

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	22
Program Memory Size	3.5КВ (2К х 14)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 5.5V
Data Converters	
Oscillator Type	External
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c62b-20e-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

10	Device Overview	F
1.0		5 7
2.0		/
3.0	// Ports	19
4.0	Timer0 Module	25
5.0	Timer1 Module	27
6.0	Timer2 Module	31
7.0	Capture/Compare/PWM (CCP) Module	33
8.0	Synchronous Serial Port (SSP) Module	39
9.0	Analog-to-Digital Converter (A/D) Module	49
10.0	Special Features of the CPU	55
11.0	Instruction Set Summary	67
12.0	Development Support	75
13.0	Electrical Characteristics	81
14.0	DC and AC Characteristics Graphs and Tables	. 103
15.0	Packaging Information	. 105
Appe	ndix A: Revision History	. 111
Appe	ndix B: Conversion Considerations	. 111
Appe	ndix C: Migration from Base-line to Mid-Range Devices	. 112
Index	· · · · · · · · · · · · · · · · · · ·	. 113
On-L	ine Support	. 117
Read	er Response	. 118
PIC1	6C62B/72A Product Identification System	. 119

To Our Valued Customers

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number. e.g., DS30000A is version A of document DS30000.

New Customer Notification System

Register on our web site (www.microchip.com/cn) to receive the most current information on our products.

Errata

An errata sheet may exist for current devices, describing minor operational differences (from the data sheet) and recommended workarounds. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- · Your local Microchip sales office (see last page)
- The Microchip Corporate Literature Center; U.S. FAX: (480) 786-7277

When contacting a sales office or the literature center, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Corrections to this Data Sheet

We constantly strive to improve the quality of all our products and documentation. We have spent a great deal of time to ensure that this document is correct. However, we realize that we may have missed a few things. If you find any information that is missing or appears in error, please:

- Fill out and mail in the reader response form in the back of this data sheet.
- E-mail us at webmaster@microchip.com.

We appreciate your assistance in making this a better document.

2.2 Data Memory Organization

The data memory is partitioned into multiple banks which contain the General Purpose Registers and the Special Function Registers. Bits RP1 and RP0 are the bank select bits.

	RP1 ⁽¹⁾	RP0 (STATUS<6:5>)
	= 00 \rightarrow	Bank0
	= 01 \rightarrow	Bank1
	= 10 \rightarrow	Bank2 (not implemented)
_	= 11 \rightarrow	Bank3 (not implemented)
ſ	Note 1:	Maintain this bit clear to ensure upward compati-
		bility with future products.

Each bank extends up to 7Fh (128 bytes). The lower locations of each bank are reserved for the Special Function Registers. Above the Special Function Registers are General Purpose Registers, implemented as static RAM. All implemented banks contain Special Function Registers. Some "high use" Special Function Registers from one bank may be mirrored in another bank for code reduction and quicker access.

2.2.1 GENERAL PURPOSE REGISTER FILE

The register file can be accessed either directly, or indirectly through the File Select Register FSR (Section 2.5).

FIGURE 2-2: REGISTER FILE MAP

File			File
Address			Address
00h	INDF ⁽¹⁾	INDF ⁽¹⁾	80h
01h	TMR0	OPTION_REG	81h
02h	PCL	PCL	82h
03h	STATUS	STATUS	83h
04h	FSR	FSR	84h
05h	PORTA	TRISA	85h
06h	PORTB	TRISB	86h
07h	PORTC	TRISC	87h
08h	_	_	88h
09h	_	_	89h
0Ah	PCLATH	PCLATH	8Ah
0Bh	INTCON	INTCON	8Bh
0Ch	PIR1	PIE1	8Ch
0Dh	—	—	8Dh
0Eh	TMR1L	PCON	8Eh
0Fh	TMR1H	_	8Fh
10h	T1CON	_	90h
11h	TMR2	_	91h
12h	T2CON	PR2	92h
13h	SSPBUF	SSPADD	93h
14h	SSPCON	SSPSTAT	94h
15h	CCPR1L	_	95h
16h	CCPR1H	_	96h
17h	CCP1CON		97h
18h	_		98h
19h			99h
1Ah			9Ah
1Bh			9Bh
1Ch			9Ch
1Dh			9Dh
1Eh	ADRES ⁽²⁾		9Eh
1Fh	ADCON0 ⁽²⁾	ADCON1 ⁽²⁾	9Fh
20h		Gonoral	A0h
		Purpose	
	General	Registers	BFh
	Purpose	_	C0h
	Registers	_	
7Fh		_	FFh
	Bank 0	Bank 1	l
Lin	implemented d	ata memory local	tions
read	as '0'.		
Note 1: No	ot a physical ree	gister.	
2: Th	nese registers a	re not implemen	ted on the
PI	U IOUOZD, IEad	1 as U.	

PIC16C62B/72A

2.2.2.4 PIE1 REGISTER

This register contains the individual enable bits for the peripheral interrupts.

