pin	
Maximum output current sourced by any I/O pin	25 mA
Maximum current sunk by PORTA and PORTB (combined)	
Maximum current sourced by PORTA and PORTB (combined)	200 mA
Maximum current sunk by PORTC	200 mA
Maximum current sourced by PORTC	200 mA
Note 1: Power dissipation is calculated as follows: Pdis = VDD x {IDD - \sum IOH} + \sum {(VDD-Vertice) + } {(VDD-Vertice) + } {(VDD-Vertice) + } {(VD-Vertice) + } {(VD-Vertice	

2: Voltage spikes below Vss at the MCLR/VPP pin, inducing currents greater than 80 mA, may cause latch-up. Thus, a series resistor of 50-100Ω should be used when applying a "low" level to the MCLR/VPP pin, rather than pulling this pin directly to Vss.

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

			Standar	d Opera	ating Co	ondition	s (unless otherwise stated)
DC CHA	RACTE	RISTICS	Operatir	ng temp	erature		\leq TA \leq +70°C for commercial
	1	1	1	1	1	-40°C	
Param No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
D001	Vdd	Supply Voltage	2.5	-	5.5	V	LP, XT, RC osc modes (DC - 4 MHz)
			VBOR*	-	5.5	V	BOR enabled (Note 7)
D002*	Vdr	RAM Data Retention Voltage (Note 1)	-	1.5	-	V	
D003	VPOR	VDD Start Voltage to ensure internal Power-on Reset signal	-	Vss	-	V	See section on Power-on Reset for details
D004* D004A*	SVDD	VDD Rise Rate to ensure internal Power-on Reset signal	0.05 TBD	- -	-	V/ms	PWRT enabled (PWRTE bit clear) PWRT disabled (PWRTE bit set) See section on Power-on Reset for details
D005	VBOR	Brown-out Reset voltage trip point	3.65	-	4.35	V	BODEN bit set
D010	IDD	Supply Current (Note 2, 5)	-	2.0	3.8	mA	XT, RC osc modes Fosc = 4 MHz, VDD = 3.0V (Note 4)
D010A			-	22.5	48	μA	LP OSC MODE FOSC = 32 kHz, VDD = 3.0V, WDT disabled
D020	IPD	Power-down Current	-	7.5	30	μA	VDD = 3.0V, WDT enabled, -40°C to +85°C
D021		(Note 3, 5)	-	0.9	5	μA	VDD = $3.0V$, WDT disabled, $0^{\circ}C$ to $+70^{\circ}C$
D021A			-	0.9	5	μA	VDD = 3.0V, WDT disabled, -40°C to +85°C
		Module Differential Current (Note 6)					
D022*	Δ IWDT	Watchdog Timer	-	6.0	20	μA	WDTE BIT SET, VDD = 4.0V
D022A*	Δ IBOR	Brown-out Reset	-	TBD	200	μA	BODEN bit set, VDD = 5.0V

13.2 DC Characteristics: PIC16LC62B/72A-04 (Commercial, Industrial)

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

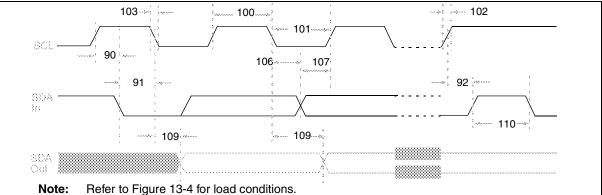
Note 1: This is the limit to which VDD can be lowered without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD,

 $\overline{MCLR} = VDD$; WDT enabled/disabled as specified.


- 3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS.
- 4: For RC osc mode, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.

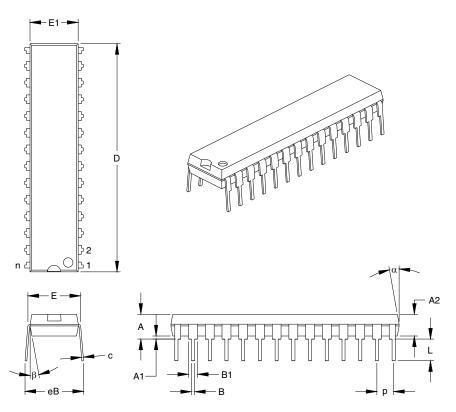
5: Timer1 oscillator (when enabled) adds approximately 20 µA to the specification. This value is from characterization and is for design guidance only. This is not tested.

- 6: The Δ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.
- 7: This is the voltage where the device enters the Brown-out Reset. When BOR is enabled, the device will perform a brown-out reset when VDD falls below VBOR.

