

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	I ² C, SPI
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	22
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	128 × 8
Voltage - Supply (Vcc/Vdd)	4V ~ 5.5V
Data Converters	A/D 5x8b
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c72a-04-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.2.2.1 STATUS REGISTER

The STATUS register, shown in Register 2-1, contains the arithmetic status of the ALU, the RESET status and the bank select bits for data memory.

The STATUS register can be the destination for any instruction, as with any other register. If the STATUS register is the destination for an instruction that affects the Z, DC or C bits, the write to these three bits is disabled. These bits are set or cleared according to the device logic. The TO and PD bits are not writable. The result of an instruction with the STATUS register as destination may be different than intended.

For example, CLRF STATUS will clear the upper-three bits and set the Z bit. This leaves the STATUS register as 000u uluu (where u = unchanged).

It is recommended, therefore, that only BCF, BSF, SWAPF and MOVWF instructions are used to alter the STATUS register, because these instructions do not affect the Z, C or DC bits from the STATUS register. For other instructions, not affecting any status bits, see the "Instruction Set Summary."

- **Note 1:** The IRP and RP1 bits are reserved. Maintain these bits clear to ensure upward compatibility with future products.
- Note 2: The C and DC bits operate as a borrow and digit borrow bit, respectively, in subtraction. See the SUBLW and SUBWF instructions.

REGISTER 2-1: STATUS REGISTER (ADDRESS 03h, 83h)

PIC16C62B/72A

2.2.2.4 PIE1 REGISTER

This register contains the individual enable bits for the peripheral interrupts.

REGISTER 2-4: PIE1 REGISTER (ADDRESS 8Ch)

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 U-0 U-0 U-0 ADIE⁽¹⁾ SSPIE CCP1IE TMR2IE TMR1IE R = Readable bit W = Writable bit bit7 bit0 U = Unimplemented bit, read as '0' n = Value at POR reset Unimplemented: Read as '0' bit 7: ADIE⁽¹⁾: A/D Converter Interrupt Enable bit bit 6: 1 = Enables the A/D interrupt 0 = Disables the A/D interrupt bit 5-4: Unimplemented: Read as '0' bit 3: SSPIE: Synchronous Serial Port Interrupt Enable bit 1 = Enables the SSP interrupt 0 = Disables the SSP interrupt CCP1IE: CCP1 Interrupt Enable bit bit 2: 1 = Enables the CCP1 interrupt 0 = Disables the CCP1 interrupt TMR2IE: TMR2 to PR2 Match Interrupt Enable bit bit 1: 1 = Enables the TMR2 to PR2 match interrupt 0 = Disables the TMR2 to PR2 match interrupt TMR1IE: TMR1 Overflow Interrupt Enable bit bit 0: 1 = Enables the TMR1 overflow interrupt 0 = Disables the TMR1 overflow interrupt Note 1: The PIC16C62B does not have an A/D module. This bit location is reserved on these devices. Always maintain this bit clear.

Note: Bit PEIE (INTCON<6>) must be set to enable any peripheral interrupt.

PIC16C62B/72A

2.2.2.6 PCON REGISTER

The Power Control register (PCON) contains flag bits to allow differentiation between a Power-on Reset (POR), Brown-Out Reset (BOR) and resets from other sources.

Note: On Power-on Reset, the state of the BOR bit is unknown and is not predictable. If the BODEN bit in the configuration word is set, the user must first set the BOR bit on a POR, and check it on subsequent resets. If BOR is cleared while POR remains set, a Brown-out reset has occurred. If the BODEN bit is clear, the BOR bit may be ignored.

REGISTER 2-6: PCON REGISTER (ADDRESS 8Eh)

Name	Bit#	Buffer	Function
RB0/INT	bit0	TTL/ST ⁽¹⁾	Input/output pin or external interrupt input. Internal software programmable weak pull-up.
RB1	bit1	TTL	Input/output pin. Internal software programmable weak pull-up.
RB2	bit2	TTL	Input/output pin. Internal software programmable weak pull-up.
RB3	bit3	TTL	Input/output pin. Internal software programmable weak pull-up.
RB4	bit4	TTL	Input/output pin (with interrupt on change). Internal software programmable weak pull-up.
RB5	bit5	TTL	Input/output pin (with interrupt on change). Internal software programmable weak pull-up.
RB6	bit6	TTL/ST ⁽²⁾	Input/output pin (with interrupt on change). Internal software programmable weak pull-up. Serial programming clock.
RB7	bit7	TTL/ST ⁽²⁾	Input/output pin (with interrupt on change). Internal software programmable weak pull-up. Serial programming data.

