

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	22
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 5.5V
Data Converters	-
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c62b-20-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1.0	Device Overview	F
	Memory Organization	
	I/O Ports	
4.0	Timer0 Module	
	Timer1 Module	
6.0	Timer2 Module	31
7.0	Capture/Compare/PWM (CCP) Module	33
	Synchronous Serial Port (SSP) Module	
9.0	Analog-to-Digital Converter (A/D) Module	49
10.0	Special Features of the CPU	55
11.0	Instruction Set Summary	67
12.0	Development Support	75
13.0	Electrical Characteristics	81
14.0	DC and AC Characteristics Graphs and Tables	. 103
15.0	Packaging Information	. 105
Appe	ndix A. Revision History	. 111
	ndix B: Conversion Considerations	
	ndix C: Migration from Base-line to Mid-Range Devices	
	· · · · · · · · · · · · · · · · · · ·	
On-L	ne Support	. 117
	er Response	
	6C62B/72A Product Identification System	

To Our Valued Customers

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number. e.g., DS30000A is version A of document DS30000.

New Customer Notification System

Register on our web site (www.microchip.com/cn) to receive the most current information on our products.

Errata

An errata sheet may exist for current devices, describing minor operational differences (from the data sheet) and recommended workarounds. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- · Your local Microchip sales office (see last page)
- The Microchip Corporate Literature Center; U.S. FAX: (480) 786-7277

When contacting a sales office or the literature center, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Corrections to this Data Sheet

We constantly strive to improve the quality of all our products and documentation. We have spent a great deal of time to ensure that this document is correct. However, we realize that we may have missed a few things. If you find any information that is missing or appears in error, please:

- Fill out and mail in the reader response form in the back of this data sheet.
- E-mail us at webmaster@microchip.com.

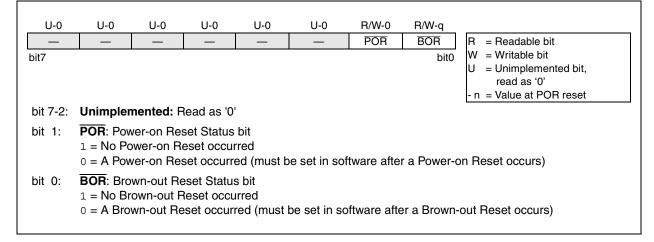
We appreciate your assistance in making this a better document.

TABLE 1-1 PIC16C62B/PIC16C72A PINOUT DESCRIPTION

Pin Name	DIP Pin#	SOIC Pin#	I/O/P Type	Buffer Type	Description				
OSC1/CLKIN	9	9	I	ST/CMOS ⁽³⁾	Oscillator crystal input/external clock source input.				
OSC2/CLKOUT	10	10	0	_	Oscillator crystal output. Connects to crystal or resonator in crystal oscillator mode. In RC mode, the OSC2 pin outputs CLKOUT which has 1/4 the frequency of OSC1, and denotes the instruction cycle rate.				
MCLR/Vpp	1	1	I/P	ST	Master clear (reset) input or programming voltage input. This pin is an active low reset to the device.				
					PORTA is a bi-directional I/O port.				
RA0/AN0 ⁽⁴⁾	2	2	I/O	TTL	RA0 can also be analog input 0				
RA1/AN1 ⁽⁴⁾	3	3	I/O	TTL	RA1 can also be analog input 1				
RA2/AN2 ⁽⁴⁾	4	4	I/O	TTL	RA2 can also be analog input 2				
RA3/AN3/VREF ⁽⁴⁾	5	5	I/O	TTL	RA3 can also be analog input 3 or analog reference voltage				
RA4/T0CKI	6	6	I/O	ST	RA4 can also be the clock input to the Timer0 module. Output is open drain type.				
RA5/SS/AN4 ⁽⁴⁾	7	7	I/O	TTL	RA5 can also be analog input 4 or the slave select for the synchronous serial port.				
					PORTB is a bi-directional I/O port. PORTB can be software programmed for internal weak pull-up on all inputs.				
RB0/INT	21	21	I/O	TTL/ST ⁽¹⁾	RB0 can also be the external interrupt pin.				
RB1	22	22	I/O	TTL					
RB2	23	23	I/O	TTL					
RB3	24	24	I/O	TTL					
RB4	25	25	I/O	TTL	Interrupt on change pin.				
RB5	26	26	I/O	TTL	Interrupt on change pin.				
RB6	27	27	I/O	TTL/ST ⁽²⁾	Interrupt on change pin. Serial programming clock.				
RB7	28	28	I/O	TTL/ST ⁽²⁾	Interrupt on change pin. Serial programming data.				
					PORTC is a bi-directional I/O port.				
RC0/T1OSO/T1CKI	11	11	I/O	ST	RC0 can also be the Timer1 oscillator output or Timer1 clock input.				
RC1/T1OSI	12	12	I/O	ST	RC1 can also be the Timer1 oscillator input.				
RC2/CCP1	13	13	I/O	ST	RC2 can also be the Capture1 input/Compare1 output/ PWM1 output.				
RC3/SCK/SCL	14	14	I/O	ST	RC3 can also be the synchronous serial clock input/output for both SPI and I ² C modes.				
RC4/SDI/SDA	15	15	I/O	ST	RC4 can also be the SPI Data In (SPI mode) or data I/O (I^2C mode).				
RC5/SDO	16	16	I/O	ST	RC5 can also be the SPI Data Out (SPI mode).				
RC6	17	17	I/O	ST					
RC7	18	18	I/O	ST					
Vss	8, 19	8, 19	Р	_	Ground reference for logic and I/O pins.				
Vdd	20	20	Р	—	Positive supply for logic and I/O pins.				
Legend: I = input	O = outp — = Not		I/O =	input/output	P = power or program ST = Schmitt Trigger input				

Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.

