

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I²C, SPI
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	22
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 5.5V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c62bt-20i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets (4)	
Bank 1	Bank 1											
80h	INDF ⁽¹⁾	Addressing	this locatio	0000 0000	0000 0000							
81h	OPTION_REG	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	1111 1111	
82h	PCL ⁽¹⁾	Program C	ounter's (PC	C) Least Sig	nificant Byte	•				0000 0000	0000 0000	
83h	STATUS ⁽¹⁾	IRP ⁽⁵⁾	RP1 ⁽⁵⁾	RP0	то	PD	Z	DC	С	0001 1xxx	000q quuu	
84h	FSR ⁽¹⁾	Indirect dat	a memory a	address poir	nter					xxxx xxxx	uuuu uuuu	
85h	TRISA	—	_	PORTA Da	ta Direction	Register				11 1111	11 1111	
86h	TRISB	PORTB Da	ta Direction	Register						1111 1111	1111 1111	
87h	TRISC	PORTC Da	ta Direction	1111 1111	1111 1111							
88h-89h	_	Unimpleme	ented							—		
8Ah	PCLATH ^(1,2)	—	—	—	Write Buffe	r for the upp	er 5 bits of th	e Program (Counter	0 0000	0 0000	
8Bh	INTCON ⁽¹⁾	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u	
8Ch	PIE1	—	ADIE ⁽³⁾	-	—	SSPIE	CCP1IE	TMR2IE	TMR1IE	-0 0000	-0 0000	
8Dh	—	Unimpleme	ented							—	-	
8Eh	PCON	—	—	—	—	—	—	POR	BOR	qq	uu	
8Fh-91h	_	Unimpleme	ented							—	-	
92h	PR2	Timer2 Per	iod Registe	r						1111 1111	1111 1111	
93h	SSPADD	Synchronous Serial Port (I ² C mode) Address Register									0000 0000	
94h	SSPSTAT	SMP CKE D/Ā P S R/W UA BF								0000 0000	0000 0000	
95h-9Eh	_	Unimplemented									_	
9Fh	ADCON1 ⁽³⁾	—	—	—	—	—	PCFG2	PCFG1	PCFG0	000	000	

TABLE 2-1 SPECIAL FUNCTION REGISTER SUMMARY (Cont.'d)

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0',

Shaded locations are unimplemented, read as '0'.

Note 1: These registers can be addressed from either bank.

2: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for PC<12:8> whose contents are transferred to the upper byte of the program counter.

3: A/D not implemented on the PIC16C62B, maintain as '0'.

4: Other (non power-up) resets include: external reset through MCLR and the Watchdog Timer Reset.

5: The IRP and RP1 bits are reserved. Always maintain these bits clear.

6: On any device reset, these pins are configured as inputs.

7: This is the value that will be in the port output latch.

2.5 Indirect Addressing, INDF and FSR Registers

The INDF register is not a physical register. Addressing INDF actually addresses the register whose address is contained in the FSR register (FSR is a *pointer*).

Reading INDF itself indirectly (FSR = 0) will produce 00h. Writing to the INDF register indirectly results in a no-operation (although STATUS bits may be affected).

A simple program to clear RAM locations 20h-2Fh using indirect addressing is shown in Example 2-1.

EXAMPLE 2-1: HOW TO CLEAR RAM USING INDIRECT ADDRESSING

	movlw	0x20	;initialize pointer
	movwf	FSR	; to RAM
NEXT	clrf	INDF	;clear INDF register
	incf	FSR	;inc pointer
	btfss	FSR,4	;all done?
	goto	NEXT	;NO, clear next
CONTINUE			
	:		;YES, continue

An effective 9-bit address is obtained by concatenating the 8-bit FSR register and the IRP bit (STATUS<7>), as shown in Figure 2-3. However, IRP is not used in the PIC16C62B/72A.

FIGURE 2-3: DIRECT/INDIRECT ADDRESSING

3.2 PORTB and the TRISB Register

PORTB is an 8-bit wide bi-directional port. The corresponding data direction register is TRISB. Setting a TRISB bit (=1) will make the corresponding PORTB pin an input, (i.e., put the corresponding output driver in a hi-impedance mode). Clearing a TRISB bit (=0) will make the corresponding PORTB pin an output, (i.e., put the contents of the output latch on the selected pin).

Each of the PORTB pins has a weak internal pull-up. A single control bit can turn on all the pull-ups. This is performed by clearing bit $\overline{\text{RBPU}}$ (OPTION_REG<7>). The weak pull-up is automatically turned off when the port pin is configured as an output. The pull-ups are disabled on a Power-on Reset.

FIGURE 3-3: BLOCK DIAGRAM OF RB3:RB0 PINS

Four of PORTB's pins, RB7:RB4, have an interrupt on change feature. Only pins configured as inputs can cause this interrupt to occur (i.e. any RB7:RB4 pin configured as an output is excluded from the interrupt on change comparison). The input pins (of RB7:RB4) are compared with the old value latched on the last read of PORTB. The "mismatch" outputs of RB7:RB4 are OR'ed together to generate the RB Port Change Interrupt with flag bit RBIF (INTCON<0>).