Legend: TTL = TTL input, ST = Schmitt Trigger input

Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.

2: This buffer is a Schmitt Trigger input when used in serial programming mode.

TABLE 3-4 SUMMARY OF REGISTERS ASSOCIATED WITH PORTB

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets
06h	PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxx xxxx	uuuu uuuu
86h	TRISB	PORTB	ORTB Data Direction Register							1111 1111	1111 1111
81h	OPTION_REG	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	1111 1111

Legend: x = unknown, u = unchanged. Shaded cells are not used by PORTB.

5.2 <u>Timer1 Oscillator</u>

A crystal oscillator circuit is built-in between pins T1OSI (input) and T1OSO (amplifier output). It is enabled by setting control bit T1OSCEN (T1CON<3>). When the Timer1 oscillator is enabled, RC0 and RC1 pins become T1OSO and T1OSI inputs, overriding TRISC<1:0>.

The oscillator is a low power oscillator rated up to 200 kHz. It will continue to run during SLEEP. It is primarily intended for a 32 kHz crystal. Table 5-1 shows the capacitor selection for the Timer1 oscillator.

The Timer1 oscillator is identical to the LP oscillator. The user must provide a software time delay to ensure proper oscillator start-up.

TABLE 5-1	CAPACITOR SELECTION FOR
	THE TIMER1 OSCILLATOR

Osc Type	Freq	C1	C2			
LP	32 kHz	33 pF	23.0F			
	100 kHz	15 pF	्रीव ट्रा			
	200 kHz	15 pF	(15°pF			
These v	alues are for o	design guidar	ce only.			
Crystals Tested:						
32.768 kHz	Epson C-00	(R32.768K-A	\pm 20 PPM			
100 kHz	Epson C 21	00.00 KC-P	\pm 20 PPM			
200 kHz	STD XTL 200.000 kHz ± 20 PPI					
Note 1: Higher capacitance increases the stability of oscillator but also increases the start-up time. 2: Since each resonator/crystal has its own characteristics, the user should consult the resonator/crystal manufacturer for appropri- ate values of external components.						

5.3 <u>Timer1 Interrupt</u>

The TMR1 Register pair (TMR1H:TMR1L) increments from 0000h to FFFFh and rolls over to 0000h. The TMR1 Interrupt, if enabled, is generated on overflow and is latched in interrupt flag bit TMR1IF (PIR1<0>). This interrupt can be enabled by setting TMR1 interrupt enable bit TMR1IE (PIE1<0>).

5.4 <u>Resetting Timer1 using a CCP Trigger</u> <u>Output</u>

If the CCP module is configured in compare mode to generate a "special event trigger" (CCP1M3:CCP1M0 = 1011), this signal will reset Timer1 and start an A/D conversion (if the A/D module is enabled).

Note:	The special event trigger from the CCP1	
	module will not set interrupt flag bit	
	TMR1IF (PIR1<0>).	

Timer1 must be configured for either timer or synchronized counter mode to take advantage of this feature. If Timer1 is running in asynchronous counter mode, this reset operation may not work.

In the event that a write to Timer1 coincides with a special event trigger from CCP1, the write will take precedence.

In this mode of operation, the CCPR1H:CCPR1L registers pair effectively becomes the period register for Timer1.

TABLE 5-2 REGISTERS ASSOCIATED WITH TIMER1 AS A TIMER/COUNTER

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value o POR, BOR	n	Value all o rese	e on other ets
0Bh,8Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 00	0x	0000	000u
0Ch	PIR1	_	ADIF	_		SSPIF	CCP1IF	TMR2IF	TMR1IF	-0 00	00	- 0	0000
8Ch	PIE1	_	ADIE	—	-	SSPIE	CCP1IE	TMR2IE	TMR1IE	-0 00	00	- 0	0000
0Eh	TMR1L	Holding	Holding register for the Least Significant Byte of the 16-bit TMR1 register										
0Fh	TMR1H	Holding register for the Most Significant Byte of the 16-bit TMR1 register											
10h	T1CON	_	_	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR1ON	00 00	00	uu	uuuu

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used by the Timer1 module.

NOTES:

8.3.1.1 ADDRESSING

Once the SSP module has been enabled, it waits for a START condition to occur. Following the START condition, 8 bits are shifted into the SSPSR register. All incoming bits are sampled with the rising edge of the clock (SCL) line. The value of register SSPSR<7:1> is compared to the value of the SSPADD register. The address is compared on the falling edge of the eighth clock (SCL) pulse. If the addresses match and the BF and SSPOV bits are clear, the following events occur:

- a) The SSPSR register value is loaded into the SSPBUF register.
- b) The buffer full bit, BF is set.
- c) An ACK pulse is generated.
- d) SSP interrupt flag bit, SSPIF (PIR1<3>), is set (interrupt is generated if enabled) on the falling edge of the ninth SCL pulse.

