

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	I ² C, SPI
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	22
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 5.5V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c62bt-04i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.0 I/O PORTS

Some I/O port pins are multiplexed with an alternate function for the peripheral features on the device. In general, when a peripheral is enabled, that pin may not be used as a general purpose I/O pin.

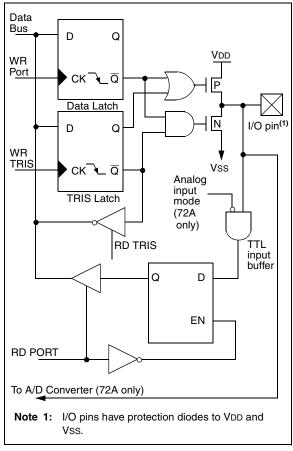
Additional information on I/O ports may be found in the PIC[®] MCU Mid-Range Reference Manual, (DS33023).

3.1 PORTA and the TRISA Register

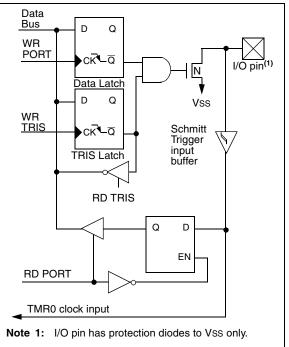
PORTA is a 6-bit wide bi-directional port. The corresponding data direction register is TRISA. Setting a TRISA bit (=1) will make the corresponding PORTA pin an input, i.e., put the corresponding output driver in a hi-impedance mode. Clearing a TRISA bit (=0) will make the corresponding PORTA pin an output, (i.e., put the contents of the output latch on the selected pin).

The PORTA register reads the state of the pins, whereas writing to it will write to the port latch. All write operations are read-modify-write operations. Therefore, a write to a port implies that the port pins are read, this value is modified, and then written to the port data latch.

Pin RA4 is multiplexed with the Timer0 module clock input to become the RA4/T0CKI pin. The RA4/T0CKI pin is a Schmitt Trigger input and an open drain output. All other RA port pins have TTL input levels and full CMOS output drivers.


Pin RA5 is multiplexed with the SSP to become the RA5/SS pin.

On the PIC16C72A device, other PORTA pins are multiplexed with analog inputs and analog VREF input. The operation of each pin is selected by clearing/setting the control bits in the ADCON1 register (A/D Control Register1).


Note:	On a Power-on Reset, pins with analog
	functions are configured as analog inputs
	with digital input buffers disabled . A digital
	read of these pins will return '0'.

The TRISA register controls the direction of the RA pins, even when they are being used as analog inputs. The user must ensure the bits in the TRISA register are maintained set when using them as analog inputs.

FIGURE 3-1: BLOCK DIAGRAM OF RA3:RA0 AND RA5 PINS

FIGURE 3-2: BLOCK DIAGRAM OF RA4/T0CKI PIN

© 1998-2013 Microchip Technology Inc.

TABLE 3-1 PORTA FUNCTIONS

Name	Bit#	Buffer	Function
RA0/AN0	bit0	TTL	Input/output or analog input ⁽¹⁾
RA1/AN1	bit1	TTL	Input/output or analog input ⁽¹⁾
RA2/AN2	bit2	TTL	Input/output or analog input ⁽¹⁾
RA3/AN3/VREF	bit3	TTL	Input/output or analog input ⁽¹⁾ or VREF ⁽¹⁾
RA4/T0CKI	bit4	ST	Input/output or external clock input for Timer0 Output is open drain type
RA5/SS/AN4	bit5	TTL	Input/output or slave select input for synchronous serial port or analog input ⁽¹⁾

Legend: TTL = TTL input, ST = Schmitt Trigger input

Note 1: The PIC16C62B does not implement the A/D module.

TABLE 3-2 SUMMARY OF REGISTERS ASSOCIATED WITH PORTA

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other resets
05h	PORTA (for PIC16C72A only)	—	—	RA5	RA4	RA3	RA2	RA1	RA0	0x 0000	0u 0000
05h	PORTA (for PIC16C62B only)	—	—	RA5	RA4	RA3	RA2	RA1	RA0	xx xxxx	uu uuuu
85h	TRISA			PORTA	PORTA Data Direction Register11 1111						
9Fh	ADCON1 ⁽¹⁾						PCFG2	PCFG1	PCFG0	000	000

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTA. Note 1: The PIC16C62B does not implement the A/D module. Maintain this register clear.

TABLE 3-5 PORTC FUNCTIONS

Name	Bit#	Buffer Type	Function	TRISC Override
RC0/T1OSO/T1CKI	bit0	ST	Input/output port pin or Timer1 oscillator output/Timer1 clock input	Yes
RC1/T1OSI	bit1	ST	Input/output port pin or Timer1 oscillator input	Yes
RC2/CCP1	bit2	ST	Input/output port pin or Capture1 input/Compare1 output/PWM1 output	No
RC3/SCK/SCL	bit3	ST	RC3 can also be the synchronous serial clock for both SPI and I^2C modes.	No
RC4/SDI/SDA	bit4	ST	RC4 can also be the SPI Data In (SPI mode) or data I/O (I^2C mode).	No
RC5/SDO	bit5	ST	Input/output port pin or Synchronous Serial Port data output	No
RC6	bit6	ST	Input/output port pin	No
RC7	bit7	ST	Input/output port pin	No

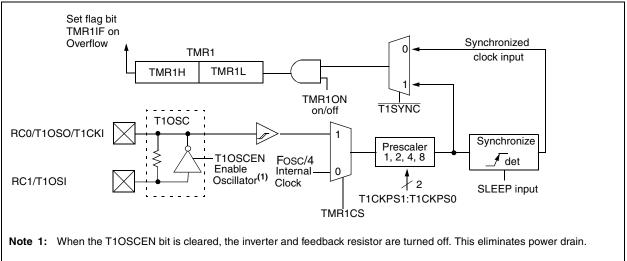

Legend: ST = Schmitt Trigger input

TABLE 3-6SUMMARY OF REGISTERS ASSOCIATED WITH PORTC

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets
07h	PORTC	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	xxxx xxxx	uuuu uuuu
87h	TRISC	PORTC I	PORTC Data Direction Register 1111 1111 1111 1111							1111 1111	

Legend: x = unknown, u = unchanged.