This interrupt can wake the device from SLEEP. The user, in the interrupt service routine, can clear the interrupt in the following manner:

- a) Any read or write of PORTB. This will end the mismatch condition.
- b) Clear flag bit RBIF.

A mismatch condition will continue to set flag bit RBIF. Reading PORTB will end the mismatch condition and allow flag bit RBIF to be cleared.

The interrupt on change feature is recommended for wake-up on key depression operation and operations where PORTB is only used for the interrupt on change feature. Polling of PORTB is not recommended while using the interrupt on change feature.

RB0/INT is an external interupt pin and is configured using the INTEDG bit (OPTION_REG<6>). RB0/INT is discussed in detail in Section 10.10.1.

TABLE 3-5 PORTC FUNCTIONS

Name	Bit#	Buffer Type	Function	TRISC Override
RC0/T1OSO/T1CKI	bit0	ST	Input/output port pin or Timer1 oscillator output/Timer1 clock input	Yes
RC1/T1OSI	bit1	ST	Input/output port pin or Timer1 oscillator input	Yes
RC2/CCP1	bit2	ST	Input/output port pin or Capture1 input/Compare1 output/PWM1 output	No
RC3/SCK/SCL	bit3	ST	RC3 can also be the synchronous serial clock for both SPI and I^2C modes.	No
RC4/SDI/SDA	bit4	ST	RC4 can also be the SPI Data In (SPI mode) or data I/O (I^2C mode).	No
RC5/SDO	bit5	ST	Input/output port pin or Synchronous Serial Port data output	No
RC6	bit6	ST	Input/output port pin	No
RC7	bit7	ST	Input/output port pin	No

Legend: ST = Schmitt Trigger input

TABLE 3-6SUMMARY OF REGISTERS ASSOCIATED WITH PORTC

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets
07h	PORTC	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	xxxx xxxx	uuuu uuuu
87h	TRISC	PORTC I	Data Direct	1111 1111	1111 1111						

Legend: x = unknown, u = unchanged.

4.2.1 SWITCHING PRESCALER ASSIGNMENT

The prescaler assignment is fully under software control, (i.e., it can be changed "on-the-fly" during program execution).

Note: To avoid an unintended device RESET, a specific instruction sequence (shown in the PIC[®] MCU Mid-Range Reference Manual, DS33023) must be executed when changing the prescaler assignment from Timer0 to the WDT. This sequence must be followed even if the WDT is disabled.

4.3 <u>Timer0 Interrupt</u>

The TMR0 interrupt is generated when the TMR0 register overflows from FFh to 00h. This overflow sets bit T0IF (INTCON<2>). The interrupt can be masked by clearing bit T0IE (INTCON<5>). Bit T0IF must be cleared in software by the Timer0 module interrupt service routine before re-enabling this interrupt. The TMR0 interrupt cannot awaken the processor from SLEEP since the timer is shut off during SLEEP.

FIGURE 4-2: BLOCK DIAGRAM OF THE TIMER0/WDT PRESCALER

TABLE 4-1 REGISTERS ASSOCIATED WITH TIMER0

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets
01h	TMR0	Timer0	module's r	xxxx xxxx	uuuu uuuu						
0Bh,8Bh	INTCON	GIE	PEIE	T0IE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000u
81h	OPTION_REG	RBPU	INTEDG	TOCS	TOCS TOSE PSA PS2 PS1 PS0						1111 1111
85h	TRISA	_	—	PORTA	Data Di	rection R	11 1111	11 1111			

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by Timer0.

6.0 TIMER2 MODULE

The Timer2 module timer has the following features:

- 8-bit timer (TMR2 register)
- Readable and writable
- 8-bit period register (PR2)
 - Readable and writable
- Software programmable prescaler (1:1, 1:4, 1:16)
- Software programmable postscaler (1:1 to 1:16)
- Interrupt on match (TMR2 = PR2)
- Timer2 can be used by SSP and CCP

Timer2 has a control register, shown in Register 6-1. Timer2 can be shut off by clearing control bit TMR2ON (T2CON<2>) to minimize power consumption.

Figure 6-1 is a simplified block diagram of the Timer2 module.

Additional information on timer modules is available in the PIC[®] MCU Mid-Range Reference Manual, (DS33023).

FIGURE 6-1: TIMER2 BLOCK DIAGRAM

REGISTER 6-1:T2CON: TIMER2 CONTROL REGISTER (ADDRESS 12h)

7.1 Capture Mode

In Capture mode, CCPR1H:CCPR1L captures the 16-bit value of the TMR1 register, when an event occurs on pin RC2/CCP1. An event is defined as:

- every falling edge
- · every rising edge
- every 4th rising edge
- every 16th rising edge

An event is selected by control bits CCP1M3:CCP1M0 (CCP1CON<3:0>). When a capture is made, the interrupt request flag bit ,CCP1IF (PIR1<2>), is set. It must be cleared in software. If another capture occurs before the value in register CCPR1 is read, the old captured value will be lost.

FIGURE 7-1: CAPTURE MODE OPERATION BLOCK DIAGRAM

7.1.1 CCP PIN CONFIGURATION

In Capture mode, the RC2/CCP1 pin should be configured as an input by setting the TRISC<2> bit.

Note: If the RC2/CCP1 is configured as an output, a write to the port can cause a capture condition.