In 10-bit address mode, two address bytes need to be received by the slave. The five Most Significant bits (MSbs) of the first address byte specify if this is a 10-bit address. Bit R/W (SSPSTAT<2>) must specify a write so the slave device will receive the second address byte. For a 10-bit address, the first byte would equal

'1111 0 A9 A8 0', where A9 and A8 are the two MSbs of the address. The sequence of events for 10-bit address is as follows, with steps 7-9 for slave-transmitter:

- 1. Receive first (high) byte of Address (bits SSPIF, BF, and bit UA (SSPSTAT<1>) are set).
- Update the SSPADD register with second (low) byte of Address (clears bit UA and releases the SCL line).
- 3. Read the SSPBUF register (clears bit BF) and clear flag bit SSPIF.
- 4. Receive second (low) byte of Address (bits SSPIF, BF, and UA are set).
- 5. Update the SSPADD register with the first (high) byte of Address, if match releases SCL line, this will clear bit UA.
- 6. Read the SSPBUF register (clears bit BF) and clear flag bit SSPIF.
- 7. Receive repeated START condition.
- 8. Receive first (high) byte of Address (bits SSPIF and BF are set).
- 9. Read the SSPBUF register (clears bit BF) and clear flag bit SSPIF.

Status Bi Transfer i	its as Data s Received		Conoroto ACK	Set bit SSPIF
BF	SSPOV	$SSPSR \to SSPBUF$	Pulse	if enabled)
0	0	Yes	Yes	Yes
1	0	No	No	Yes
1	1	No	No	Yes
0	1	Yes	No	Yes

TABLE 8-2 DATA TRANSFER RECEIVED BYTE ACTIONS

Note: Shaded cells show the conditions where the user software did not properly clear the overflow condition.

8.3.1.3 TRANSMISSION

When the R/\overline{W} bit of the incoming address byte is set and an address match occurs, the R/\overline{W} bit of the SSPSTAT register is set. The received address is loaded into the SSPBUF register. The ACK pulse will be sent on the ninth bit and the CKP will be cleared by hardware, holding SCL low. Slave devices cause the master to wait by holding the SCL line low. The transmit data is loaded into the SSPBUF register, which in turn loads the SSPSR register. When bit CKP (SSP-CON<4>) is set, pin RC3/SCK/SCL releases SCL. When the SCL line goes high, the master may resume operating the SCL line and receiving data. The master must monitor the SCL pin prior to asserting another clock pulse. The slave devices may be holding off the master by stretching the clock. The eight data bits are shifted out on the falling edge of the SCL input. This ensures that the SDA signal is valid during the SCL high time (Figure 8-4).

An SSP interrupt is generated for each data transfer byte. Flag bit SSPIF must be cleared in software, and the SSPSTAT register used to determine the status of the byte. Flag bit SSPIF is set on the falling edge of the ninth clock pulse.

As a slave-transmitter, the \overline{ACK} pulse from the masterreceiver is latched on the rising edge of the ninth SCL input pulse. If the SDA line was high (not \overline{ACK}), then the data transfer is complete. When the \overline{ACK} is latched by the slave, the slave logic is reset (resets SSPSTAT register) and the slave then monitors for another occurrence of the START bit. If the SDA line was low (\overline{ACK}), the transmit data must be loaded into the SSPBUF register, which also loads the SSPSR register. Then pin RC3/SCK/SCL should be enabled by setting bit CKP.

FIGURE 8-4: I²C WAVEFORMS FOR TRANSMISSION (7-BIT ADDRESS)

NOTES:

10.4 Power-On Reset (POR)

A Power-on Reset pulse is generated on-chip when VDD rise is detected (in the range of 1.5V - 2.1V). To take advantage of the POR, just tie the $\overline{\text{MCLR}}$ pin directly (or through a resistor) to VDD. This will eliminate external RC components usually needed to create a Power-on Reset. A maximum rise time for VDD is specified (SVDD, parameter D004). For a slow rise time, see Figure 10-6.

When the device starts normal operation (exits the reset condition), device operating parameters (voltage, frequency, temperature,...) must be met to ensure operation. If these conditions are not met, the device must be held in reset until the operating conditions are met. Brown-out Reset may be used to meet the start-up conditions.