REGISTER 2-4: PIE1 REGISTER (ADDRESS 8Ch)

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 U-0 U-0 U-0 ADIE⁽¹⁾ SSPIE CCP1IE TMR2IE TMR1IE R = Readable bit W = Writable bit bit7 bit0 U = Unimplemented bit, read as '0' n = Value at POR reset Unimplemented: Read as '0' bit 7: ADIE⁽¹⁾: A/D Converter Interrupt Enable bit bit 6: 1 = Enables the A/D interrupt 0 = Disables the A/D interrupt bit 5-4: Unimplemented: Read as '0' bit 3: SSPIE: Synchronous Serial Port Interrupt Enable bit 1 = Enables the SSP interrupt 0 = Disables the SSP interrupt CCP1IE: CCP1 Interrupt Enable bit bit 2: 1 = Enables the CCP1 interrupt 0 = Disables the CCP1 interrupt TMR2IE: TMR2 to PR2 Match Interrupt Enable bit bit 1: 1 = Enables the TMR2 to PR2 match interrupt 0 = Disables the TMR2 to PR2 match interrupt TMR1IE: TMR1 Overflow Interrupt Enable bit bit 0: 1 = Enables the TMR1 overflow interrupt 0 = Disables the TMR1 overflow interrupt Note 1: The PIC16C62B does not have an A/D module. This bit location is reserved on these devices. Always maintain this bit clear.

Note: Bit PEIE (INTCON<6>) must be set to enable any peripheral interrupt.

2.2.2.5 PIR1 REGISTER

This register contains the individual flag bits for the Peripheral interrupts.

Note: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the global enable bit, GIE (INTCON<7>). User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

REGISTER 2-5: PIR1 REGISTER (ADDRESS 0Ch)

U-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0						
_	ADIF ⁽¹⁾	_	_	SSPIF	CCP1IF	TMR2IF	TMR1IF	R = Readable bit					
bit7							bitO	 W = Writable bit U = Unimplemented bit, read as '0' n = Value at POR reset 					
bit 7:	Unimpler	nented: F	Read as '0	,									
bit 6:	ADIF ⁽¹⁾ : A/D Converter Interrupt Flag bit 1 = An A/D conversion completed (must be cleared in software) 0 = The A/D conversion is not complete												
bit 5-4:	Unimpler	nented: F	Read as '0	,									
bit 3:	SSPIF : Synchronous Serial Port Interrupt Flag bit 1 = The transmission/reception is complete (must be cleared in software) 0 = Waiting to transmit/receive												
bit 2:	$\begin{array}{c} \textbf{CCP1IF:} \\ \textbf{Capture N} \\ \textbf{1} = \textbf{A} TMI \\ \textbf{0} = \textbf{No} TM \\ \textbf{Compare} \\ \textbf{1} = \textbf{A} TMI \\ \textbf{0} = \textbf{No} TM \\ \textbf{PWM Moore } \\ \textbf{Unused in } \end{array}$	CCP1 Inte <u>Aode</u> R1 registe <u>MR1 registe</u> R1 registe MR1 registe <u>de</u> n this mod	errupt Flag er capture ter capture er compare ter compa) bit occurred (e occurred e match oc re match o	must be cle ccurred (mu occurred	eared in so st be clear	ftware) red in softw	vare)					
bit 1:	TMR2IF : 1 = TMR2 0 = No TM	TMR2 to F 2 to PR2 n MR2 to PF	PR2 Match natch occu R2 match (ו Interrupt urred (mus occurred	Flag bit t be cleared	d in softwa	re)						
bit 0:	TMR1IF : 1 1 = TMR1 0 = TMR1	TMR1 Ove register o register o	erflow Inte overflowed did not ove	errupt Flag 1 (must be erflow	bit cleared in s	software)							
Note 1:	The PIC16 bit clear.	C62B does	; not have a	ın A/D modi	ule. This bit l	ocation is re	eserved on th	nese devices. Always maintain this					

TABLE 3-5 PORTC FUNCTIONS

Name	Bit#	Buffer Type	Function	TRISC Override
RC0/T1OSO/T1CKI	bit0	ST	Input/output port pin or Timer1 oscillator output/Timer1 clock input	Yes
RC1/T1OSI	bit1	ST	Input/output port pin or Timer1 oscillator input	Yes
RC2/CCP1	bit2	ST	Input/output port pin or Capture1 input/Compare1 output/PWM1 output	No
RC3/SCK/SCL	bit3	ST	RC3 can also be the synchronous serial clock for both SPI and I^2C modes.	No
RC4/SDI/SDA	bit4	ST	RC4 can also be the SPI Data In (SPI mode) or data I/O (I^2C mode).	No
RC5/SDO	bit5	ST	Input/output port pin or Synchronous Serial Port data output	No
RC6	bit6	ST	Input/output port pin	No
RC7	bit7	ST	Input/output port pin	No

Legend: ST = Schmitt Trigger input

TABLE 3-6SUMMARY OF REGISTERS ASSOCIATED WITH PORTC

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets
07h	PORTC	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	xxxx xxxx	uuuu uuuu
87h	TRISC	PORTC I	Data Direct		1111 1111	1111 1111					

Legend: x = unknown, u = unchanged.