7.1.2 TIMER1 MODE SELECTION

Timer1 must be running in timer mode or synchronized counter mode for the CCP module to use the capture feature. In asynchronous counter mode, the capture operation may not work consistently.

7.1.3 SOFTWARE INTERRUPT

When the Capture mode is changed, a false capture interrupt may be generated. The user should clear CCP1IE (PIE1<2>) before changing the capture mode to avoid false interrupts. Clear the interrupt flag bit, CCP1IE before setting CCP1IE.

7.1.4 CCP PRESCALER

There are four prescaler settings, specified by bits CCP1M3:CCP1M0. Whenever the CCP module is turned off, or the CCP module is not in capture mode, the prescaler counter is cleared. This means that any reset will clear the prescaler counter.

Switching from one capture prescaler to another may generate an interrupt. Also, the prescaler counter will not be cleared, therefore the first capture may be from a non-zero prescaler. Example 7-1 shows the recommended method for switching between capture prescalers. This example also clears the prescaler counter and will not generate the "false" interrupt.

EXAMPLE 7-1: CHANGING BETWEEN CAPTURE PRESCALERS

CLRF	CCP1CON	;Turn CCP module off
MOVLW	NEW_CAPT_PS	;Load the W reg with
		; the new prescaler
		; mode value and CCP ON
MOVWF	CCP1CON	;Load CCP1CON with this
		; value

NOTES:

8.3.1.3 TRANSMISSION

When the R/\overline{W} bit of the incoming address byte is set and an address match occurs, the R/\overline{W} bit of the SSPSTAT register is set. The received address is loaded into the SSPBUF register. The ACK pulse will be sent on the ninth bit and the CKP will be cleared by hardware, holding SCL low. Slave devices cause the master to wait by holding the SCL line low. The transmit data is loaded into the SSPBUF register, which in turn loads the SSPSR register. When bit CKP (SSP-CON<4>) is set, pin RC3/SCK/SCL releases SCL. When the SCL line goes high, the master may resume operating the SCL line and receiving data. The master must monitor the SCL pin prior to asserting another clock pulse. The slave devices may be holding off the master by stretching the clock. The eight data bits are shifted out on the falling edge of the SCL input. This ensures that the SDA signal is valid during the SCL high time (Figure 8-4).

An SSP interrupt is generated for each data transfer byte. Flag bit SSPIF must be cleared in software, and the SSPSTAT register used to determine the status of the byte. Flag bit SSPIF is set on the falling edge of the ninth clock pulse.

As a slave-transmitter, the \overline{ACK} pulse from the masterreceiver is latched on the rising edge of the ninth SCL input pulse. If the SDA line was high (not \overline{ACK}), then the data transfer is complete. When the \overline{ACK} is latched by the slave, the slave logic is reset (resets SSPSTAT register) and the slave then monitors for another occurrence of the START bit. If the SDA line was low (\overline{ACK}), the transmit data must be loaded into the SSPBUF register, which also loads the SSPSR register. Then pin RC3/SCK/SCL should be enabled by setting bit CKP.

FIGURE 8-4: I²C WAVEFORMS FOR TRANSMISSION (7-BIT ADDRESS)

9.1 A/D Acquisition Requirements

For the A/D converter to meet its specified accuracy, the charge holding capacitor (CHOLD) must be allowed to fully charge to the input channel voltage level. The analog input model is shown in Figure 9-2. The source impedance (Rs) and the internal sampling switch (Rss) impedance directly affect the time required to charge the capacitor CHOLD. The sampling switch (Rss) impedance varies over the device voltage (VDD). The source impedance affects the offset voltage at the analog input (due to pin leakage current). The maximum recommended impedance for analog sources is 10 k Ω . After the analog input channel is selected (changed), this acquisition must pass before the conversion can be started.

To calculate the minimum acquisition time, TACQ, see Equation 9-1. This equation calculates the acquisition time to within 1/2 LSb error (512 steps for the A/D). The 1/2 LSb error is the maximum error allowed for the A/D to meet its specified accuracy.

Note:	When the conversion is started, the hold-									
	ing capacitor is disconnected from the input pin.									

In general;

Assuming Rs = $10k\Omega$

Vdd =
$$3.0V$$
 (Rss = $10k\Omega$)

TACQ \approx 13.0 μSec

By increasing VDD and reducing Rs and Temp., TACQ can be substantially reduced.

FIGURE 9-2: ANALOG INPUT MODEL

EQUATION 9-1: ACQUISITION TIME

- TACQ = Amplifier Settling Time + Hold Capacitor Charging Time + Temperature Coefficient
 - = TAMP + TC + TCOFF TAMP = $5\mu S$ TC = - $(51.2pF)(1k\Omega + Rss + Rs) In(1/511)$ TCOFF = (Temp - $25^{\circ}C)(0.05\mu S/^{\circ}C)$

9.2 Selecting the A/D Conversion Clock

The A/D conversion time per bit is defined as TAD. The A/D conversion requires 9.5TAD per 8-bit conversion. The source of the A/D conversion clock is software selectable. The four possible options for TAD are:

- 2Tosc
- 8Tosc
- 32Tosc
- Internal RC oscillator

For correct A/D conversions, the A/D conversion clock (TAD) must be selected to ensure a minimum TAD time of 1.6 $\mu s.$

The A/D module can operate during sleep mode, but the RC oscillator must be selected as the A/D clock source prior to the SLEEP instruction.