FIGURE 5-1: TIMER1 BLOCK DIAGRAM

8.0 SYNCHRONOUS SERIAL PORT (SSP) MODULE

8.1 SSP Module Overview

The Synchronous Serial Port (SSP) module is a serial interface useful for communicating with other peripheral or microcontroller devices. These peripheral devices may be Serial EEPROMs, shift registers, display drivers, A/D converters, etc. The SSP module can operate in one of two modes:

- Serial Peripheral Interface (SPI)
- Inter-Integrated Circuit (I²C)

For more information on SSP operation (including an I²C Overview), refer to the PIC[®] MCU Mid-Range Reference Manual, (DS33023). Also, refer to Application Note AN578, *"Use of the SSP Module in the I²C Multi-Master Environment."*

8.2 SPI Mode

This section contains register definitions and operational characteristics of the SPI module.

Additional information on SPI operation may be found in the PIC[®] MCU Mid-Range Reference Manual, (DS33023).

8.2.1 OPERATION OF SSP MODULE IN SPI MODE

A block diagram of the SSP Module in SPI Mode is shown in Figure 8-1.

The SPI mode allows 8-bits of data to be synchronously transmitted and received simultaneously. To accomplish communication, three pins are used:

- Serial Data Out (SDO)RC5/SDO
- Serial Data In (SDI)RC4/SDI/SDA
- Serial Clock (SCK)RC3/SCK/SCL

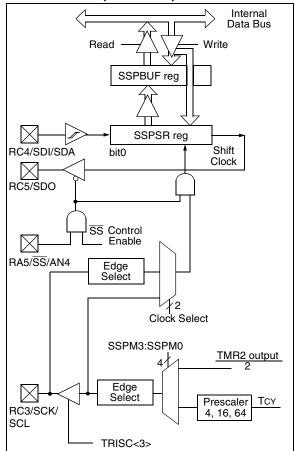
Additionally, a fourth pin may be used when in a slave mode of operation:

Slave Select (SS)RA5/SS/AN4

When initializing the SPI, several options need to be specified. This is done by programming the appropriate control bits in the SSPCON register (SSPCON<5:0>) and SSPSTAT<7:6>. These control bits allow the following to be specified:

- Master Operation (SCK is the clock output)
- Slave Mode (SCK is the clock input)
- Clock Polarity (Idle state of SCK)
- Clock Edge (Output data on rising/falling edge of SCK)
- Clock Rate (master operation only)
- Slave Select Mode (Slave mode only)

To enable the serial port, SSP Enable bit, SSPEN (SSPCON<5>) must be set. To reset or reconfigure SPI mode, clear bit SSPEN, re-initialize the SSPCON reg-


ister, and then set bit SSPEN. This configures the SDI, SDO, SCK and \overline{SS} pins as serial port pins. For the pins to behave as the serial port function, they must have their data direction bits (in the TRISC register) appropriately programmed. That is:

- SDI must have TRISC<4> set
- SDO must have TRISC<5> cleared
- SCK (master operation) must have TRISC<3> cleared
- SCK (Slave mode) must have TRISC<3> set
- SS must have TRISA<5> set (if used)

Note: When the SPI is in Slave Mode with \overline{SS} pin control enabled, (SSPCON<3:0> = 0100) the SPI module will reset if the \overline{SS} pin is set to VDD.

Note: If the SPI is used in Slave Mode with CKE = '1', then the \overline{SS} pin control must be enabled.

FIGURE 8-1: SSP BLOCK DIAGRAM (SPI MODE)

9.2 Selecting the A/D Conversion Clock

The A/D conversion time per bit is defined as TAD. The A/D conversion requires 9.5TAD per 8-bit conversion. The source of the A/D conversion clock is software selectable. The four possible options for TAD are:

- 2Tosc
- 8Tosc
- 32Tosc
- Internal RC oscillator

For correct A/D conversions, the A/D conversion clock (TAD) must be selected to ensure a minimum TAD time of 1.6 $\mu s.$

The A/D module can operate during sleep mode, but the RC oscillator must be selected as the A/D clock source prior to the SLEEP instruction.

Table 9-1 shows the resultant TAD times derived from the device operating frequencies and the A/D clock source selected.

9.3 Configuring Analog Port Pins

The ADCON1 and TRISA registers control the operation of the A/D port pins. The port pins that are desired as analog inputs must have their corresponding TRIS bits set (input). If the TRIS bit is cleared (output), the digital output level (VOH or VOL) will be converted.

The A/D operation is independent of the state of the CHS2:CHS0 bits and the TRIS bits.

- Note 1: When reading the port register, all pins configured as analog input channels will read as cleared (a low level). Pins configured as digital inputs, will convert an analog input. Analog levels on a digitally configured input will not affect the conversion accuracy.
- **Note 2:** Analog levels on any pin that is defined as a digital input (including the AN4:AN0 pins) may cause the input buffer to consume current that is out of the devices specification.