7.1 Capture Mode

In Capture mode, CCPR1H:CCPR1L captures the 16-bit value of the TMR1 register, when an event occurs on pin RC2/CCP1. An event is defined as:

- every falling edge
- · every rising edge
- every 4th rising edge
- every 16th rising edge

An event is selected by control bits CCP1M3:CCP1M0 (CCP1CON<3:0>). When a capture is made, the interrupt request flag bit ,CCP1IF (PIR1<2>), is set. It must be cleared in software. If another capture occurs before the value in register CCPR1 is read, the old captured value will be lost.

FIGURE 7-1: CAPTURE MODE OPERATION BLOCK DIAGRAM

7.1.1 CCP PIN CONFIGURATION

In Capture mode, the RC2/CCP1 pin should be configured as an input by setting the TRISC<2> bit.

Note: If the RC2/CCP1 is configured as an output, a write to the port can cause a capture condition.

7.1.2 TIMER1 MODE SELECTION

Timer1 must be running in timer mode or synchronized counter mode for the CCP module to use the capture feature. In asynchronous counter mode, the capture operation may not work consistently.

7.1.3 SOFTWARE INTERRUPT

When the Capture mode is changed, a false capture interrupt may be generated. The user should clear CCP1IE (PIE1<2>) before changing the capture mode to avoid false interrupts. Clear the interrupt flag bit, CCP1IE before setting CCP1IE.

7.1.4 CCP PRESCALER

There are four prescaler settings, specified by bits CCP1M3:CCP1M0. Whenever the CCP module is turned off, or the CCP module is not in capture mode, the prescaler counter is cleared. This means that any reset will clear the prescaler counter.

Switching from one capture prescaler to another may generate an interrupt. Also, the prescaler counter will not be cleared, therefore the first capture may be from a non-zero prescaler. Example 7-1 shows the recommended method for switching between capture prescalers. This example also clears the prescaler counter and will not generate the "false" interrupt.

EXAMPLE 7-1: CHANGING BETWEEN CAPTURE PRESCALERS

CLRF	CCP1CON	;Turn CCP module off
MOVLW	NEW_CAPT_PS	;Load the W reg with
		; the new prescaler
		; mode value and CCP ON
MOVWF	CCP1CON	;Load CCP1CON with this
		; value

7.2 <u>Compare Mode</u>

In Compare mode, the 16-bit CCPR1 register value is constantly compared against the TMR1 register pair value. When a match occurs, the RC2/CCP1 pin is:

- driven High
- driven Low
- remains Unchanged

The action on the pin is based on the value of control bits CCP1M3:CCP1M0 (CCP1CON<3:0>). The interrupt flag bit, CCP1IF, is set on all compare matches.

FIGURE 7-2: COMPARE MODE OPERATION BLOCK DIAGRAM

7.2.1 CCP PIN CONFIGURATION

The user must configure the RC2/CCP1 pin as an output by clearing the TRISC<2> bit.

Note:	Clearing the CCP1CON register will force
	the RC2/CCP1 compare output latch to the
	default low level. This is not the data latch.

7.2.2 TIMER1 MODE SELECTION

Timer1 must be running in Timer mode or Synchronized Counter mode if the CCP module is using the compare feature. In Asynchronous Counter mode, the compare operation may not work.

7.2.3 SOFTWARE INTERRUPT MODE

When a generated software interrupt is chosen, the CCP1 pin is not affected. Only a CCP interrupt is generated (if enabled).

7.2.4 SPECIAL EVENT TRIGGER

In this mode, an internal hardware trigger is generated, which may be used to initiate an action.

The special event trigger output of CCP1 resets the TMR1 register pair. This allows the CCPR1 register to effectively be a 16-bit programmable period register for Timer1.

The special trigger output of CCP1 resets the TMR1 register pair and starts an A/D conversion (if the A/D module is enabled).

TABLE 7-3 REGISTERS ASSOCIATED WITH CAPTURE, COMPARE, AND TIMER1

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other resets
0Bh,8Bh	INTCON	GIE	PEIE	T0IE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	—	ADIF	—	_	SSPIF	CCP1IF	TMR2IF	TMR1IF	-0 0000	-0 0000
8Ch	PIE1	—	ADIE	—	_	SSPIE	CCP1IE	TMR2IE	TMR1IE	-0 0000	-0 0000
87h	TRISC	PORTC Da	ta Dire	ection Regis	ster					1111 1111	1111 1111
0Eh	TMR1L	Holding reg	gister fo	or the Least	Significant	Byte of the	16-bit TMF	R1 register		xxxx xxxx	uuuu uuuu
0Fh	TMR1H	Holding reg	gister fo	or the Most	Significant	Byte of the 1	16-bit TMR	1register		xxxx xxxx	uuuu uuuu
10h	T1CON	—	_	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR1ON	00 0000	uu uuuu
15h	CCPR1L	Capture/Co	ompare	PWM regi	ster1 (LSB)					xxxx xxxx	uuuu uuuu
16h	CCPR1H	Capture/Co	Capture/Compare/PWM register1 (MSB)								uuuu uuuu
17h	CCP1CON	—		CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M0	00 0000	00 0000	

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used by Capture and Timer1.