Table 9-1 shows the resultant TAD times derived from the device operating frequencies and the A/D clock source selected.

9.3 Configuring Analog Port Pins

The ADCON1 and TRISA registers control the operation of the A/D port pins. The port pins that are desired as analog inputs must have their corresponding TRIS bits set (input). If the TRIS bit is cleared (output), the digital output level (VOH or VOL) will be converted.

The A/D operation is independent of the state of the CHS2:CHS0 bits and the TRIS bits.

- Note 1: When reading the port register, all pins configured as analog input channels will read as cleared (a low level). Pins configured as digital inputs, will convert an analog input. Analog levels on a digitally configured input will not affect the conversion accuracy.
- **Note 2:** Analog levels on any pin that is defined as a digital input (including the AN4:AN0 pins) may cause the input buffer to consume current that is out of the devices specification.

TABLE 9-1TAD vs. DEVICE OPERATING FREQUENCIES

AD Clock S	Source (TAD)	Device Frequency							
Operation	ADCS1:ADCS0	20 MHz	5 MHz	1.25 MHz	333.33 kHz				
2Tosc	0.0	100 ns ⁽²⁾	400 ns ⁽²⁾	1.6 μs	6 μs				
8Tosc	01	400 ns ⁽²⁾	1.6 μs	6.4 μs	24 μs ⁽³⁾				
32Tosc	10	1.6 μs	6.4 μs	25.6 μs ⁽³⁾	96 μs ⁽³⁾				
RC ⁽⁵⁾	11	2 - 6 μs ^(1,4)	2 - 6 μs ^(1,4)	2 - 6 μs ^(1,4)	2 - 6 μs ⁽¹⁾				

Legend: Shaded cells are outside of recommended range.

Note 1: The RC source has a typical TAD time of 4 μ s.

- 2: These values violate the minimum required TAD time.
- **3:** For faster conversion times, the selection of another clock source is recommended.
- 4: When device frequency is greater than 1 MHz, the RC A/D conversion clock source is recommended for sleep operation only.
- 5: For extended voltage devices (LC), please refer to Electrical Specifications section.

10.0 SPECIAL FEATURES OF THE CPU

The PIC16C62B/72A devices have a host of features intended to maximize system reliability, minimize cost through elimination of external components, provide power saving operating modes and offer code protection. These are:

- Oscillator Mode Selection
- Reset
 - Power-on Reset (POR)
 - Power-up Timer (PWRT)
 - Oscillator Start-up Timer (OST)
 - Brown-out Reset (BOR)
- Interrupts
- Watchdog Timer (WDT)
- SLEEP
- Code protection
- ID locations
- In-circuit serial programming[™] (ICSP)

These devices have a Watchdog Timer, which can be shut off only through configuration bits. It runs off its own RC oscillator for added reliability. There are two timers that offer necessary delays on power-up. One is the Oscillator Start-up Timer (OST), intended to keep the chip in reset until the crystal oscillator is stable. The

FIGURE 10-1: CONFIGURATION WORD

other is the Power-up Timer (PWRT), which provides a fixed delay on power-up only and is designed to keep the part in reset while the power supply stabilizes. With these two timers on-chip, most applications need no external reset circuitry.

SLEEP mode is designed to offer a very low current power-down mode. The user can wake-up from SLEEP through external reset, Watchdog Timer Wake-up, or through an interrupt. Several oscillator options are also made available to allow the part to fit the application. The RC oscillator option saves system cost while the LP crystal option saves power. A set of configuration bits are used to select various options.

Additional information on special features is available in the PIC[®] MCU Mid-Range Reference Manual, (DS33023).

10.1 Configuration Bits

The configuration bits can be programmed (read as '0') or left unprogrammed (read as '1') to select various device configurations. These bits are mapped in program memory location 2007h.

The user will note that address 2007h is beyond the user program memory space. In fact, it belongs to the special test/configuration memory space (2000h - 3FFFh), which can be accessed only during programming.

CP1	CPO	CP1	CP0	CP1	CP0	_	BODEN	CP1	CP0	PWRTE	WDTF	FOSC1	FOSC0	Register:	CONFIG
bit13	0. 0		0.0	0	0.0		2022.1	0	0.0	=			hit0	Address:	2007h
6:140	bit 13-8 CP1:CP0 : Code Protection bits (2)														
DIT 13	4: 11 = Code protection off														
		10 = Upper half of program memory code protected													
		01 = Upper 3/4th of program memory code protected													
		00 = AI	i mem	ory is i	coae p	rotect	ea								
bit 7:		Unimpl	lemen	ted: R	ead as	5 '1'	(4)								
bit 6:			I: Brov	wn-out	Reset	Enab	le bit (1)								
		1 = BOR enabled 0 = BOR disabled													
bit 3:		PWRTE	E: Pow	er-up	Timer	Enable	e bit (1)								
		1 = PW	'RT dis	sabled											
		0 = PW	'RT en	abled											
bit 2:		WDTE:	Watch	ndog T	ïmer E	nable	bit								
		1 = WD 0 = WD)T disa	bled											
bit 1-	0.	FOSC1	FOS	CO : Os	cillato	Sele	ction bits								
bit i	0.	11 = R (C osci	llator	oniator	00100									
		10 = HS	S oscil	lator											
		01 = X 00 - L F	l oscil Poscil	lator lator											
		00 – Li	0301												
Note	1:	Enablin	g Brov	wn-out	Reset	autor	natically	enable	s Pow	er-up Tim	er (PWR	T), regard	dless of the	e value of bit	PWRTE.
		All of th	e CP1	:CP0	pairs n	nust b	e given th	ie sam	ie valu	ie to enab	le the co	de protec	tion schen	ne listed.	