TABLE 9-1TAD vs. DEVICE OPERATING FREQUENCIES

AD Cloc	k Source (TAD)	Device Frequency								
Operation	ADCS1:ADCS0	20 MHz	5 MHz	1.25 MHz	333.33 kHz					
2Tosc	00	100 ns ⁽²⁾	400 ns ⁽²⁾	1.6 μs	6 μs					
8Tosc	01	400 ns ⁽²⁾	1.6 μs	6.4 μs	24 μs ⁽³⁾					
32Tosc	10	1.6 μs	6.4 μs	25.6 μs ⁽³⁾	96 μs ⁽³⁾					
RC ⁽⁵⁾	11	2 - 6 μs ^(1,4)	2 - 6 μs ^(1,4)	2 - 6 μs ^(1,4)	2 - 6 μs ⁽¹⁾					

Legend: Shaded cells are outside of recommended range.

Note 1: The RC source has a typical TAD time of 4 μ s.

- 2: These values violate the minimum required TAD time.
- **3:** For faster conversion times, the selection of another clock source is recommended.
- 4: When device frequency is greater than 1 MHz, the RC A/D conversion clock source is recommended for sleep operation only.
- 5: For extended voltage devices (LC), please refer to Electrical Specifications section.

10.0 SPECIAL FEATURES OF THE CPU

The PIC16C62B/72A devices have a host of features intended to maximize system reliability, minimize cost through elimination of external components, provide power saving operating modes and offer code protection. These are:

- Oscillator Mode Selection
- Reset
 - Power-on Reset (POR)
 - Power-up Timer (PWRT)
 - Oscillator Start-up Timer (OST)
 - Brown-out Reset (BOR)
- Interrupts
- Watchdog Timer (WDT)
- SLEEP
- Code protection
- ID locations
- In-circuit serial programming[™] (ICSP)

These devices have a Watchdog Timer, which can be shut off only through configuration bits. It runs off its own RC oscillator for added reliability. There are two timers that offer necessary delays on power-up. One is the Oscillator Start-up Timer (OST), intended to keep the chip in reset until the crystal oscillator is stable. The

FIGURE 10-1: CONFIGURATION WORD

other is the Power-up Timer (PWRT), which provides a fixed delay on power-up only and is designed to keep the part in reset while the power supply stabilizes. With these two timers on-chip, most applications need no external reset circuitry.

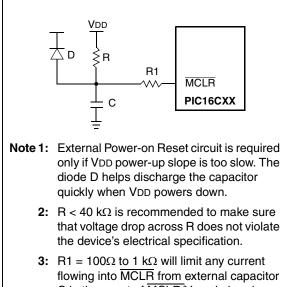
SLEEP mode is designed to offer a very low current power-down mode. The user can wake-up from SLEEP through external reset, Watchdog Timer Wake-up, or through an interrupt. Several oscillator options are also made available to allow the part to fit the application. The RC oscillator option saves system cost while the LP crystal option saves power. A set of configuration bits are used to select various options.

Additional information on special features is available in the PIC[®] MCU Mid-Range Reference Manual, (DS33023).

10.1 Configuration Bits

The configuration bits can be programmed (read as '0') or left unprogrammed (read as '1') to select various device configurations. These bits are mapped in program memory location 2007h.

The user will note that address 2007h is beyond the user program memory space. In fact, it belongs to the special test/configuration memory space (2000h - 3FFFh), which can be accessed only during programming.


CP1	CP0	CP1	CP0	CP1	CP0	_	BODEN	CP1	CP0	PWRTE	WDTE	FOSC1	FOSC0	Register:	CONFIG
bit13		bito Address: 2007h													
	<pre>it 13-8 CP1:CP0: Code Protection bits ⁽²⁾ 5-4: 11 = Code protection off 10 = Upper half of program memory code protected 01 = Upper 3/4th of program memory code protected</pre>														
		00 = AII													
bit 7:	I	Jnimpl	emen	ted: R	ead as	s '1'									
bit 6:		BODEN: Brown-out Reset Enable bit ⁽¹⁾ 1 = BOR enabled 0 = BOR disabled													
bit 3:		PWRTE : Power-up Timer Enable bit ⁽¹⁾ 1 = PWRT disabled 0 = PWRT enabled													
bit 2:	:	WDTE : 1 = WD 0 = WD	T ena	bled	imer E	nable	bit								
bit 1-		FOSC1:FOSC0: Oscillator Selection bits 11 = RC oscillator 10 = HS oscillator 01 = XT oscillator 00 = LP oscillator													
Note													dless of the tion schem	e value of bit ne listed.	PWRTE.

10.4 Power-On Reset (POR)

A Power-on Reset pulse is generated on-chip when VDD rise is detected (in the range of 1.5V - 2.1V). To take advantage of the POR, just tie the $\overline{\text{MCLR}}$ pin directly (or through a resistor) to VDD. This will eliminate external RC components usually needed to create a Power-on Reset. A maximum rise time for VDD is specified (SVDD, parameter D004). For a slow rise time, see Figure 10-6.

When the device starts normal operation (exits the reset condition), device operating parameters (voltage, frequency, temperature,...) must be met to ensure operation. If these conditions are not met, the device must be held in reset until the operating conditions are met. Brown-out Reset may be used to meet the start-up conditions.