8.0 SYNCHRONOUS SERIAL PORT (SSP) MODULE

8.1 <u>SSP Module Overview</u>

The Synchronous Serial Port (SSP) module is a serial interface useful for communicating with other peripheral or microcontroller devices. These peripheral devices may be Serial EEPROMs, shift registers, display drivers, A/D converters, etc. The SSP module can operate in one of two modes:

- Serial Peripheral Interface (SPI)
- Inter-Integrated Circuit (I²C)

For more information on SSP operation (including an I²C Overview), refer to the PIC[®] MCU Mid-Range Reference Manual, (DS33023). Also, refer to Application Note AN578, *"Use of the SSP Module in the I²C Multi-Master Environment."*

8.2 SPI Mode

This section contains register definitions and operational characteristics of the SPI module.

Additional information on SPI operation may be found in the PIC[®] MCU Mid-Range Reference Manual, (DS33023).

8.2.1 OPERATION OF SSP MODULE IN SPI MODE

A block diagram of the SSP Module in SPI Mode is shown in Figure 8-1.

The SPI mode allows 8-bits of data to be synchronously transmitted and received simultaneously. To accomplish communication, three pins are used:

- Serial Data Out (SDO)RC5/SDO
- Serial Data In (SDI)RC4/SDI/SDA
- Serial Clock (SCK)RC3/SCK/SCL

Additionally, a fourth pin may be used when in a slave mode of operation:

Slave Select (SS)RA5/SS/AN4

When initializing the SPI, several options need to be specified. This is done by programming the appropriate control bits in the SSPCON register (SSPCON<5:0>) and SSPSTAT<7:6>. These control bits allow the following to be specified:

- Master Operation (SCK is the clock output)
- Slave Mode (SCK is the clock input)
- Clock Polarity (Idle state of SCK)
- Clock Edge (Output data on rising/falling edge of SCK)
- Clock Rate (master operation only)
- Slave Select Mode (Slave mode only)

To enable the serial port, SSP Enable bit, SSPEN (SSPCON<5>) must be set. To reset or reconfigure SPI mode, clear bit SSPEN, re-initialize the SSPCON reg-

ister, and then set bit SSPEN. This configures the SDI, SDO, SCK and \overline{SS} pins as serial port pins. For the pins to behave as the serial port function, they must have their data direction bits (in the TRISC register) appropriately programmed. That is:

- SDI must have TRISC<4> set
- SDO must have TRISC<5> cleared
- SCK (master operation) must have TRISC<3> cleared
- SCK (Slave mode) must have TRISC<3> set
- SS must have TRISA<5> set (if used)

Note: When the SPI is in Slave Mode with \overline{SS} pin control enabled, (SSPCON<3:0> = 0100) the SPI module will reset if the \overline{SS} pin is set to VDD.

Note: If the SPI is used in Slave Mode with CKE = '1', then the \overline{SS} pin control must be enabled.

FIGURE 8-1: SSP BLOCK DIAGRAM (SPI MODE)

When the A/D conversion is complete, the result is loaded into the ADRES register, the GO/DONE bit, ADCON0<2>, is cleared, and the A/D interrupt flag bit, ADIF, is set. The block diagram of the A/D module is shown in Figure 9-1.

The value that is in the ADRES register is not modified for a Power-on Reset. The ADRES register will contain unknown data after a Power-on Reset.

After the A/D module has been configured as desired, the selected channel must be acquired before the conversion is started. The analog input channels must have their corresponding TRIS bits selected as an input. To determine acquisition time, see Section 9.1. After this acquisition time has elapsed, the A/D conversion can be started. The following steps should be followed for doing an A/D conversion:

- 1. Configure the A/D module:
 - Configure analog pins / voltage reference / and digital I/O (ADCON1)
 - Select A/D input channel (ADCON0)
 - Select A/D conversion clock (ADCON0)
 - Turn on A/D module (ADCON0)
- 2. Configure A/D interrupt (if desired):
 - Clear ADIF bit
 - Set ADIE bit
 - Set GIE bit
- 3. Wait the required acquisition time.
- 4. Start conversion:
 - Set GO/DONE bit (ADCON0)
- 5. Wait for A/D conversion to complete, by either:
 Polling for the GO/DONE bit to be cleared
 - OR
 - Waiting for the A/D interrupt
- 6. Read A/D Result register (ADRES), clear bit ADIF if required.
- 7. For next conversion, go to step 1 or step 2 as required. The A/D conversion time per bit is defined as TAD. A minimum wait of 2TAD is required before next acquisition starts.