10.8 <u>Time-out Sequence</u>

When a POR reset occurs, the PWRT delay starts (if enabled). When PWRT ends, the OST counts 1024 oscillator cycles (LP, XT, HS modes only). When OST completes, the device comes out of reset. The total time-out will vary based on oscillator configuration and the status of the PWRT. For example, in RC mode with the PWRT disabled, there will be no time-out at all.

If MCLR is kept low long enough, the time-outs will expire. Bringing MCLR high will begin execution immediately. This is useful for testing purposes or to synchronize more than one PIC16CXXX device operating in parallel.

Status Register

Table 10-5 shows the reset conditions for the STATUS, PCON and PC registers, while Table 10-6 shows the reset conditions for all the registers.

10.9 <u>Power Control/Status Register</u> (PCON)

The $\overline{\text{BOR}}$ bit is unknown on Power-on Reset. If the Brown-out Reset circuit is used, the $\overline{\text{BOR}}$ bit must be set by the user and checked on subsequent resets to see if it was cleared, indicating a Brown-out has occurred.

POR (Power-on Reset Status bit) is cleared on a Power-on Reset and unaffected otherwise. The user

	IRP	RP1	RP0	то	PD	Z	DC	С
Г						_		•

P	CU	N	ке	gis	ter	
				U		

|--|

TABLE 10-3 TIME-OUT IN VARIOUS SITUATIONS

Occillator Configuration	Power	-up	Brown out	Wake-up from SLEEP	
	PWRTE = 0	PWRTE = 1	Brown-out		
XT, HS, LP	72 ms + 1024Tosc	1024Tosc	72 ms + 1024Tosc	1024Tosc	
RC	72 ms	—	72 ms	—	

TABLE 10-4 STATUS BITS AND THEIR SIGNIFICANCE

POR	BOR	ТО	PD	
0	x	1	1	Power-on Reset
0	x	0	x	Illegal, TO is set on POR
0	x	x	0	Illegal, PD is set on POR
1	0	1	1	Brown-out Reset
1	1	0	1	WDT Reset
1	1	0	0	WDT Wake-up
1	1	u	u	MCLR Reset during normal operation
1	1	1	0	MCLR Reset during SLEEP or interrupt wake-up from SLEEP

TABLE 10-5 RESET CONDITION FOR SPECIAL REGISTERS

Condition	Program Counter	STATUS Register	PCON Register
Power-on Reset	000h	0001 1xxx	0x
MCLR Reset during normal operation	000h	000u uuuu	uu
MCLR Reset during SLEEP	000h	0001 Ouuu	uu
WDT Reset	000h	0000 luuu	uu
WDT Wake-up	PC + 1	uuu0 0uuu	uu
Brown-out Reset	000h	0001 luuu	u0
Interrupt wake-up from SLEEP	PC + 1 ⁽¹⁾	uuul Ouuu	uu

Legend: u = unchanged, x = unknown, - = unimplemented bit read as '0'.

Note 1: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

10.13 Power-down Mode (SLEEP)

Power-down mode is entered by executing a $\ensuremath{\mathtt{SLEEP}}$ instruction.

If enabled, the Watchdog Timer will be cleared but keeps running, the \overline{PD} bit (STATUS<3>) is cleared, the \overline{TO} (STATUS<4>) bit is set, and the oscillator driver is turned off. The I/O ports maintain the status they had, before the SLEEP instruction was executed (driving high, low or hi-impedance).

For lowest current consumption in this mode, place all I/O pins at either VDD or VSS, ensure no external circuitry is drawing current from the I/O pin, power-down the A/D and disable external clocks. Pull all I/O pins that are hi-impedance inputs, high or low externally, to avoid switching currents caused by floating inputs. The TOCKI input should also be at VDD or VSS for lowest current consumption. The contribution from on-chip pull-ups on PORTB should be considered.

The MCLR pin must be at a logic high level (VIHMC, parameter D042).

10.13.1 WAKE-UP FROM SLEEP

The device can wake up from SLEEP through one of the following events:

- 1. External reset input on $\overline{\text{MCLR}}$ pin.
- 2. Watchdog Timer Wake-up (if WDT was enabled).
- 3. Interrupt from INT pin, RB port change, or some Peripheral Interrupts.

External $\overline{\text{MCLR}}$ Reset will cause a device reset. All other events are considered a continuation of program execution and cause a "wake-up". The $\overline{\text{TO}}$ and $\overline{\text{PD}}$ bits in the STATUS register can be used to determine the cause of device reset. The $\overline{\text{PD}}$ bit, which is set on power-up, is cleared when SLEEP is invoked. The $\overline{\text{TO}}$ bit is cleared if a WDT time-out occurred (and caused wake-up).