FIGURE 10-6: EXTERNAL POWER-ON RESET CIRCUIT (FOR SLOW VDD POWER-UP)

R1 = 100Ω to 1 kΩ will limit any current flowing into \overline{MCLR} from external capacitor C in the event of \overline{MCLR}/VPP pin breakdown due to Electrostatic Discharge (ESD) or Electrical Overstress (EOS).

10.5 Power-up Timer (PWRT)

The Power-up Timer provides a fixed nominal time-out (TPWRT, parameter #33) from the POR. The Power-up Timer operates on an internal RC oscillator. The chip is kept in reset as long as the PWRT is active. The PWRT's time delay allows VDD to rise to an acceptable level. A configuration bit is provided to enable/disable the PWRT.

The power-up time delay will vary from chip-to-chip due to VDD, temperature and process variation. See DC parameters for details.

10.6 Oscillator Start-up Timer (OST)

The Oscillator Start-up Timer (OST) provides a delay of 1024 oscillator cycles (from OSC1 input) after the PWRT delay is over (TOST, parameter #32). This ensures that the crystal oscillator or resonator has started and stabilized.

The OST time-out is invoked only for XT, LP and HS modes and only on Power-on Reset or wake-up from SLEEP.

Note: The OST delay may not occur when the device wakes from SLEEP.

10.7 Brown-Out Reset (BOR)

The configuration bit, BODEN, can enable or disable the Brown-Out Reset circuit. If VPP falls below Vbor (parameter #35, about 100μ S), the brown-out situation will reset the device. If VDD falls below VBOR for less than TBOR, a reset may not occur.

Once the brown-out occurs, the device will remain in brown-out reset until VDD rises above VBOR. The power-up timer then keeps the device in reset for TPWRT (parameter #33, about 72mS). If VDD should fall below VBOR during TPWRT, the brown-out reset process will restart when VDD rises above VBOR with the power-up timer reset. The power-up timer is always enabled when the brown-out reset circuit is enabled, regardless of the state of the PWRT configuration bit.

TABLE 10-6 INITIALIZATION CONDITIONS FOR ALL REGISTERS									
Register		cable ices	Power-on Reset, Brown-out Reset	MCLR Resets WDT Reset	Wake-up via WDT or Interrupt				
W	62B	72A	XXXX XXXX	uuuu uuuu	սսսս սսսս				
INDF	62B	72A	N/A	N/A	N/A				
TMR0	62B	72A	XXXX XXXX	uuuu uuuu	uuuu uuuu				
PCL	62B	72A	0000h	0000h	PC + 1 ⁽²⁾				
STATUS	62B	72A	0001 1xxx	000q quuu (3)	uuuq quuu (3)				
FSR	62B	72A	XXXX XXXX	uuuu uuuu	uuuu uuuu				
PORTA ⁽⁴⁾	62B	72A	0x 0000	0u 0000	uu uuuu				
PORTB ⁽⁵⁾	62B	72A	xxxx xxxx	սսսս սսսս	սսսս սսսս				
PORTC ⁽⁵⁾	62B	72A	xxxx xxxx	սսսս սսսս	uuuu uuuu				
PCLATH	62B	72A	0 0000	0 0000	u uuuu				
INTCON	62B	72A	0000 000x	0000 000u	uuuu uuuu (1)				
	62B	72A	0000	0000	uuuu (1)				
PIR1	62B	72A	-0 0000	-0 0000	-u uuuu (1)				
TMR1L	62B	72A	xxxx xxxx	uuuu uuuu	uuuu uuuu				
TMR1H	62B	72A	xxxx xxxx	uuuu uuuu	uuuu uuuu				
T1CON	62B	72A	00 0000	uu uuuu	uu uuuu				
TMR2	62B	72A	0000 0000	0000 0000	uuuu uuuu				
T2CON	62B	72A	-000 0000	-000 0000	-uuu uuuu				
SSPBUF	62B	72A	XXXX XXXX	uuuu uuuu	uuuu uuuu				
SSPCON	62B	72A	0000 0000	0000 0000	uuuu uuuu				
CCPR1L	62B	72A	XXXX XXXX	uuuu uuuu	uuuu uuuu				
CCPR1H	62B	72A	xxxx xxxx	uuuu uuuu	uuuu uuuu				
CCP1CON	62B	72A	00 0000	00 0000	uu uuuu				
ADRES	62B	72A	XXXX XXXX	uuuu uuuu	uuuu uuuu				
ADCON0	62B	72A	0000 00-0	0000 00-0	uuuu uu-u				
OPTION_REG	62B	72A	1111 1111	1111 1111	uuuu uuuu				
TRISA	62B	72A	11 1111	11 1111	uu uuuu				
TRISB	62B	72A	1111 1111	1111 1111	uuuu uuuu				
TRISC	62B	72A	1111 1111	1111 1111	uuuu uuuu				
PIE1	62B	72A	0000	0000	uuuu				
	62B	72A	-0 0000	-0 0000	-u uuuu				
PCON	62B	72A	0q	uq	uq				
PR2	62B	72A	1111 1111	1111 1111	1111 1111				
SSPADD	62B	72A	0000 0000	0000 0000	uuuu uuuu				
SSPSTAT	62B	72A	0000 0000	0000 0000	սսսս սսսս				
ADCON1	62B	72A	000	000	uuu				

TABLE 10-6	INITIALIZATION CONDITIONS FOR ALL REGISTERS

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', <math>q = value depends on condition

Note 1: One or more bits in INTCON and/or PIR1 will be affected (to cause wake-up).