FIGURE 9-1: A/D BLOCK DIAGRAM

TABLE 11-2 PIC16CXXX INSTRUCTION SET

Mnemonic,		Description	Cycles		14-Bit	Opcode)	Status	Notes
Operands				MSb			LSb	Affected	
BYTE-ORIE	NTED	FILE REGISTER OPERATIONS							
ADDWF	f, d	Add W and f	1	00	0111	dfff	ffff	C,DC,Z	1,2
ANDWF	f, d	AND W with f	1	00	0101	dfff	ffff	Z	1,2
CLRF	f	Clear f	1	00	0001	lfff	ffff	Z	2
CLRW	-	Clear W	1	00	0001	0000	0011	Z	
COMF	f, d	Complement f	1	00	1001	dfff	ffff	Z	1,2
DECF	f, d	Decrement f	1	00	0011	dfff	ffff	Z	1,2
DECFSZ	f, d	Decrement f, Skip if 0	1(2)	00	1011	dfff	ffff		1,2,3
INCF	f, d	Increment f	1	00	1010	dfff	ffff	Z	1,2
INCFSZ	f, d	Increment f, Skip if 0	1(2)	00	1111	dfff	ffff		1,2,3
IORWF	f, d	Inclusive OR W with f	1	00	0100	dfff	ffff	Z	1,2
MOVF	f, d	Move f	1	00	1000	dfff	ffff	Z	1,2
MOVWF	f	Move W to f	1	00	0000	lfff	ffff		
NOP	-	No Operation	1	00	0000	0xx0	0000		
RLF	f, d	Rotate Left f through Carry	1	00	1101	dfff	ffff	С	1,2
RRF	f, d	Rotate Right f through Carry	1	00	1100	dfff	ffff	С	1,2
SUBWF	f, d	Subtract W from f	1	00	0010	dfff	ffff	C,DC,Z	1,2
SWAPF	f, d	Swap nibbles in f	1	00	1110	dfff	ffff		1,2
XORWF	f, d	Exclusive OR W with f	1	00	0110	dfff	ffff	Z	1,2
BIT-ORIENT	ED FIL	E REGISTER OPERATIONS	-						
BCF	f, b	Bit Clear f	1	01	00bb	bfff	ffff		1,2
BSF	f, b	Bit Set f	1	01	01bb	bfff	ffff		1,2
BTFSC	f, b	Bit Test f, Skip if Clear	1 (2)	01	10bb	bfff	ffff		3
BTFSS	f, b	Bit Test f, Skip if Set	1 (2)	01	11bb	bfff	ffff		3
LITERAL A	ND CO	NTROL OPERATIONS	-						
ADDLW	k	Add literal and W	1	11	111x	kkkk	kkkk	C,DC,Z	
ANDLW	k	AND literal with W	1	11	1001	kkkk	kkkk	Z	
CALL	k	Call subroutine	2	10	0kkk	kkkk	kkkk		
CLRWDT	-	Clear Watchdog Timer	1	00	0000	0110	0100	TO,PD	
GOTO	k	Go to address	2	10	1kkk	kkkk	kkkk		
IORLW	k	Inclusive OR literal with W	1	11	1000	kkkk	kkkk	Z	
MOVLW	k	Move literal to W	1	11	00xx	kkkk	kkkk		
RETFIE	-	Return from interrupt	2	00	0000	0000	1001		
RETLW	k	Return with literal in W	2	11	01xx	kkkk	kkkk		
RETURN	-	Return from Subroutine	2	00	0000	0000	1000		
SLEEP	-	Go into standby mode	1	00	0000	0110	0011	TO,PD	
SUBLW	k	Subtract W from literal	1	11	110x	kkkk	kkkk	C,DC,Z	
XORLW	k	Exclusive OR literal with W	1	11	1010	kkkk	kkkk	Z	

Note 1: When an I/O register is modified as a function of itself (e.g., MOVF PORTB, 1), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if assigned to the Timer0 Module.

3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

13.3 DC Characteristics:

cs: PIC16C62B/72A-04 (Commercial, Industrial, Extended) PIC16C62B/72A-20 (Commercial, Industrial, Extended) PIC16LC62B/72A-04 (Commercial, Industrial)