The following peripheral interrupts can wake the device from SLEEP:

- 1. TMR1 interrupt. Timer1 must be operating as an asynchronous counter.
- 2. CCP capture mode interrupt.
- 3. Special event trigger (Timer1 in asynchronous mode using an external clock. CCP1 is in compare mode).
- 4. SSP (Start/Stop) bit detect interrupt.
- 5. SSP transmit or receive in slave mode (SPI/I²C).
- 6. USART RX or TX (synchronous slave mode).

Other peripherals cannot generate interrupts since during SLEEP, no on-chip clocks are present.

When the SLEEP instruction is being executed, the next instruction (PC + 1) is pre-fetched. For the device to wake-up through an interrupt event, the corresponding interrupt enable bit must be set (enabled). Wake-up is

regardless of the state of the GIE bit. If the GIE bit is clear (disabled), the device resumes execution at the instruction after the SLEEP instruction. If the GIE bit is set (enabled), the device executes the instruction after the SLEEP instruction and then branches to the interrupt address (0004h). In cases where the execution of the instruction following SLEEP is not desirable, a NOP should follow the SLEEP instruction.

10.13.2 WAKE-UP USING INTERRUPTS

When global interrupts are disabled (GIE cleared) and any interrupt source has both its interrupt enable bit and interrupt flag bit set, one of the following will occur:

- If the interrupt occurs **before** the execution of a SLEEP instruction, the SLEEP instruction will complete as a NOP. Therefore, the WDT and WDT postscaler will not be cleared, the TO bit will not be set and PD bits will not be cleared.
- If the interrupt occurs during or after the execution of a SLEEP instruction, the device will immediately wake up from sleep. The SLEEP instruction will be completely executed before the wake-up. Therefore, the WDT and WDT postscaler will be cleared, the TO bit will be set and the PD bit will be cleared.

Even if the flag bits were checked before executing a SLEEP instruction, it may be possible for flag bits to become set before the SLEEP instruction completes. To determine whether a SLEEP instruction executed, test the \overline{PD} bit. If the \overline{PD} bit is set, the SLEEP instruction was executed as a NOP.

To ensure that the WDT is cleared, a CLRWDT instruction should be executed before a SLEEP instruction.

^{© 1998-2013} Microchip Technology Inc.

FIGURE 10-10: WAKE-UP FROM SLEEP THROUGH INTERRUPT

; a1 a2 a3 a4 ; a osc1////////////////////////////////////	21 Q2 Q3 Q4		a1 a2 a3 a4	01 02 03 04	01 02 03 04	a1 a2 a3 a4
CLKOUT(4)		Tost(2)				
INT pin			1 1			
INTF flag (INTCON<1>)		<u>`</u>	, , ,	Interrupt Latency (Note 2)		
GIE bit (INTCON<7>)	 	Processor in	<u> </u> 			
INSTRUCTION FLOW	1		1 1	· · ·	 	
PC X PC X	PC+1	PC+2	X PC+2	PC + 2	0004h	0005h
Instruction { fetched { Inst(PC) = SLEEP	Inst(PC + 1)		Inst(PC + 2)		Inst(0004h)	Inst(0005h)
Instruction Inst(PC - 1)	SLEEP		Inst(PC + 1)	Dummy cycle	Dummy cycle	Inst(0004h)

Note 1: XT, HS or LP oscillator mode assumed.

2: TOST = 1024TOSC (drawing not to scale) This delay will not be there for RC osc mode.

3: GIE = '1' assumed. In this case after wake- up, the processor jumps to the interrupt routine. If GIE = '0', execution will continue in-line.

4: CLKOUT is not available in these osc modes, but shown here for timing reference.

10.14 Program Verification/Code Protection

If the code protection bits have not been programmed, the on-chip program memory can be read out for verification purposes.

Note:	Microchip does not recommend code pro-
	tecting windowed devices.

10.15 ID Locations

Four memory locations (2000h - 2003h) are designated as ID locations where the user can store checksum or other code-identification numbers. These locations are not accessible during normal execution, but are readable and writable during program/verify. It is recommended that only the 4 least significant bits of the ID location are used.

For ROM devices, these values are submitted along with the ROM code.

10.16 In-Circuit Serial Programming™

PIC16CXXX microcontrollers can be serially programmed while in the end application circuit. This is simply done with two lines for clock and data, and three more lines for power, ground and the programming voltage. This allows customers to manufacture boards with unprogrammed devices, and then program the microcontroller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

For complete details of serial programming, please refer to the In-Circuit Serial Programming (ICSP[™]) Guide, DS30277.