FIGURE 10-6: EXTERNAL POWER-ON RESET CIRCUIT (FOR SLOW VDD POWER-UP)

R1 = 100Ω to 1 kΩ will limit any current flowing into \overline{MCLR} from external capacitor C in the event of \overline{MCLR}/VPP pin breakdown due to Electrostatic Discharge (ESD) or Electrical Overstress (EOS).

10.5 Power-up Timer (PWRT)

The Power-up Timer provides a fixed nominal time-out (TPWRT, parameter #33) from the POR. The Power-up Timer operates on an internal RC oscillator. The chip is kept in reset as long as the PWRT is active. The PWRT's time delay allows VDD to rise to an acceptable level. A configuration bit is provided to enable/disable the PWRT.

The power-up time delay will vary from chip-to-chip due to VDD, temperature and process variation. See DC parameters for details.

10.6 Oscillator Start-up Timer (OST)

The Oscillator Start-up Timer (OST) provides a delay of 1024 oscillator cycles (from OSC1 input) after the PWRT delay is over (Tost, parameter #32). This ensures that the crystal oscillator or resonator has started and stabilized.

The OST time-out is invoked only for XT, LP and HS modes and only on Power-on Reset or wake-up from SLEEP.

Note: The OST delay may not occur when the device wakes from SLEEP.

10.7 Brown-Out Reset (BOR)

The configuration bit, BODEN, can enable or disable the Brown-Out Reset circuit. If VPP falls below Vbor (parameter #35, about 100μ S), the brown-out situation will reset the device. If VDD falls below VBOR for less than TBOR, a reset may not occur.

Once the brown-out occurs, the device will remain in brown-out reset until VDD rises above VBOR. The power-up timer then keeps the device in reset for TPWRT (parameter #33, about 72mS). If VDD should fall below VBOR during TPWRT, the brown-out reset process will restart when VDD rises above VBOR with the power-up timer reset. The power-up timer is always enabled when the brown-out reset circuit is enabled, regardless of the state of the PWRT configuration bit.

TABLE 11-2 PIC16CXXX INSTRUCTION SET

Mnemonic,		Description			14-Bit	Opcode)	Status	Notes
Operands				MSb			LSb	Affected	
BYTE-ORIE	NTED	FILE REGISTER OPERATIONS							
ADDWF	f, d	Add W and f	1	00	0111	dfff	ffff	C,DC,Z	1,2
ANDWF	f, d	AND W with f 1 00 0101 dfff ffff Z					Z	1,2	
CLRF	f	Clear f	1	00	0001	lfff	ffff	Z	2
CLRW	-	Clear W	1	00	0001	0000	0011	Z	
COMF	f, d	Complement f	1	00	1001	dfff	ffff	Z	1,2
DECF	f, d	Decrement f	1	00	0011	dfff	ffff	Z	1,2
DECFSZ	f, d	Decrement f, Skip if 0	1(2)	00	1011	dfff	ffff		1,2,3
INCF	f, d	Increment f	1	00	1010	dfff	ffff	Z	1,2
INCFSZ	f, d	Increment f, Skip if 0	1(2)	00	1111	dfff	ffff		1,2,3
IORWF	f, d	Inclusive OR W with f	1	00	0100	dfff	ffff	Z	1,2
MOVF	f, d	Move f	1	00	1000	dfff	ffff	Z	1,2
MOVWF	f	Move W to f	1	00	0000	lfff	ffff		
NOP	-	No Operation	1	00	0000	0xx0	0000		
RLF	f, d	Rotate Left f through Carry	1	00	1101	dfff	ffff	С	1,2
RRF	f, d	Rotate Right f through Carry	1	00	1100	dfff	ffff	С	1,2
SUBWF	f, d	Subtract W from f	1	00	0010	dfff	ffff	C,DC,Z	1,2
SWAPF	f, d	Swap nibbles in f	1	00	1110	dfff	ffff		1,2
XORWF	f, d	Exclusive OR W with f	1	00	0110	dfff	ffff	Z	1,2
BIT-ORIENT	ED FIL	E REGISTER OPERATIONS	-						
BCF	f, b	Bit Clear f	1	01	00bb	bfff	ffff		1,2
BSF	f, b	Bit Set f	1	01	01bb	bfff	ffff		1,2
BTFSC	f, b	Bit Test f, Skip if Clear	1 (2)	01	10bb	bfff	ffff		3
BTFSS	f, b	Bit Test f, Skip if Set	1 (2)	01	11bb	bfff	ffff		3
LITERAL A	ND CO	NTROL OPERATIONS	-						
ADDLW	k	Add literal and W	1	11	111x	kkkk	kkkk	C,DC,Z	
ANDLW	k	AND literal with W	1	11	1001	kkkk	kkkk	Z	
CALL	k	Call subroutine	2	10	0kkk	kkkk	kkkk		
CLRWDT	-	Clear Watchdog Timer	1	00	0000	0110	0100	TO,PD	
GOTO	k	Go to address	2	10	1kkk	kkkk	kkkk		
IORLW	k	Inclusive OR literal with W	1	11	1000	kkkk	kkkk	Z	
MOVLW	k	Move literal to W	1	11	00xx	kkkk	kkkk		
RETFIE	-	Return from interrupt	2	00	0000	0000	1001		
RETLW	k	Return with literal in W	2	11	01xx	kkkk	kkkk		
RETURN	-	Return from Subroutine	2	00	0000	0000	1000		
SLEEP	-	Go into standby mode	1	00	0000	0110	0011	TO,PD	
SUBLW	k	Subtract W from literal	1	11	110x	kkkk	kkkk	C,DC,Z	
XORLW	k	Exclusive OR literal with W	1	11	1010	kkkk	kkkk	Z	