			Standard Operating Conditions (unless otherwise stated)							
			Operating	tempe	rature 0° 40'	r≥ ⊃° °C <⊺	$A \le +70^{\circ}C$ for commercial $A \le +85^{\circ}C$ for industrial			
DC CHA	ARACTE	RISTICS			-40	°C ≤T	$A \leq +125^{\circ}C$ for extended			
			Operating voltage VDD range as described in DC spec Section 13.1 and Section 13.2							
Param No.	Sym	Characteristic	Min Typ† Max Units Conditions							
		Input Low Voltage								
	VIL	I/O ports								
D030		with TTL buffer	Vss	-	0.15Vdd	V	For entire VDD range			
D030A			Vss	-	0.8V	V	$4.5V \le VDD \le 5.5V$			
D031		with Schmitt Trigger buffer	Vss	-	0.2Vdd	V				
D032		MCLR, OSC1 (in RC mode)	Vss	-	0.2Vdd	V				
D033		OSC1 (in XT, HS and LP modes)	Vss	-	0.3Vdd	V	Note1			
		Input High Voltage								
	VIH	I/O ports		-						
D040		with TTL buffer	2.0	-	Vdd	V	$4.5V \leq V\text{DD} \leq 5.5V$			
D040A			0.25VD D + 0.8V	-	Vdd	V	For entire VDD range			
D041		with Schmitt Trigger buffer	0.8Vdd	-	Vdd	v	For entire VDD range			
D042		MCLR	0.8VDD	-	Vdd	V				
D042A		OSC1 (XT, HS and LP modes)	0.7Vdd	-	Vdd	V	Note1			
D043		OSC1 (in RC mode)	0.9Vdd	-	Vdd	V				
		Input Leakage Current (Notes 2, 3)								
D060	lı∟	I/O ports	-	-	±1	μA	$\label{eq:VSS} \begin{split} &V{\sf SS} \leq V{\sf PIN} \leq V{\sf DD}, \\ &P{\sf in \ at \ hi-impedance} \end{split}$			
D061		MCLR, RA4/T0CKI	-	-	±5	μA	$Vss \leq VPIN \leq VDD$			
D063		OSC1	-	-	±5	μA	Vss \leq VPIN \leq VDD, XT, HS and LP osc modes			
D070	IPURB	PORTB weak pull-up current	50	250	400	μA	VDD = 5V, VPIN = VSS			
		Output Low Voltage								
D080	Vol	I/O ports	-	-	0.6	V	IOL = 8.5 mA, VDD = 4.5V, -40°C to +85°C			

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator mode, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the device be driven with external clock in RC mode.

3: Negative current is defined as current sourced by the pin.

^{2:} The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

13.4.2 TIMING CONDITIONS

The temperature and voltages specified in Table 13-1 apply to all timing specifications unless otherwise noted. Figure 13-4 specifies the load conditions for the timing specifications.

TABLE 13-1: TEMPERATURE AND VOLTAGE SPECIFICATIONS - AC

AC CHARACTERISTICS	Standard Operating Conditions (unless otherwise stated)		
	Operating temperature $0^{\circ}C \leq TA \leq +70^{\circ}C$ for commercial		
	-40°C \leq TA \leq +85°C for industrial		
	-40°C \leq TA \leq +125°C for extended		
	Operating voltage VDD range as described in DC spec Section 13.1 and Section 13.2	2.	
	LC parts operate for commercial/industrial temp's only.		

FIGURE 13-4: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

FIGURE 13-10: CAPTURE/COMPARE/PWM TIMINGS

TABLE 13-6: CAPTURE/COMPARE/PWM REQUIREMENTS

Param No.	Sym		Characteristi	С	Min	Тур†	Max	Units	Conditions
50*	TccL	CCP1 input low	No Prescaler		0.5TCY + 20	-	_	ns	
		time	With Prescaler	PIC16CXX	10	-	-	ns	
				PIC16LCXX	20	-	-	ns	
51* TccH		ccH CCP1 input high	No Prescaler		0.5TCY + 20	_	-	ns	
		time	With Prescaler	PIC16CXX	10	_	_	ns	
				PIC16LCXX	20	-	-	ns	
52*	TccP	CCP1 input period			<u>3Tcy + 40</u> N	—	_	ns	N = prescale value (1,4, or 16)
53*	TccR	TccR CCP1 output rise time		PIC16CXX	—	10	25	ns	
				PIC16LCXX	—	25	45	ns	
54*	TccF	CCP1 output fall t	time	PIC16CXX	_	10	25	ns	
				PIC16LCXX	_	25	45	ns	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 13-12: EXAMPLE SPI MASTER MODE TIMING (CKE = 1)

TABLE 13-8: EXAMPLE SPI MODE REQUIREMENTS (MASTER MODE, CKE = 1)

Param. No.	Symbol	Characteris	tic	Min	Тур†	Max	Units	Conditions
71	TscH	SCK input high time	Continuous	1.25Tcy + 30	—	_	ns	
71A		(slave mode)	Single Byte	40	—	_	ns	Note 1
72	TscL	SCK input low time	Continuous	1.25Tcy + 30	—	—	ns	
72A		(slave mode)	Single Byte	40	—	—	ns	Note 1
73	TdiV2scH, TdiV2scL	Setup time of SDI data in edge	put to SCK	100	_		ns	
73A	Тв2в	Last clock edge of Byte1 to the 1st clock edge of Byte2		1.5Tcy + 40	_		ns	Note 1
74	TscH2diL, TscL2diL	Hold time of SDI data input to SCK edge		100	_		ns	
75	TdoR	SDO data output rise	PIC16CXX	—	10	25	ns	
		time	PIC16LCXX		20	45	ns	
76	TdoF	SDO data output fall time		—	10	25	ns	
78	TscR	SCK output rise time	PIC16CXX	_	10	25	ns	
(master mode)		(master mode)	PIC16LCXX		20	45	ns	
79	TscF	SCK output fall time (mas	ster mode)	—	10	25	ns	
80	TscH2doV,	SDO data output valid	PIC16CXX	_	—	50	ns	
	TscL2doV	after SCK edge	PIC16LCXX		—	100	ns	
81	TdoV2scH, TdoV2scL	SDO data output setup to	SCK edge	Тсү	_		ns	

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Specification 73A is only required if specifications 71A and 72A are used.