This buffer is a Schmitt Trigger input when used in serial programming mode.
 This buffer is a Schmitt Trigger input when configured in RC oscillator mode and a CMOS input otherwise.


4: The A/D module is not available on the PIC16C62B.

2.2.2.6 PCON REGISTER

The Power Control register (PCON) contains flag bits to allow differentiation between a Power-on Reset (POR), Brown-Out Reset (BOR) and resets from other sources.

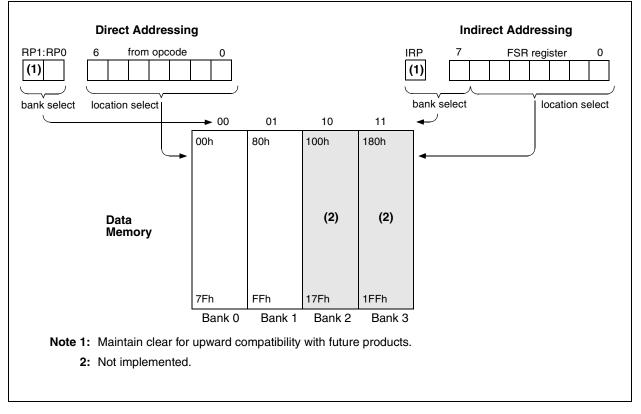
Note: On Power-on Reset, the state of the BOR bit is unknown and is not predictable. If the BODEN bit in the configuration word is set, the user must first set the BOR bit on a POR, and check it on subsequent resets. If BOR is cleared while POR remains set, a Brown-out reset has occurred. If the BODEN bit is clear, the BOR bit may be ignored.

REGISTER 2-6: PCON REGISTER (ADDRESS 8Eh)

2.5 Indirect Addressing, INDF and FSR Registers

The INDF register is not a physical register. Addressing INDF actually addresses the register whose address is contained in the FSR register (FSR is a *pointer*).

Reading INDF itself indirectly (FSR = 0) will produce 00h. Writing to the INDF register indirectly results in a no-operation (although STATUS bits may be affected).


A simple program to clear RAM locations 20h-2Fh using indirect addressing is shown in Example 2-1.

EXAMPLE 2-1: HOW TO CLEAR RAM USING INDIRECT ADDRESSING

	movlw movwf		;initialize pointer ; to RAM
NEXT	clrf	INDF	;clear INDF register
	incf	FSR	;inc pointer
	btfss	FSR,4	;all done?
	goto	NEXT	;NO, clear next
CONTINUE			
	:		;YES, continue

An effective 9-bit address is obtained by concatenating the 8-bit FSR register and the IRP bit (STATUS<7>), as shown in Figure 2-3. However, IRP is not used in the PIC16C62B/72A.

FIGURE 2-3: DIRECT/INDIRECT ADDRESSING

NOTES:

8.3.1.2 RECEPTION

When the R/\overline{W} bit of the address byte is clear and an address match occurs, the R/\overline{W} bit of the SSPSTAT register is cleared. The received address is loaded into the SSPBUF register.

When the address byte overflow condition exists, then no acknowledge (\overline{ACK}) pulse is given. An overflow condition is defined as either bit BF (SSPSTAT<0>) is set or bit SSPOV (SSPCON<6>) is set.

An SSP interrupt is generated for each data transfer byte. Flag bit SSPIF (PIR1<3>) must be cleared in software. The SSPSTAT register is used to determine the status of the byte.

FIGURE 8-3: I²C WAVEFORMS FOR RECEPTION (7-BIT ADDRESS)

Receiving Address R/W SDA - </th <th>=0Receiving Data _ACK_D7XD6XD5XD4XD3XD2XD1XE </th> <th></th> <th></th>	=0Receiving Data _ACK_D7XD6XD5XD4XD3XD2XD1XE 		
SSPI <u>F (PIR1<3>)</u> BF (<u>SSPSTAT<0>)</u>	 Cleared in software SSPBUF register is read 		Bus Master terminates transfer
SSP <u>OV (SSPCON<6>)</u>	Bit SSPOV is set b	ecause the SSPBUF register is still f	

9.4 <u>A/D Conversions</u>

Note:	The GO/DONE bit should NOT be set in
	the same instruction that turns on the A/D.