13.1 DC Characteristics: PIC16C62B/72A-04 (Commercial, Industrial, Extended) PIC16C62B/72A-20 (Commercial, Industrial, Extended)

			Standar	d Oper	atina C	ondition	e (unless otherwise stated)
			Operativ	u Opera			$< T_{\rm A} < \pm 70^{\circ} C$ for commercial
DC CHA	RACTE	RISTICS	Operation	ig temp	erature	, 0°0	$c \leq 10 \leq 100$ for industrial
						-40 C	$< T_A \leq +0.5$ °C for extended
						-+0 0	
Param No.	Sym	Characteristic	Min	Typ†	Мах	Units	Conditions
D001	Vdd	Supply Voltage	4.0	-	5.5	V	XT, RC and LP osc mode
D001A			4.5	-	5.5	V	HS osc mode
			VBOR*	-	5.5	V	BOR enabled (Note 7)
D002*	Vdr	RAM Data Retention Voltage (Note 1)	-	1.5	-	V	
D003	VPOR	VDD Start Voltage to ensure internal Power-on Reset signal	-	Vss	-	V	See section on Power-on Reset for details
D004*	SVDD	VDD Rise Rate to	0.05	-	-	V/ms	PWRT enabled (PWRTE bit clear)
D004A*		ensure internal	TBD	-	-		PWRT disabled (PWRTE bit set)
		Power-on Reset signal					See section on Power-on Reset for details
D005	VBOR	Brown-out Reset voltage trip point	3.65	-	4.35	V	BODEN bit set
D010	IDD	Supply Current	-	2.7	5	mA	XT, RC osc modes
		(Note 2, 5)					Fosc = 4 MHz, VDD = 5.5V (Note 4)
D013			_	10	20	mΔ	HS osc mode
2010					20	110 (Fosc = 20 MHz, VDD = 5.5 V
D020	IPD	Power-down Current	-	10.5	42	μA	VDD = 4.0V, WDT enabled,-40°C to +85°C
		(Note 3, 5)	-	1.5	16	μA	VDD = 4.0V, WDT disabled, 0°C to +70°C
D021			-	1.5	19	μA	VDD = 4.0V, WDT disabled, -40°C to +85°C
D021B			-	2.5	19	μA	VDD = $4.0V$, WDT disabled, $-40^{\circ}C$ to $+125^{\circ}C$
		Module Differential					
		Current (Note 6)					
D022*	Δ IWDT	Watchdog Timer	-	6.0	20	μA	WDTE BIT SET, VDD = 4.0V
D022A*	Δ IBOR	Brown-out Reset	-	TBD	200	μA	BODEN bit set, VDD = 5.0V

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD,

 $\overline{MCLR} = VDD$; WDT enabled/disabled as specified.

- **3:** The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and Vss.
- 4: For RC osc mode, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.
- 5: Timer1 oscillator (when enabled) adds approximately 20 μA to the specification. This value is from characterization and is for design guidance only. This is not tested.
- 6: The ∆ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.
- 7: This is the voltage where the device enters the Brown-out Reset. When BOR is enabled, the device will perform a brown-out reset when VDD falls below VBOR.

FIGURE 13-9: TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS

TARI E 12-5.	TIMEDO AND TIMEDI EXTERNAL CLOCK DECLIIDEMENTS
IADLE 13-3.	TIMERU AND TIMERT EXTERNAL CLUCK REQUIREMENTS

Param No.	Sym		Characteristic		Min	Typ†	Max	Units	Conditions	
40*	Tt0H	T0CKI High Pulse Width		No Prescaler	0.5Tcy + 20	—	_	ns	Must also meet	
				With Prescaler	10	—		ns	parameter 42	
41*	Tt0L	T0CKI Low Pulse Width N		No Prescaler	0.5Tcy + 20	—		ns	Must also meet	
				With Prescaler	10	—		ns	parameter 42	
42*	Tt0P	T0CKI Period		No Prescaler	Tcy + 40	—	-	ns		
				With Prescaler	Greater of: 20 or <u>Tcy + 40</u> N	_	_	ns	N = prescale value (2, 4,, 256)	
45*	Tt1H	T1CKI High Time Synchronous, Pre		rescaler = 1	0.5TCY + 20	—	—	ns	Must also meet	
			Synchronous,	PIC16CXX	15	—		ns	parameter 47	
			Prescaler = 2,4,8	PIC16LCXX	25	—	—	ns		
			Asynchronous	PIC16CXX	30	—	-	ns		
				PIC16LCXX	50	—	-	ns		
46*	Tt1L	T1CKI Low Time	Synchronous, Prescaler = 1		0.5TCY + 20	—		ns	Must also meet	
			Synchronous, Prescaler = 2,4,8	PIC16CXX	15	—	—	ns	parameter 47	
				PIC16LCXX	25	—	—	ns		
			Asynchronous	PIC16CXX	30	—	—	ns		
				PIC16LCXX	50	—	—	ns		
47*	Tt1P	1P T1CKI input period	d Synchronous	PIC16CXX	GREATER OF: 30 OR <u>TCY + 40</u> N	-	_	ns	N = prescale value (1, 2, 4, 8)	
				PIC16LCXX	GREATER OF: 50 OR <u>TCY + 40</u> N				N = prescale value $(1, 2, 4, 8)$	
			Asynchronous	PIC16CXX	60	_		ns		
				PIC16LCXX	100	—	-	ns		
	Ft1	Timer1 oscillator inp (oscillator enabled b	ut frequency rang y setting bit T1OS	e CEN)	DC	-	200	kHz		
48	TCKEZtmr1	Delay from external	clock edge to time	er increment	2Tosc	—	7Tosc	_		

* These parameters are characterized but not tested.
 † Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 13-17: A/D CONVERSION TIMING

Note 1: If the A/D clock source is selected as RC, a time of TCY is added before the A/D clock starts. This allows the SLEEP instruction to be executed.