2: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

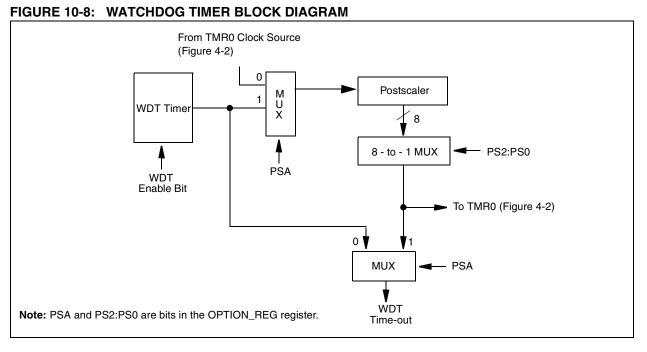
3: See Table 10-5 for reset value for specific condition.

4: On any device reset, these pins are configured as inputs.

5: This is the value that will be in the port output latch.

10.12 Watchdog Timer (WDT)

The Watchdog Timer is a free running on-chip RC oscillator which does not require any external components. This RC oscillator is separate from the RC oscillator of the OSC1/CLKIN pin. The WDT will run, even if the clock on the OSC1/CLKIN and OSC2/CLKOUT pins of the device has been stopped, for example, by execution of a SLEEP instruction.


During normal operation, a WDT time-out generates a device RESET (Watchdog Timer Reset). If the device is in SLEEP mode, a WDT time-out causes the device to wake-up and continue with normal operation (Watchdog Timer Wake-up). The $\overline{\text{TO}}$ bit in the STATUS register will be cleared upon a Watchdog Timer time-out.

The WDT can be permanently disabled by clearing configuration bit WDTE (Section 10.1).

The WDT time-out period (TWDT, parameter #31) is multiplied by the prescaler ratio, when the prescaler is assigned to the WDT. The prescaler assignment (assigned to either the WDT or Timer0) and prescaler ratio are set in the OPTION_REG register.

Note: The CLRWDT and SLEEP instructions clear the WDT and the postscaler, if assigned to the WDT, and prevent it from timing out and generating a device RESET condition.

Note: When a CLRWDT instruction is executed and the prescaler is assigned to the WDT, the prescaler count will be cleared, but the prescaler assignment is not changed.

FIGURE 10-9: SUMMARY OF WATCHDOG TIMER REGISTERS

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
2007h	Config. bits		BODEN	CP1	CP0	PWRTE	WDTE	FOSC1	FOSC0
81h	OPTION_REG	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0

Legend: Shaded cells are not used by the Watchdog Timer.

11.1 Instruction Descriptions

ADDLW	Add Literal and W
Syntax:	[<i>label</i>] ADDLW k
Operands:	$0 \leq k \leq 255$
Operation:	$(W) + k \to (W)$
Status Affected:	C, DC, Z
Description:	The contents of the W register are added to the eight bit literal 'k' and the result is placed in the W register.

ANDWF	AND W with f		
Syntax:	[<i>label</i>] ANDWF f,d		
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$		
Operation:	(W) .AND. (f) \rightarrow (destination)		
Status Affected:	Z		
Description:	AND the W register with register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'.		

ADDWF	Add W and f		
Syntax:	[<i>label</i>] ADDWF f,d		
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$		
Operation:	(W) + (f) \rightarrow (destination)		
Status Affected:	C, DC, Z		
Description:	Add the contents of the W register with register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'.		

BCF	Bit Clear f	
Syntax:	[<i>label</i>] BCF f,b	
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$	
Operation:	$0 \rightarrow (f < b >)$	
Status Affected:	None	
Description:	Bit 'b' in register 'f' is cleared.	

ANDLW	AND Literal with W		
Syntax:	[<i>label</i>] ANDLW k		
Operands:	$0 \le k \le 255$		
Operation:	(W) .AND. (k) \rightarrow (W)		
Status Affected:	Z		
Description:	The contents of W register are AND'ed with the eight bit literal 'k'. The result is placed in the W register.		

BSF	Bit Set f	
Syntax:	[<i>label</i>] BSF f,b	
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$	
Operation:	$1 \rightarrow (f < b >)$	
Status Affected:	None	
Description:	Bit 'b' in register 'f' is set.	

IORLW	Inclusive OR Literal with W		
Syntax:	[label] IORLW k		
Operands:	$0 \leq k \leq 255$		
Operation:	(W) .OR. $k \rightarrow$ (W)		
Status Affected:	Z		
Description:	The contents of the W register is OR'ed with the eight bit literal 'k'. The result is placed in the W register.		

MOVLW	Move Literal to W		
Syntax:	[<i>label</i>] MOVLW k		
Operands:	$0 \le k \le 255$		
Operation:	$k \rightarrow (W)$		
Status Affected:	None		
Description:	The eight bit literal 'k' is loaded into W register. The don't cares will assemble as 0's.		

IORWF	Inclusive OR W with f		
Syntax:	[label] IORWF f,d		
Operands:	$\begin{array}{l} 0\leq f\leq 127\\ d\in [0,1] \end{array}$		
Operation:	(W) .OR. (f) \rightarrow (destination)		
Status Affected:	Z		
Description:	Inclusive OR the W register with regis- ter 'f'. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in register 'f'.		