9.5 Use of the CCP Trigger

An A/D conversion can be started by the "special event trigger" of the CCP1 module. This requires that the CCP1M3:CCP1M0 bits (CCP1CON<3:0>) be programmed as 1011 and that the A/D module be enabled (ADON bit is set). When the trigger occurs, the

TABLE 9-2 SUMMARY OF A/D REGISTERS

GO/DONE bit will be set, starting the A/D conversion, and the Timer1 counter will be reset to zero. Timer1 is reset to automatically repeat the A/D acquisition period with minimal software overhead. The appropriate analog input channel must be selected and the minimum acquisition time must pass before the "special event trigger" sets the GO/DONE bit (starts a conversion).

If the A/D module is not enabled (ADON is cleared), then the "special event trigger" will be ignored by the A/D module, but will still reset the Timer1 counter.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
0Bh,8Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	_	ADIF	—	_	SSPIF	CCP1IF	TMR2IF	TMR1IF	-0 0000	-0 0000
8Ch	PIE1	_	ADIE	—	_	SSPIE	CCP1IE	TMR2IE	TMR1IE	-0 0000	-0 0000
1Eh	ADRES	A/D Res	ult Regist	er						xxxx xxxx	uuuu uuuu
1Fh	ADCON0	ADCS1	ADCS0	CHS2	CHS1	CHS0	GO/DONE	—	ADON	0000 00-0	0000 00-0
9Fh	ADCON1	_	—	—	—	—	PCFG2	PCFG1	PCFG0	000	000
05h	PORTA	_	_	RA5	RA4	RA3	RA2	RA1	RA0	0x 0000	0u 0000
85h	TRISA		—	PORTA D	Data Direct	tion Regis	ter			11 1111	11 1111

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used for A/D conversion.

10.0 SPECIAL FEATURES OF THE CPU

The PIC16C62B/72A devices have a host of features intended to maximize system reliability, minimize cost through elimination of external components, provide power saving operating modes and offer code protection. These are:

- Oscillator Mode Selection
- Reset
 - Power-on Reset (POR)
 - Power-up Timer (PWRT)
 - Oscillator Start-up Timer (OST)
 - Brown-out Reset (BOR)
- Interrupts
- Watchdog Timer (WDT)
- SLEEP
- Code protection
- ID locations
- In-circuit serial programming[™] (ICSP)

These devices have a Watchdog Timer, which can be shut off only through configuration bits. It runs off its own RC oscillator for added reliability. There are two timers that offer necessary delays on power-up. One is the Oscillator Start-up Timer (OST), intended to keep the chip in reset until the crystal oscillator is stable. The

FIGURE 10-1: CONFIGURATION WORD

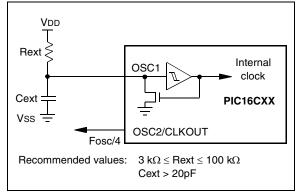
other is the Power-up Timer (PWRT), which provides a fixed delay on power-up only and is designed to keep the part in reset while the power supply stabilizes. With these two timers on-chip, most applications need no external reset circuitry.

SLEEP mode is designed to offer a very low current power-down mode. The user can wake-up from SLEEP through external reset, Watchdog Timer Wake-up, or through an interrupt. Several oscillator options are also made available to allow the part to fit the application. The RC oscillator option saves system cost while the LP crystal option saves power. A set of configuration bits are used to select various options.

Additional information on special features is available in the PIC[®] MCU Mid-Range Reference Manual, (DS33023).

10.1 Configuration Bits

The configuration bits can be programmed (read as '0') or left unprogrammed (read as '1') to select various device configurations. These bits are mapped in program memory location 2007h.


The user will note that address 2007h is beyond the user program memory space. In fact, it belongs to the special test/configuration memory space (2000h - 3FFFh), which can be accessed only during programming.

CP1	CP0	CP1	CP0	CP1	CP0	_	BODEN	CP1	CP0	PWRTE	WDTE	FOSC1	FOSC0	Register:	CONFIG
bit13													bit0	Address:	2007h
bit 13 5-	 3-8 CP1:CP0: Code Protection bits ⁽²⁾ i1 = Code protection off i0 = Upper half of program memory code protected i1 = Upper 3/4th of program memory code protected 														
		00 = All memory is code protected													
bit 7:	I	Unimplemented: Read as '1'													
bit 6:		BODEN: Brown-out Reset Enable bit ⁽¹⁾ 1 = BOR enabled 0 = BOR disabled													
bit 3:		PWRTE 1 = PW 0 = PW	RT dis	sabled	Timer I	Enable	e bit (1)								
bit 2:	:	WDTE: Watchdog Timer Enable bit 1 = WDT enabled 0 = WDT disabled													
bit 1-		FOSC1 11 = RC 10 = HS 01 = X1 00 = LF	C oscil S oscil T oscil	lator lator lator	cillator	[·] Selec	ction bits								
Note													dless of the tion schem	e value of bit ne listed.	PWRTE.