14.0 DC AND AC CHARACTERISTICS GRAPHS AND TABLES

The graphs and tables provided in this section are for **design guidance** and are **not tested**.

In some graphs or tables, the data presented are **outside specified operating range** (i.e., outside specified VDD range). This is for **information only** and devices are guaranteed to operate properly only within the specified range.

The data presented in this section is a **statistical summary** of data collected on units from different lots over a period of time and matrix samples. 'Typical' represents the mean of the distribution at 25° C. 'Max' or 'min' represents (mean + 3σ) or (mean - 3σ) respectively, where σ is standard deviation, over the whole temperature range.

Graphs and Tables not available at this time.

Data is not available at this time but you may reference the *PIC16C72 Series Data Sheet* (DS39016,) DC and AC characteristic section, which contains data similar to what is expected.

()

PIC16C72A/JW

1317CAT

15.0 PACKAGING INFORMATION

15.1 Package Marking Information

Legend:	MMM	Microchip part number information
	AA BB	Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01')
	C	Facility code of the plant at which wafer is manufactured O = Outside Vendor C = 5" Line S = 6" Line H = 8" Line
	D	Mask revision number
	E	Assembly code of the plant or country of origin in which part was assembled
Note: In b fo	n the ever be carried or custom	It the full Microchip part number cannot be marked on one line, it will over to the next line thus limiting the number of available characters er specific information.

Standard OTP marking consists of Microchip part number, year code, week code, facility code, mask rev#, and assembly code. For OTP marking beyond this, certain price adders apply. Please check with your Microchip Sales Office. For QTP devices, any special marking adders are included in QTP price.

© 1998-2013 Microchip Technology Inc.

APPENDIX A: REVISION HISTORY

Version	Date	Revision Description
A	7/98	This is a new data sheet. However, the devices described in this data sheet are the upgrades to the devices found in the <i>PIC16C6X Data Sheet</i> , DS30234, and the <i>PIC16C7X Data Sheet</i> , DS30390.

APPENDIX B: CONVERSION CONSIDERATIONS

Considerations for converting from previous versions of devices to the ones listed in this data sheet are listed in Table B-1.

TABLE B-1: CONVERSION CONSIDERATIONS

Difference	PIC16C62A/72	PIC16C62B/72A
Voltage Range	2.5V - 6.0V	2.5V - 5.5V
SSP module	Basic SSP (2 mode SPI)	SSP (4 mode SPI)
CCP module	CCP does not reset TMR1 when in special event trigger mode.	N/A
Timer1 module	Writing to TMR1L register can cause over- flow in TMR1H register.	N/A

APPENDIX C: MIGRATION FROM BASE-LINE TO MID-RANGE DEVICES

This section discusses how to migrate from a baseline device (i.e., PIC16C5X) to a mid-range device (i.e., PIC16CXXX).

The following are the list of modifications over the PIC16C5X microcontroller family:

- 1. Instruction word length is increased to 14-bits. This allows larger page sizes both in program memory (2K now as opposed to 512 before) and register file (128 bytes now versus 32 bytes before).
- A PC high latch register (PCLATH) is added to handle program memory paging. Bits PA2, PA1, PA0 are removed from STATUS register.
- 3. Data memory paging is redefined slightly. STATUS register is modified.
- Four new instructions have been added: RETURN, RETFIE, ADDLW, and SUBLW. Two instructions TRIS and OPTION are being phased out although they are kept for compati-bility with PIC16C5X.
- 5. OPTION_REG and TRIS registers are made addressable.
- 6. Interrupt capability is added. Interrupt vector is at 0004h.
- 7. Stack size is increased to 8 deep.
- 8. Reset vector is changed to 0000h.
- 9. Reset of all registers is revisited. Five different reset (and wake-up) types are recognized. Registers are reset differently.
- 10. Wake up from SLEEP through interrupt is added.

- 11. Two separate timers, Oscillator Start-up Timer (OST) and Power-up Timer (PWRT) are included for more reliable power-up. These timers are invoked selectively to avoid unnecessary delays on power-up and wake-up.
- 12. PORTB has weak pull-ups and interrupt on change feature.
- 13. T0CKI pin is also a port pin (RA4) now.
- 14. FSR is made a full eight bit register.
- 15. "In-circuit serial programming" is made possible. The user can program PIC16CXX devices using only five pins: VDD, Vss, MCLR/VPP, RB6 (clock) and RB7 (data in/out).
- 16. PCON status register is added with a Power-on Reset status bit (POR).
- 17. Code protection scheme is enhanced such that portions of the program memory can be protected, while the remainder is unprotected.
- Brown-out protection circuitry has been added. Controlled by configuration word bit BODEN. Brown-out reset ensures the device is placed in a reset condition if VDD dips below a fixed setpoint.