MOVWF	Move W to f		
Syntax:	[label] MOVWF f		
Operands:	$0 \le f \le 127$		
Operation:	$(W) \rightarrow (f)$		
Status Affected:	None		
Description:	Move data from W register to register		

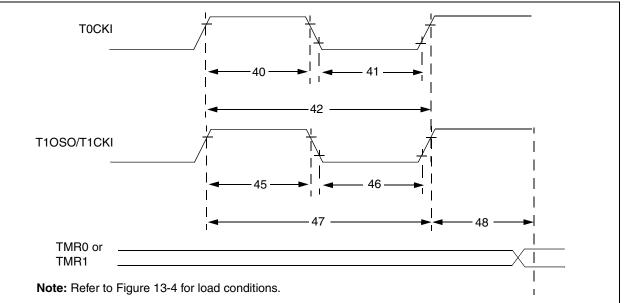
MOVF	Move f		
Syntax:	[<i>label</i>] MOVF f,d		
Operands:	$\begin{array}{l} 0\leq f\leq 127\\ d\in [0,1] \end{array}$		
Operation:	(f) \rightarrow (destination)		
Status Affected:	Z		
Description:	The contents of register f is moved to a destination dependant upon the sta- tus of d. If $d = 0$, destination is W reg- ister. If $d = 1$, the destination is file register f itself. $d = 1$ is useful to test a file register since status flag Z is affected.		

No Operation
[label] NOP
None
No operation
None
No operation.

RETFIE	Return from Interrupt	RLF	Rotate Left f through Carry
Syntax:	[label] RETFIE	Syntax:	[<i>label</i>] RLF f,d
Operands: Operation:	None $TOS \rightarrow PC$,	Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
-	$1 \rightarrow \text{GIE}$	Operation:	See description below
Status Affected:	None	Status Affected:	С
		Description:	The contents of register 'f' are rotated one bit to the left through the Carry Flag. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is stored back in register 'f'.

-	C 🚽	Register f]	

RETLW	Return with Literal in W	RRF	Rotate Right f through Carry
Syntax:	[<i>label</i>] RETLW k	Syntax:	[label] RRF f,d
Operands:	$0 \le k \le 255$	Operands:	$0 \leq f \leq 127$
Operation:	$k \rightarrow (W);$		d ∈ [0,1]
	$TOS \rightarrow PC$	Operation:	See description below
Status Affected:	None	Status Affected:	С
Description:	The W register is loaded with the eight bit literal 'k'. The program counter is loaded from the top of the stack (the return address). This is a two cycle instruction.	Description:	The contents of register 'f' are rotated one bit to the right through the Carry Flag. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in register 'f'.
			C Register f


RETURN	Return from Subroutine
Syntax:	[label] RETURN
Operands:	None
Operation:	$TOS \rightarrow PC$
Status Affected:	None
Description:	Return from subroutine. The stack is POPed and the top of the stack (TOS) is loaded into the program counter. This is a two cycle instruction.

SLEEP	
Syntax:	[label] SLEEP
Operands:	None
Operation:	$\begin{array}{l} 00h \rightarrow WDT, \\ 0 \rightarrow WDT \ \text{prescaler}, \\ 1 \rightarrow \overline{TO}, \\ 0 \rightarrow \overline{PD} \end{array}$
Status Affected:	TO, PD
Description:	The power-down status bit, $\overline{\text{PD}}$ is cleared. Time-out status bit, $\overline{\text{TO}}$ is set. Watchdog Timer and its pres- caler are cleared. The processor is put into SLEEP mode with the oscillator stopped. See Section 10.13 for more details.

© 1998-2013 Microchip Technology Inc.

NOTES:

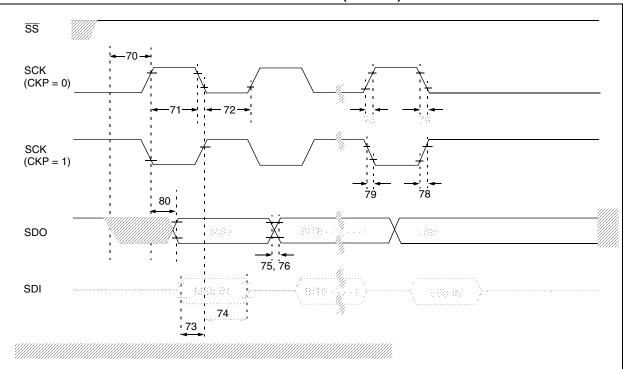

FIGURE 13-9: TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS

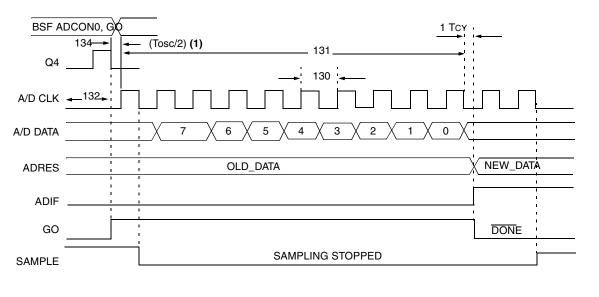
TABLE 13-5:	TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS
IADEE IV V.	