10.2.3 RC OSCILLATOR

For timing insensitive applications, the "RC" device option offers additional cost savings. The RC oscillator frequency is a function of the supply voltage, the resistor (REXT) and capacitor (CEXT) values, and the operating temperature. In addition to this, the oscillator frequency will vary from unit to unit due to normal process parameter variation. Furthermore, the difference in lead frame capacitance between package types will also affect the oscillation frequency, especially for low CEXT values. The user also needs to take into account variation due to tolerance of external R and C components used. Figure 10-4 shows how the R/C combination is connected to the PIC16CXXX.

FIGURE 10-4: RC OSCILLATOR MODE

10.3 <u>Reset</u>

The PIC16CXXX differentiates between various kinds of reset:

- Power-on Reset (POR)
- MCLR reset during normal operation
- MCLR reset during SLEEP
- WDT Reset (during normal operation)
- WDT Wake-up (during SLEEP)
- Brown-out Reset (BOR)

Some registers are not affected in any reset condition; their status is unknown on POR and unchanged by any other reset. Most other registers are reset to a "reset state" on Power-on Reset (POR), on the $\overline{\text{MCLR}}$ and WDT Reset, on $\overline{\text{MCLR}}$ reset during SLEEP, and on Brown-out Reset (BOR). They are not affected by a WDT Wake-up from SLEEP, which is viewed as the resumption of normal operation. The $\overline{\text{TO}}$ and $\overline{\text{PD}}$ bits are set or cleared depending on the reset situation, as indicated in Table 10-4. These bits are used in software to determine the nature of the reset. See Table 10-6 for a full description of reset states of all registers.

A simplified block diagram of the on-chip reset circuit is shown in Figure 10-5.

The PIC devices have a $\overline{\text{MCLR}}$ noise filter in the $\overline{\text{MCLR}}$ reset path. The filter will ignore small pulses. However, a valid $\overline{\text{MCLR}}$ pulse must meet the minimum pulse width (TmcL, Specification #30).

No internal reset source (WDT, BOR, POR) will drive the $\overline{\text{MCLR}}$ pin low.

TABLE 10-6	INITIALI	ZATION	CONDITIONS FOR A	LL REGISTERS	
Register		cable ices	Power-on Reset, Brown-out Reset	MCLR Resets WDT Reset	Wake-up via WDT or Interrupt
W	62B	72A	XXXX XXXX	uuuu uuuu	սսսս սսսս
INDF	62B	72A	N/A	N/A	N/A
TMR0	62B	72A	xxxx xxxx	uuuu uuuu	uuuu uuuu
PCL	62B	72A	0000h	0000h	PC + 1 ⁽²⁾
STATUS	62B	72A	0001 1xxx	000q quuu (3)	uuuq quuu (3)
FSR	62B	72A	XXXX XXXX	uuuu uuuu	uuuu uuuu
PORTA ⁽⁴⁾	62B	72A	0x 0000	0u 0000	uu uuuu
PORTB ⁽⁵⁾	62B	72A	xxxx xxxx	uuuu uuuu	սսսս սսսս
PORTC ⁽⁵⁾	62B	72A	xxxx xxxx	սսսս սսսս	uuuu uuuu
PCLATH	62B	72A	0 0000	0 0000	u uuuu
INTCON	62B	72A	0000 000x	0000 000u	uuuu uuuu (1)
	62B	72A	0000	0000	uuuu (1)
PIR1	62B	72A	-0 0000	-0 0000	-u uuuu (1)
TMR1L	62B	72A	xxxx xxxx	uuuu uuuu	uuuu uuuu
TMR1H	62B	72A	xxxx xxxx	uuuu uuuu	uuuu uuuu
T1CON	62B	72A	00 0000	uu uuuu	uu uuuu
TMR2	62B	72A	0000 0000	0000 0000	uuuu uuuu
T2CON	62B	72A	-000 0000	-000 0000	-uuu uuuu
SSPBUF	62B	72A	XXXX XXXX	uuuu uuuu	uuuu uuuu
SSPCON	62B	72A	0000 0000	0000 0000	uuuu uuuu
CCPR1L	62B	72A	XXXX XXXX	uuuu uuuu	uuuu uuuu
CCPR1H	62B	72A	xxxx xxxx	uuuu uuuu	uuuu uuuu
CCP1CON	62B	72A	00 0000	00 0000	uu uuuu
ADRES	62B	72A	XXXX XXXX	uuuu uuuu	uuuu uuuu
ADCON0	62B	72A	0000 00-0	0000 00-0	uuuu uu-u
OPTION_REG	62B	72A	1111 1111	1111 1111	uuuu uuuu
TRISA	62B	72A	11 1111	11 1111	uu uuuu
TRISB	62B	72A	1111 1111	1111 1111	uuuu uuuu
TRISC	62B	72A	1111 1111	1111 1111	uuuu uuuu
PIE1	62B	72A	0000	0000	uuuu
	62B	72A	-0 0000	-0 0000	-u uuuu
PCON	62B	72A	0q	uq	uq
PR2	62B	72A	1111 1111	1111 1111	1111 1111
SSPADD	62B	72A	0000 0000	0000 0000	uuuu uuuu
SSPSTAT	62B	72A	0000 0000	0000 0000	սսսս սսսս
ADCON1	62B	72A	000	000	uuu

TABLE 10-6	INITIALIZATION CONDITIONS FOR ALL REGISTERS

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', <math>q = value depends on condition

Note 1: One or more bits in INTCON and/or PIR1 will be affected (to cause wake-up).