PIC16C62B/72A

FIGURE 13-16: I²C BUS DATA TIMING

TABLE 13-12: I²C BUS DATA REQUIREMENTS


Param. No.	Sym	Characte	eristic	Min	Max	Units	Conditions
100*	Thigh	Clock high time	100 kHz mode	4.0	_	μS	Device must operate at a min- imum of 1.5 MHz
			400 kHz mode	0.6	_	μS	Device must operate at a min- imum of 10 MHz
			SSP Module	1.5TCY	—		
101*	TLOW	Clock low time	100 kHz mode	4.7	-	μS	Device must operate at a min- imum of 1.5 MHz
			400 kHz mode	1.3	—	μs	Device must operate at a min- imum of 10 MHz
			SSP Module	1.5TCY	—		
102*	TR	SDA and SCL rise	100 kHz mode	—	1000	ns	
		time	400 kHz mode	20 + 0.1Cb	300	ns	Cb is specified to be from 10-400 pF
103*	TF	SDA and SCL fall	100 kHz mode	—	300	ns	
		time	400 kHz mode	20 + 0.1Cb	300	ns	Cb is specified to be from 10-400 pF
90*	TSU:STA	START condition	100 kHz mode	4.7	—	μs	Only relevant for repeated
		setup time	400 kHz mode	0.6	—	μs	START condition
91*	THD:STA	START condition hold	100 kHz mode	4.0		μs	After this period the first clock
		time	400 kHz mode	0.6	—	μS	pulse is generated
106*	THD:DAT	Data input hold time	100 kHz mode	0	—	ns	
			400 kHz mode	0	0.9	μs	
107*	TSU:DAT	Data input setup time	100 kHz mode	250	_	ns	Note 2
			400 kHz mode	100	—	ns	
92*	TSU:STO	STOP condition setup	100 kHz mode	4.7	—	μs	
		time	400 kHz mode	0.6	_	μS	
109*	ΤΑΑ	Output valid from	100 kHz mode	—	3500	ns	Note 1
		clock	400 kHz mode	—	—	ns	
110*	TBUF	Bus free time	100 kHz mode	4.7	_	μS	Time the bus must be free
			400 kHz mode	1.3	_	μs	before a new transmission can start
	Cb	Bus capacitive loading		—	400	pF	

* These parameters are characterized but not tested.

Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of the falling edge of SCL to avoid unintended generation of START or STOP conditions.

2: A fast-mode (400 kHz) I²C-bus device can be used in a standard-mode (100 kHz) I²C-bus system, but the requirement Tsu:DAT ≥ 250 ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line TR max.+tsu;DAT = 1000 + 250 = 1250 ns (according to the standard-mode I²C bus specification) before the SCL line is released.

28-Lead Skinny Plastic Dual In-line (SP) – 300 mil (PDIP) 15.2

	Units		INCHES*		MILLIMETERS			
Dimension	Limits	MIN	NOM	MAX	MIN	NOM	MAX	
Number of Pins	n		28			28		
Pitch	р		.100			2.54		
Top to Seating Plane	Α	.140	.150	.160	3.56	3.81	4.06	
Molded Package Thickness	A2	.125	.130	.135	3.18	3.30	3.43	
Base to Seating Plane	A1	.015			0.38			
Shoulder to Shoulder Width	E	.300	.313	.325	7.62	7.94	8.26	
Molded Package Width	E1	.279	.307	.335	7.09	7.80	8.51	
Overall Length	D	1.345	1.365	1.385	34.16	34.67	35.18	
Tip to Seating Plane	L	.125	.130	.135	3.18	3.30	3.43	
Lead Thickness	С	.008	.012	.015	0.20	0.29	0.38	
Upper Lead Width	B1	.040	.053	.065	1.02	1.33	1.65	
Lower Lead Width	В	.016	.019	.022	0.41	0.48	0.56	
Overall Row Spacing	eB	.320	.350	.430	8.13	8.89	10.92	
Mold Draft Angle Top	α	5	10	15	5	10	15	
Mold Draft Angle Bottom	β	5	10	15	5	10	15	

*Controlling Parameter

Notes: Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MO-095 Drawing No. C04-070

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, PIC³² logo, rfPIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MTP, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

Analog-for-the-Digital Age, Application Maestro, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rfLAB, Select Mode, SQI, Serial Quad I/O, Total Endurance, TSHARC, UniWinDriver, WiperLock, ZENA and Z-Scale are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

GestIC and ULPP are registered trademarks of Microchip Technology Germany II GmbH & Co. & KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 1998-2013, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

ISBN: 9781620769270

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and mulfacture of development systems is ISO 9001:2000 certified.