Param No.	Sym		Characteristic		Min	Тур†	Max	Units	Conditions
40*	Tt0H	T0CKI High Pulse W	′idth	No Prescaler	0.5Tcy + 20	-	-	ns	Must also meet
				With Prescaler	10	-		ns	parameter 42
41*	Tt0L	T0CKI Low Pulse W	idth	No Prescaler	0.5Tcy + 20	-		ns	Must also meet
				With Prescaler	10	-		ns	parameter 42
42*	Tt0P	T0CKI Period		No Prescaler	Tcy + 40	—	-	ns	
		-		With Prescaler	Greater of: 20 or <u>Tcy + 40</u> N	-	-	ns	N = prescale value (2, 4,, 256)
45*	Tt1H	T1CKI High Time	Synchronous, P	rescaler = 1	0.5Tcy + 20	—	-	ns	Must also meet
			Synchronous,	PIC16CXX	15	-		ns	parameter 47
			Prescaler = 2,4,8	PIC16LCXX	25	—	_	ns]
			Asynchronous	PIC16CXX	30		_	ns	
				PIC16LCXX	50		_	ns	
46* Tt11	Tt1L	T1CKI Low Time	Synchronous, Prescaler = 1		0.5TCY + 20	-		ns	Must also meet
			Synchronous,	PIC16CXX	15	—	-	ns	parameter 47
			Prescaler = 2,4,8	PIC16LCXX	25	—		ns	
			Asynchronous	PIC16CXX	30	-		ns	
				PIC16LCXX	50	-		ns	
47* T	Tt1P	T1CKI input period	Synchronous	PIC16CXX	GREATER OF: 30 OR <u>TCY + 40</u> N	_	_	ns	N = prescale value (1, 2, 4, 8)
				PIC16LCXX	GREATER OF: 50 OR <u>TCY + 40</u> N				N = prescale value (1, 2, 4, 8)
			Asynchronous	PIC16CXX	60	-		ns	
				PIC16LCXX	100	—	—	ns	
	Ft1	Timer1 oscillator inp (oscillator enabled by			DC	-	200	kHz	
48	TCKEZtmr1	Delay from external	clock edge to time	er increment	2Tosc		7Tosc	-	

* These parameters are characterized but not tested.
† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 13-11: EXAMPLE SPI MASTER MODE TIMING (CKE = 0)

Param. No.	Symbol	Characteristic		Min	Тур†	Max	Units	Conditions
70	TssL2scH, TssL2scL	SS↓ to SCK↓ or SCK↑ input	ut	Тсү	—	—	ns	
71	TscH	SCK input high time	Continuous	1.25Tcy + 30	—	_	ns	
71A		(slave mode)	Single Byte	40		_	ns	Note 1
72	TscL	SCK input low time	Continuous	1.25Tcy + 30	_		ns	
72A		(slave mode)	Single Byte	40	_	_	ns	Note 1
73	TdiV2scH, TdiV2scL	Setup time of SDI data input to SCK edge		100	—	—	ns	
73A	Тв2в	Last clock edge of Byte1 to edge of Byte2	1.5Tcy + 40	—	—	ns	Note 1	
74	TscH2diL, TscL2diL	Hold time of SDI data input to SCK edge		100	—	—	ns	
75	TdoR	SDO data output rise time	PIC16CXX	_	10	25	ns	
			PIC16LCXX	_	20	45	ns	
76	TdoF	SDO data output fall time		_	10	25	ns	
78	TscR	SCK output rise time	PIC16CXX	_	10	25	ns	
	(mas	(master mode)	PIC16LCXX	_	20	45	ns	
79	TscF	SCK output fall time (maste	er mode)	_	10	25	ns	
80	TscH2doV,	SDO data output valid	PIC16CXX	_	_	50	ns	
	TscL2doV	after SCK edge	PIC16LCXX	_	—	100	ns]


TABLE 13-7: EXAMPLE SPI MODE REQUIREMENTS (MASTER MODE, CKE = 0)

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Specification 73A is only required if specifications 71A and 72A are used.

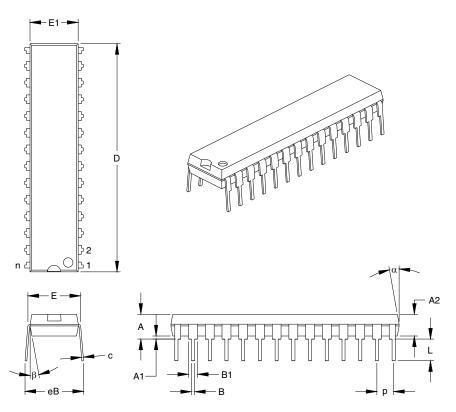
© 1998-2013 Microchip Technology Inc.

FIGURE 13-17: A/D CONVERSION TIMING

Note 1: If the A/D clock source is selected as RC, a time of TCY is added before the A/D clock starts. This allows the SLEEP instruction to be executed.

Param	Sym	Characteristic		Min	Typ†	Max	Unit	Conditions
No.							S	
130	TAD	A/D clock period	PIC16CXX	1.6			μs	Tosc based, VREF $\geq 3.0V$
			PIC16LCXX	2.0		-	μs	Tosc based, VREF full range
			PIC16CXX	2.0	4.0	6.0	μS	A/D RC Mode
			PIC16LCXX	3.0	6.0	9.0	μS	A/D RC Mode
131	TCNV	Conversion time (not including S/H time) (Note 1)		11		11	Tad	
132	TACQ	Acquisition time		Note 2	20		μS	
				5*	_	_	μs	The minimum time is the amplifier settling time. This may be used if the "new" input voltage has not changed by more than 1 LSb (i.e., 20.0 mV @ 5.12V) from the last sam- pled voltage (as stated on CHOLD).
134	TGO	Q4 to A/D clock start			Tosc/2			If the A/D clock source is selected as RC, a time of TCY is added before the A/D clock starts. This allows the SLEEP instruction to be executed.
135	Tswc	Switching from conve time	$rt \rightarrow sample$	1.5			Tad	

TABLE 13-14: A/D CONVERSION REQUIREMENTS


* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: ADRES register may be read on the following TCY cycle.

2: See Section 9.1 for min conditions.