2: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

3: See Table 10-5 for reset value for specific condition.

4: On any device reset, these pins are configured as inputs.

5: This is the value that will be in the port output latch.

10.10.1 INT INTERRUPT

The external interrupt on RB0/INT pin is edge triggered: either rising, if bit INTEDG (OPTION_REG<6>) is set, or falling, if the INTEDG bit is clear. When a valid edge appears on the RB0/INT pin, flag bit INTF (INTCON<1>) is set. This interrupt can be disabled by clearing enable bit INTE (INTCON<4>). Flag bit INTF must be cleared in software in the interrupt service routine before re-enabling this interrupt. The INT interrupt can wake-up the processor from SLEEP, if bit INTE was set prior to going into SLEEP. The status of global interrupt enable bit GIE decides whether or not the processor branches to the interrupt vector following wake-up. See Section 10.13 for details on SLEEP mode.

10.10.2 TMR0 INTERRUPT

An overflow (FFh \rightarrow 00h) in the TMR0 register will set flag bit T0IF (INTCON<2>). The interrupt can be enabled/disabled by setting/clearing enable bit T0IE (INTCON<5>). (Section 4.0)

10.10.3 PORTB INTCON CHANGE

An input change on PORTB<7:4> sets flag bit RBIF (INTCON<0>). The interrupt can be enabled/disabled by setting/clearing enable bit RBIE (INTCON<4>). (Section 3.2)

10.11 Context Saving During Interrupts

During an interrupt, only the return PC value is saved on the stack. Typically, users may wish to save key registers during an interrupt, (i.e., W register and STATUS register). This will have to be implemented in software.

Example 10-1 stores and restores the W and STATUS registers. The register, W_TEMP, must be defined in each bank and must be defined at the same offset from the bank base address (i.e., if W_TEMP is defined at 0x20 in bank 0, it must also be defined at 0xA0 in bank 1).

The example:

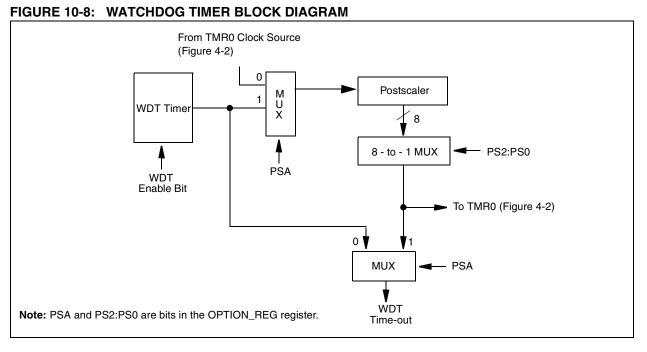
- a) Stores the W register.
- b) Stores the STATUS register in bank 0.
- c) Stores the PCLATH register.
- d) Executes the interrupt service routine code (User-generated).
- e) Restores the STATUS register (and bank select bit).
- f) Restores the W and PCLATH registers.

EXAMPLE 10-1: SAVING STATUS, W, AND PCLATH REGISTERS IN RAM

MOVWF	W_TEMP	;Copy W to TEMP register, could be bank one or zero
SWAPF	STATUS,W	;Swap status to be saved into W
CLRF	STATUS	;bank 0, regardless of current bank, Clears IRP,RP1,RP0
MOVWF	STATUS_TEMP	;Save status to bank zero STATUS_TEMP register
:		
:(ISR)		
:		
SWAPF	STATUS_TEMP,W	;Swap STATUS_TEMP register into W
		;(sets bank to original state)
MOVWF	STATUS	;Move W into STATUS register
SWAPF	W_TEMP,F	;Swap W_TEMP
SWAPF	W_TEMP,W	;Swap W_TEMP into W

10.12 Watchdog Timer (WDT)

The Watchdog Timer is a free running on-chip RC oscillator which does not require any external components. This RC oscillator is separate from the RC oscillator of the OSC1/CLKIN pin. The WDT will run, even if the clock on the OSC1/CLKIN and OSC2/CLKOUT pins of the device has been stopped, for example, by execution of a SLEEP instruction.


During normal operation, a WDT time-out generates a device RESET (Watchdog Timer Reset). If the device is in SLEEP mode, a WDT time-out causes the device to wake-up and continue with normal operation (Watchdog Timer Wake-up). The $\overline{\text{TO}}$ bit in the STATUS register will be cleared upon a Watchdog Timer time-out.

The WDT can be permanently disabled by clearing configuration bit WDTE (Section 10.1).

The WDT time-out period (TWDT, parameter #31) is multiplied by the prescaler ratio, when the prescaler is assigned to the WDT. The prescaler assignment (assigned to either the WDT or Timer0) and prescaler ratio are set in the OPTION_REG register.