To convert code written for PIC16C5X to PIC16CXXX, the user should take the following steps:

- 1. Remove any program memory page select operations (PA2, PA1, PA0 bits) for CALL, GOTO.
- 2. Revisit any computed jump operations (write to PC or add to PC, etc.) to make sure page bits are set properly under the new scheme.
- 3. Eliminate any data memory page switching. Redefine data variables to reallocate them.
- 4. Verify all writes to STATUS, OPTION, and FSR registers since these have changed.
- 5. Change reset vector to 0000h.

SSP	
Enable (SSPIE Bit)	14
Flag (SSPIF Bit)	
RA5/SS/AN4 Pin	6
RC3/SCK/SCL Pin	6
RC4/SDI/SDA Pin	6
RC5/SDO Pin	6
SSPADD Register	
SSPBUF Register	
SSPCON Register	
SSPSTAT Register	
TMR2 Output for Clock Shift	
Write Collision Detect (WCOL Bit)	
SSPCON Register	
CKP Bit	
SSPEN Bit	
SSPM3:SSPM0 Bits	
SSPOV Bit	
WCOL Bit	
SSPSTAT Register	
BF Bit	
CKE Bit	46
D/Ā Bit	46
P bit	
R/W Bit	42, 43, 44, 46
S Bit	
SMP Bit	
UA Bit	
Stack	17
STATUS Register	
C Bit	
DC Bit	11
IRP Bit	11
PD Bit	11, 57
RP1:RP0 Bits	
TO Bit	
Z Bit	

т

T1CON Register	
T1CKPS1:T1CKPS0 Bits	
T10SCEN Bit	27
T1SYNC Bit	
TMB1CS Bit	
TMR10N Bit	
T2CON Register	
T2CKPS1:T2CKPS0 Bits	
TMR2ON Bit	
TOUTPS3:TOUTPS0 Bits	
Timer0	
Block Diagram	25
Clock Source Edge Select (T0SE Bit)	
Clock Source Select (T0CS Bit)	12, 25
Overflow Enable (T0IE Bit)	
Overflow Flag (T0IF Bit)	
Overflow Interrupt	
BA4/T0CKI Pin, External Clock	
Timing Diagram	93
TMR0 Register	
	•

Timer1	
Block Diagram	
Capacitor Selection	29
Clock Source Select (TMR1CS Bit)	27
External Clock Input Sync (T1SYNC Bit)	27
Module On/Off (TMR1ON Bit)	27
Oscillator	27, 29
Oscillator Enable (T1OSCEN Bit)	
Overflow Enable (TMR1IE Bit)	
Overflow Flag (TMR1IF Bit)	15
Overflow Interrupt	
RC0/T1OSO/T1CKI Pin	
RC1/T1OSI	
Special Event Trigger (CCP)	
T1CON Register	
Timing Diagram	
TMB1H Begister	9
TMR11 Register	9
Timer2	
Block Diagram	32
PB2 Begister	10.31.36
SSP Clock Shift	
T2CON Begister	9, 31
TMB2 Register	9, 31
TMR2 to PR2 Match Enable (TMR2IF Bit)	
TMB2 to PB2 Match Elag (TMB2IE Bit)	
TMB2 to PB2 Match Interrunt	31 32 36
Timing Diagrams	, 02, 00
I ² C Recention (7-bit Address)	43
Wake-up from SI FEP via Interrupt	66
Timing Diagrams and Specifications	90
A/D Conversion	102
Brown-out Beset (BOB)	
Capture/Compare/PWM (CCP)	
CI KOUT and I/O	
External Clock	
I ² C Bus Data	100
I ² C Bus Start/Stop Bits	00
Oscillator Start-up Timer (OST)	
Power-up Timer (PWRT)	92 20
Bosot	ອ2 ດ
Timor() and Timor()	ے2 مە
Watchdog Timer (WDT)	
watchuog Timer (WDT)	

w

W Register	
Wake-up from SLEEP	
Interrupts	
MCLR Reset	
Timing Diagram	
WDT Reset	61
Watchdog Timer (WDT)	
Block Diagram	
Enable (WDTE Bit)	
Programming Considerations	
RC Oscillator	
Timing Diagram	
WDT Reset. Normal Operation	57, 60, 61
WDT Reset. SLEEP	
WWW. On-Line Support	

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this document.

TO: RE:	Technical Publications Manager Reader Response	Total Pages Sent
Fror	n: Name	
	Company	
	Address	
	City / State / ZIP / Country	
	Telephone: ()	FAX: ()
Арр	lication (optional):	
Wou	Ild you like a reply?YN	
Dev	ice: 24xx010	Literature Number: DS35008C
Que	stions:	
1.	What are the best features of this document?	
2.	How does this document meet your hardware and softw	are development needs?
3.	Do you find the organization of this document easy to fo	llow? If not, why?
4.	What additions to the document do you think would enh	ance the structure and subject?
5.	What deletions from the document could be made witho	ut affecting the overall usefulness?
6.	Is there any incorrect or misleading information (what ar	nd where)?
7.	How would you improve this document?	