28-Lead Skinny Plastic Dual In-line (SP) – 300 mil (PDIP) 15.2

	INCHES*			MILLIMETERS			
Dimension	Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		28			28	
Pitch	р		.100			2.54	
Top to Seating Plane	Α	.140	.150	.160	3.56	3.81	4.06
Molded Package Thickness	A2	.125	.130	.135	3.18	3.30	3.43
Base to Seating Plane	A1	.015			0.38		
Shoulder to Shoulder Width	E	.300	.313	.325	7.62	7.94	8.26
Molded Package Width	E1	.279	.307	.335	7.09	7.80	8.51
Overall Length	D	1.345	1.365	1.385	34.16	34.67	35.18
Tip to Seating Plane	L	.125	.130	.135	3.18	3.30	3.43
Lead Thickness	С	.008	.012	.015	0.20	0.29	0.38
Upper Lead Width	B1	.040	.053	.065	1.02	1.33	1.65
Lower Lead Width	В	.016	.019	.022	0.41	0.48	0.56
Overall Row Spacing	eB	.320	.350	.430	8.13	8.89	10.92
Mold Draft Angle Top	α	5	10	15	5	10	15
Mold Draft Angle Bottom	β	5	10	15	5	10	15

*Controlling Parameter

Notes: Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MO-095 Drawing No. C04-070

INDEX

Α

A/D				49
	A/D Converter Enable (ADIE Bit)			14
	A/D Converter Flag (ADIF Bit)			
	A/D Converter Interrupt, Configuring			
	ADCON0 Register			
	ADCON1 Register10			
	ADRES Register			
	Analog Port Pins		····.	6
	Analog Port Pins, Configuring			
	Block Diagram			
	Block Diagram, Analog Input Model			
	Channel Select (CHS2:CHS0 Bits)			
	Clock Select (ADCS1:ADCS0 Bits)			
	Configuring the Module			
	Conversion Clock (TAD)			
	Conversion Status (GO/DONE Bit)			
	Conversions			
	Converter Characteristics		1	01
	Module On/Off (ADON Bit)			
	Port Configuration Control (PCFG2:PCFG0 Bit	s)		50
	Sampling Requirements			
	Special Event Trigger (CCP)		35,	54
	Timing Diagram		Í	02
Abso	blute Maximum Ratings			
ADC	ON0 Register		. 9,	49
	ADCS1:ADCS0 Bits			
	ADON Bit			49
	CHS2:CHS0 Bits			49
	GO/DONE Bit		49,	51
ADC	ON1 Register10	0,	49,	50
	PCFG2:PCFG0 Bits			50
ADR	ES Register			
	itecture			
	PIC16C62B/PIC16C72A Block Diagram			5
Asse	embler			
	MPASM Assembler			75
в				
D				

		١.
	1	

Banking, Data Memory	
Brown-out Reset (BOR)	
BOR Enable (BODEN Bit)	
BOR Status (BOR Bit)	

С

Capture (CCP Module)	
Block Diagram	
CCP Pin Configuration	
CCPR1H:CCPR1L Registers	
Changing Between Capture Prescalers	
Software Interrupt	
Timer1 Mode Selection	
Capture/Compare/PWM	
Interaction of Two CCP Modules	
Capture/Compare/PWM (CCP)	
CCP1CON Register	
CCPR1H Register	
CCPR1L Register	
Enable (CCP1IE Bit)	14
Flag (CCP1IF Bit)	
RC2/CCP1 Pin	6
Timer Resources	
Timing Diagram	94

CCP1CON Register	
CCP1M3:CCP1M0 Bits 33	
CCP1X:CCP1Y Bits	
Code Protection55, 66	
CP1:CP0 Bits 55	
Compare (CCP Module)	
Block Diagram	
CCP Pin Configuration	
CCPR1H:CCPR1L Registers	
Software Interrupt	
Special Event Trigger	
Timer1 Mode Selection	
Configuration Bits	
Conversion Considerations	
D	
Data Memory8	
Bank Select (RP1:RP0 Bits)8, 11	
General Purpose Registers	
Register File Map	
Special Function Registers	
DC Characteristics	
Development Support	
Direct Addressing 18	
E	
Electrical Characteristics	
Errata	
External Power-on Reset Circuit	
F	
Firmware Instructions67	
I/O Ports	
² C (SSP Module)	
ACK Pulse	
Addressing	
Block Diagram	
Buffer Full Status (BF Bit)	
Clock Polarity Select (CKP Bit)	
Data/Address (D/Ā Bit)	
Master Mode	
Master Mode	
Multi-Master Mode	
Read/Write Bit Information (R/W Bit) 42, 43, 44, 46	
Receive Overflow Indicator (SSPOV Bit) 47	
Reception	
Reception	
Reception	
Reception	
Reception43Reception Timing Diagram43Slave Mode41	
Reception43Reception Timing Diagram43Slave Mode41Start (S Bit)45, 46	
Reception43Reception Timing Diagram43Slave Mode41Start (S Bit)45, 46Stop (P Bit)45, 46Synchronous Serial Port Enable (SSPEN Bit)47	
Reception43Reception Timing Diagram43Slave Mode41Start (S Bit)45, 46Stop (P Bit)45, 46Synchronous Serial Port Enable (SSPEN Bit)47Timing Diagram, Data100	
Reception43Reception Timing Diagram43Slave Mode41Start (S Bit)45, 46Stop (P Bit)45, 46Synchronous Serial Port Enable (SSPEN Bit)47Timing Diagram, Data100Timing Diagram, Start/Stop Bits99	
Reception43Reception Timing Diagram43Slave Mode41Start (S Bit)45, 46Stop (P Bit)45, 46Synchronous Serial Port Enable (SSPEN Bit)47Timing Diagram, Data100	