Note: The CLRWDT and SLEEP instructions clear the WDT and the postscaler, if assigned to the WDT, and prevent it from timing out and generating a device RESET condition.

Note: When a CLRWDT instruction is executed and the prescaler is assigned to the WDT, the prescaler count will be cleared, but the prescaler assignment is not changed.

FIGURE 10-9: SUMMARY OF WATCHDOG TIMER REGISTERS

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
2007h	Config. bits		BODEN	CP1	CP0	PWRTE	WDTE	FOSC1	FOSC0
81h	OPTION_REG	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0

Legend: Shaded cells are not used by the Watchdog Timer.

BTFSS	Bit Test f, Skip if Set
Syntax:	[<i>label</i>] BTFSS f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b < 7 \end{array}$
Operation:	skip if (f) = 1
Status Affected:	None
Description:	If bit 'b' in register 'f' is '0', then the next instruction is executed. If bit 'b' is '1', then the next instruction is discarded and a NOP is executed instead, making this a 2TCY instruction.

CLRF	Clear f	
Syntax:	[<i>label</i>] CLRF f	
Operands:	$0 \le f \le 127$	
Operation:	$\begin{array}{l} 00h \rightarrow (f) \\ 1 \rightarrow Z \end{array}$	
Status Affected:	Z	
Description:	The contents of register 'f' are cleared and the Z bit is set.	

BTFSC	Bit Test, Skip if Clear
Syntax:	[<i>label</i>] BTFSC f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	skip if (f) = 0
Status Affected:	None
Description:	If bit 'b' in register 'f' is '1', then the next instruction is executed. If bit 'b' in register 'f' is '0', then the next instruction is discarded, and a NOP is executed instead, making this a 2TCY instruction.

CLRW	Clear W
Syntax:	[label] CLRW
Operands:	None
Operation:	$\begin{array}{l} 00h \rightarrow (W) \\ 1 \rightarrow Z \end{array}$
Status Affected:	Z
Description:	W register is cleared. Zero bit (Z) is set.

CALL	Call Subroutine	CLRWDT	Clear Watchdog Timer
Syntax:	[<i>label</i>] CALL k	Syntax:	[label] CLRWDT
Operands:	$0 \le k \le 2047$	Operands:	None
Operation:	(PC)+ 1 \rightarrow TOS, k \rightarrow PC<10:0>, (PCLATH<4:3>) \rightarrow PC<12:11>	Operation:	$00h \rightarrow WDT$ 0 $\rightarrow WDT$ prescaler, 1 $\rightarrow \overline{TO}$
Status Affected:	None		$1 \rightarrow \overline{PD}$
Description:	Call Subroutine. First, return address	Status Affected:	TO, PD
	(PC+1) is pushed onto the stack. The eleven bit immediate address is loaded into PC bits <10:0>. The upper bits of the PC are loaded from PCLATH. CALL is a two cycle instruction.	Description:	CLRWDT instruction resets the Watch- dog Timer. It also resets the prescaler of the WDT. Status bits TO and PD are set.

SUBLW	Subtract W from Literal				
Syntax:	[label] SUBLW k				
Operands:	$0 \le k \le 255$				
Operation:	$k - (W) \to (W)$				
Status Affected:	C, DC, Z				
Description:	The W register is subtracted (2's com- plement method) from the eight bit lit- eral 'k'. The result is placed in the W register.				

XORLW	Exclusive OR Literal with W				
Syntax:	[<i>label</i>] XORLW k				
Operands:	$0 \leq k \leq 255$				
Operation:	(W) .XOR. $k \rightarrow (W)$				
Status Affected:	Z				
Description:	The contents of the W register are XOR'ed with the eight bit literal 'k'. The result is placed in the W regis- ter.				

SUBWF	Subtract W from f	XORWF
Syntax:	[label] SUBWF f,d	Syntax:
Operands:	$0 \le f \le 127$ $d \in [0,1]$	Operan
Operation:	(f) - (W) \rightarrow (destination)	Operatio
Status	C, DC, Z	Status A
Affected:		Descrip
Description:	Subtract (2's complement method) W register from register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'.	

XORWF	Exclusive OR W with f				
Syntax:	[<i>label</i>] XORWF f,d				
Operands:	$\begin{array}{l} 0\leq f\leq 127\\ d\in[0,1] \end{array}$				
Operation:	(W) .XOR. (f) \rightarrow (destination)				
Status Affected:	Z				
Description:	Exclusive OR the contents of the W register with register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'.				

SWAPF	Swap Nibbles in f			
Syntax:	[<i>label</i>] SWAPF f,d			
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$			
Operation:	$(f<3:0>) \rightarrow (destination<7:4>), (f<7:4>) \rightarrow (destination<3:0>)$			
Status Affected:	None			
Description:	The upper and lower nibbles of regis- ter 'f' are exchanged. If 'd' is 0, the result is placed in W register. If 'd' is 1, the result is placed in register 'f'.			