Param No.	Sym	Characteristic		Min	Тур†	Мах	Unit s	Conditions
130	TAD	A/D clock period	PIC16CXX	1.6	—	—	μs	TOSC based, VREF \geq 3.0V
			PIC16LCXX	2.0	—	—	μs	TOSC based, VREF full range
			PIC16CXX	2.0	4.0	6.0	μs	A/D RC Mode
			PIC16LCXX	3.0	6.0	9.0	μs	A/D RC Mode
131	TCNV	Conversion time (not time) (Note 1)	t including S/H	11	—	11	Tad	
132	TACQ	Acquisition time		Note 2	20	—	μs	
				5*	_		μs	The minimum time is the amplifier settling time. This may be used if the "new" input voltage has not changed by more than 1 LSb (i.e., 20.0 mV @ 5.12V) from the last sam- pled voltage (as stated on CHOLD).
134	TGO	Q4 to A/D clo	ock start	_	Tosc/2	_	—	If the A/D clock source is selected as RC, a time of TCY is added before the A/D clock starts. This allows the SLEEP instruction to be executed.
135	Tswc	Switching from conve time	ert \rightarrow sample	1.5	—	—	TAD	

TABLE 13-14: A/D CONVERSION REQUIREMENTS

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: ADRES register may be read on the following TCY cycle.

2: See Section 9.1 for min conditions.

SSP	
Enable (SSPIE Bit)	14
Flag (SSPIF Bit)	
RA5/SS/AN4 Pin	6
RC3/SCK/SCL Pin	6
RC4/SDI/SDA Pin	6
RC5/SDO Pin	6
SSPADD Register	
SSPBUF Register	
SSPCON Register	
SSPSTAT Register	
TMR2 Output for Clock Shift	
Write Collision Detect (WCOL Bit)	
SSPCON Register	
CKP Bit	
SSPEN Bit	
SSPM3:SSPM0 Bits	
SSPOV Bit	
WCOL Bit	
SSPSTAT Register	
BF Bit	
CKE Bit	46
D/Ā Bit	46
P bit	
R/W Bit	42, 43, 44, 46
S Bit	
SMP Bit	
UA Bit	
Stack	17
STATUS Register	
C Bit	
DC Bit	11
IRP Bit	11
PD Bit	11, 57
RP1:RP0 Bits	
TO Bit	
Z Bit	

т

T1CON Register	
T1CKPS1:T1CKPS0 Bits	
T10SCEN Bit	
T1SYNC Bit	
TMB1CS Bit	
TMR10N Bit	27
T2CON Register	
T2CKPS1:T2CKPS0 Bits	
TMR2ON Bit	
TOUTPS3:TOUTPS0 Bits	
Timer0	
Block Diagram	25
Clock Source Edge Select (T0SE Bit)	
Clock Source Select (T0CS Bit)	
Overflow Enable (T0IE Bit)	
Overflow Flag (T0IF Bit)	
Overflow Interrupt	
RA4/T0CKI Pin, External Clock	6
Timing Diagram	93
TMR0 Register	

Timer1	
Block Diagram	
Capacitor Selection	
Clock Source Select (TMR1CS Bit)	27
External Clock Input Sync (T1SYNC Bit)	27
Module On/Off (TMR1ON Bit)	27
Oscillator	27, 29
Oscillator Enable (T1OSCEN Bit)	
Overflow Enable (TMR1IE Bit)	
Overflow Flag (TMR1IF Bit)	15
Overflow Interrupt	
RC0/T1OSO/T1CKI Pin	
RC1/T1OSI	
Special Event Trigger (CCP)	
T1CON Register	
Timing Diagram	
TMB1H Begister	9
TMR1L Register	9
Timer2	
Block Diagram	32
PB2 Begister	10.31.36
SSP Clock Shift	
T2CON Begister	9, 31
TMB2 Register	9, 31
TMR2 to PR2 Match Enable (TMR2IF Bit)	
TMB2 to PB2 Match Elag (TMB2IE Bit)	15
TMB2 to PB2 Match Interrunt	31 32 36
Timing Diagrams	, 02, 00
I ² C Recention (7-bit Address)	43
Wake-up from SI FEP via Interrupt	66
Timing Diagrams and Specifications	90
A/D Conversion	102
Brown-out Beset (BOB)	
Capture/Compare/PWM (CCP)	
CLKOLIT and I/O	
External Clock	
I ² C Bus Data	100
I ² C Bus Start/Stop Bits	
Accillator Start-up Timer (AST)	
Power-up Timer (PWRT)	92 20
Recet	ອ2 ດ
Timor() and Timor()	ے2
Watchdog Timer (WDT)	

w

W Register	
Wake-up from SLEEP	
Interrupts	
MCLR Reset	
Timing Diagram	
WDT Reset	61
Watchdog Timer (WDT)	
Block Diagram	
Enable (WDTE Bit)	
Programming Considerations	
RC Oscillator	
Timing Diagram	
WDT Reset. Normal Operation	
WDT Reset. SLEEP	
WWW. On-Line Support	

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://microchip.com/support