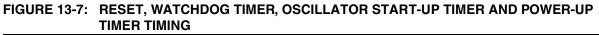
Oper Oper Oper			Operating Operating	Standard Operating Conditions (unless otherwise stated) Operating temperature $0^{\circ}C \le TA \le +70^{\circ}C$ for commercial $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended Operating voltage VDD range as described in DC spec Section 13.1 and Section 13.2			
Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
			-	-	0.6	V	IOL = 7.0 mA, VDD = 4.5V, -40°C to +125°C
D083		OSC2/CLKOUT (RC osc mode)	-	-	0.6	V	IOL = 1.6 mA, VDD = 4.5V, -40°C to +85°C
			-	-	0.6	V	IOL = 1.2 mA, VDD = 4.5V, -40°C to +125°C
		Output High Voltage					
D090	Vон	I/O ports (Note 3)	VDD-0.7	-	-	V	IOH = -3.0 mA, VDD = 4.5V, -40°C to +85°C
			VDD-0.7	-	-	V	IOH = -2.5 mA, VDD = 4.5V, -40°С to +125°С
D092		OSC2/CLKOUT (RC osc mode)	Vdd-0.7	-	-	V	IOH = -1.3 mA, VDD = 4.5V, -40°С to +85°С
			Vdd-0.7	-	-	V	IOH = -1.0 mA, VDD = 4.5V, -40°C to +125°C
D150*	Vod	Open-Drain High Voltage	-	-	8.5	V	RA4 pin
		Capacitive Loading Specs on Output Pins					
D100	Cosc2	OSC2 pin	-	-	15	pF	In XT, HS and LP modes when external clock is used to drive OSC1.
D101	Cio	All I/O pins and OSC2 (in RC mode)	-	-	50	pF	
D102	Cb	SCL, SDA in I ² C mode	-	-	400	pF	

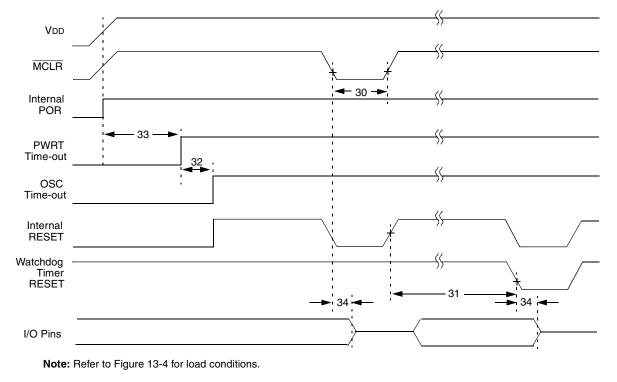
* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

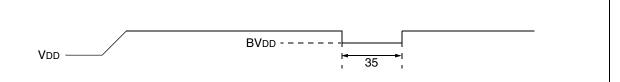
Note 1: In RC oscillator mode, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the device be driven with external clock in RC mode.

2: The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.


3: Negative current is defined as current sourced by the pin.

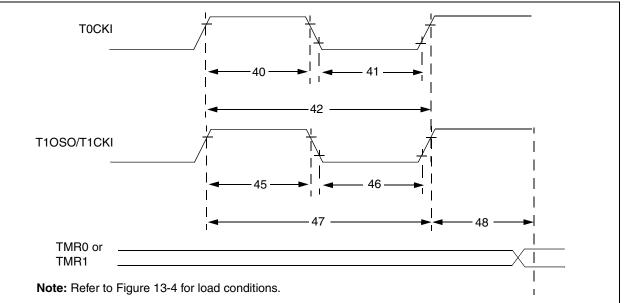

13.4 AC (Timing) Characteristics

13.4.1 TIMING PARAMETER SYMBOLOGY


The timing parameter symbols have been created following one of the following formats:

1. TppS2	ppS	3. Tcc:st	(I ² C specifications only)
2. TppS		4. Ts	(I ² C specifications only)
Т			
F	Frequency	Т	Time
Lowercas	se letters (pp) and their meanings:		
рр			
сс	CCP1	OSC	OSC1
ck	CLKOUT	rd	RD
CS	CS	rw	RD or WR
di	SDI	SC	SCK
do	SDO	SS	SS
dt	Data in	t0	TOCKI
io	I/O port	t1	T1CKI
mc	MCLR	wr	WR
Uppercas	se letters and their meanings:		
S			
F	Fall	Р	Period
Н	High	R	Rise
I	Invalid (Hi-impedance)	V	Valid
L	Low	Z	Hi-impedance
I ² C only			
AA	output access	High	High
BUF	Bus free	Low	Low
Tcc:st (I	² C specifications only)		
CC			
HD	Hold	SU	Setup
ST			
DAT	DATA input hold	STO	STOP condition
STA	START condition		

FIGURE 13-8: BROWN-OUT RESET TIMING


TABLE 13-4:RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER
AND BROWN-OUT RESET REQUIREMENTS

Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
30	TmcL	MCLR Pulse Width (low)	2	_		μs	VDD = 5V, -40°C to +125°C
31*	Twdt	Watchdog Timer Time-out Period (No Prescaler)	7	18	33	ms	VDD = 5V, -40°C to +125°C
32	Tost	Oscillator Start-up Timer Period		1024 Tosc	—	—	Tosc = OSC1 period
33*	Tpwrt	Power-up Timer Period	28	72	132	ms	$VDD = 5V, -40^{\circ}C \text{ to } +125^{\circ}C$
34	Tıoz	I/O Hi-impedance from MCLR Low or WDT reset	_	_	2.1	μS	
35	TBOR	Brown-out Reset Pulse Width	100	_	—	μS	$VDD \le BVDD$ (D005)

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 13-9: TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS

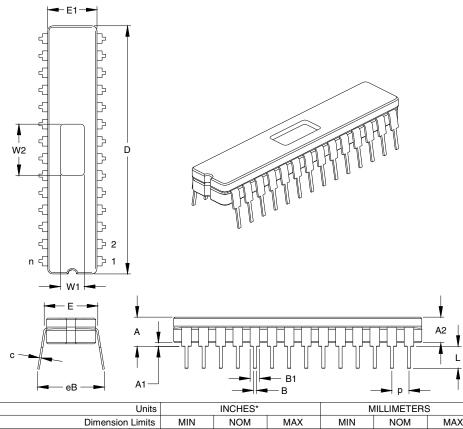


TABLE 13-5:	TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS
IADEE IV V.	

Param No.	Sym		Characteristic		Min	Тур†	Max	Units	Conditions	
40*	Tt0H	T0CKI High Pulse W	′idth	No Prescaler	0.5TCY + 20 —		-	ns	Must also meet	
				With Prescaler	10	-		ns	parameter 42	
41*	Tt0L	T0CKI Low Pulse Width		No Prescaler	0.5TCY + 20	-		ns	Must also meet parameter 42	
				With Prescaler	10	-		ns		
42*	Tt0P	T0CKI Period		No Prescaler	Tcy + 40	—	-	ns		
				With Prescaler	Greater of: 20 or <u>Tcy + 40</u> N	-	-	ns	N = prescale value (2, 4,, 256)	
45*	Tt1H	T1CKI High Time	Synchronous, P	rescaler = 1	0.5Tcy + 20	—	-	ns	Must also meet	
			Synchronous, Prescaler = 2,4,8	PIC16CXX	15	-		ns	parameter 47	
				PIC16LCXX	25	—	_	ns		
			Asynchronous	PIC16CXX	30		_	ns		
				PIC16LCXX	50		_	ns		
46*	Tt1L	T1CKI Low Time	Synchronous, Prescaler = 1		0.5Tcy + 20	-		ns	Must also meet	
			Synchronous, Prescaler = 2,4,8	PIC16CXX	15	—	-	ns	parameter 47	
				PIC16LCXX	25	—		ns		
			Asynchronous	PIC16CXX	30	-		ns		
				PIC16LCXX	50	-		ns		
47*	Tt1P	T1CKI input period	Synchronous	PIC16CXX	GREATER OF: 30 OR <u>TCY + 40</u> N	-	-	ns	N = prescale value (1, 2, 4, 8)	
				PIC16LCXX	GREATER OF: 50 OR <u>TCY + 40</u> N				N = prescale value (1, 2, 4, 8)	
			Asynchronous	PIC16CXX	60	_	—	ns		
				PIC16LCXX	100	—	—	ns		
	Ft1	Timer1 oscillator input frequency range (oscillator enabled by setting bit T1OSCEN)			DC	-	200	kHz		
48	TCKEZtmr1	Delay from external	2Tosc		7Tosc	_				

* These parameters are characterized but not tested.
† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

15.3 <u>28-Lead Ceramic Dual In-line with Window (JW) – 300 mil (CERDIP)</u>

	Units					IVIILLIIVIL I LH3				
Dimensio	on Limits	MIN	NOM	MAX	MIN	NOM	MAX			
Number of Pins	n		28			28				
Pitch	р		.100			2.54				
Top to Seating Plane	Α	.170	.183	.195	4.32	4.64	4.95			
Ceramic Package Height	A2	.155	.160	.165	3.94	4.06	4.19			
Standoff	A1	.015	.023	.030	0.38	0.57	0.76			
Shoulder to Shoulder Width	E	.300	.313	.325	7.62	7.94	8.26			
Ceramic Pkg. Width	E1	.285	.290	.295	7.24	7.37	7.49			
Overall Length	D	1.430	1.458	1.485	36.32	37.02	37.72			
Tip to Seating Plane	L	.135	.140	.145	3.43	3.56	3.68			
Lead Thickness	С	.008	.010	.012	0.20	0.25	0.30			
Upper Lead Width	B1	.050	.058	.065	1.27	1.46	1.65			
Lower Lead Width	В	.016	.019	.021	0.41	0.47	0.53			
Overall Row Spacing	eB	.345	.385	.425	8.76	9.78	10.80			
Window Width	W1	.130	.140	.150	3.30	3.56	3.81			
Window Length	W2	.290	.300	.310	7.37	7.62	7.87			
*0 · · · ·										

*Controlling Parameter JEDEC Equivalent: MO-058 Drawing No. C04-080

© 1998-2013 Microchip Technology Inc.