Note 1: When an I/O register is modified as a function of itself (e.g., MOVF PORTB, 1), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if assigned to the Timer0 Module.

3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

11.1 Instruction Descriptions

ADDLW	Add Literal and W					
Syntax:	[<i>label</i>] ADDLW k					
Operands:	$0 \leq k \leq 255$					
Operation:	$(W) + k \to (W)$					
Status Affected:	C, DC, Z					
Description:	The contents of the W register are added to the eight bit literal 'k' and the result is placed in the W register.					

ANDWF	AND W with f
Syntax:	[<i>label</i>] ANDWF f,d
Operands:	$\begin{array}{l} 0\leq f\leq 127\\ d\in[0,1] \end{array}$
Operation:	(W) .AND. (f) \rightarrow (destination)
Status Affected:	Z
Description:	AND the W register with register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'.

ADDWF	Add W and f
Syntax:	[<i>label</i>] ADDWF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(W) + (f) \rightarrow (destination)
Status Affected:	C, DC, Z
Description:	Add the contents of the W register with register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'.

BCF	Bit Clear f
Syntax:	[<i>label</i>] BCF f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	$0 \rightarrow (f < b >)$
Status Affected:	None
Description:	Bit 'b' in register 'f' is cleared.

ANDLW	AND Literal with W
Syntax:	[<i>label</i>] ANDLW k
Operands:	$0 \leq k \leq 255$
Operation:	(W) .AND. (k) \rightarrow (W)
Status Affected:	Z
Description:	The contents of W register are AND'ed with the eight bit literal 'k'. The result is placed in the W register.

BSF	Bit Set f
Syntax:	[<i>label</i>] BSF f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	$1 \rightarrow (f < b >)$
Status Affected:	None
Description:	Bit 'b' in register 'f' is set.

	PIC12CXXX	PIC14000	PIC16C5X	PIC16C6X	PIC16CXXX	PIC16F62X	X7381019	XX7281219	PIC16C8X	PIC16F8XX	PIC16C9XX	Xt271219	XX7371319	PIC18CXX2	83CXX 52CXX/ 54CXX/	хххсэн	мсяғххх	WCP2510
MPLAB™ Integrated 0 Development Environment	^	~	>	>	>	>	>	>	>	>	>	>	>	>				
MPLAB™ C17 Compiler												~	~					
WPLAB™ C18 Compiler														>				
0 MPASM/MPLINK	>	~	>	>	~	~	~	>	~	>	>	~	~	~	~	>		
20 MPLAB™-ICE	>	~	>	>	>	**^	>	>	>	>	>	>	>	>				
PICMASTER/PICMASTER-CE	>	~	>	>	>		>	>	>		>	>	>					
EICEPIC™ Low-Cost In In-Circuit Emulator	>		>	>	>		>	>	`		>							
MPLAB-ICD In-Circuit Debugger				*>			*>			>								
© PICSTART®Plus E Low-Cost Universal Dev. Kit	>	>	~	`	>	×*×	>	>	>	>	>	>	>	`				
ଅଟେ PRO MATE® I ପୁତ୍ର Universal Programmer	>	^	>	>	>	**^	>	>	>	>	>	>	>	>	~	^		
SIMICE	>		>															
PICDEM-1			>		>		+		>			>						
PICDEM-2				↓			+√							>				
PICDEM-3											>							
PICDEM-14A		~																
PICDEM-17													~					
E KEELoo [®] Evaluation Kit																>		
KEELoo Transponder Kit																~		
omic microlD™ Programmer's Kit																	>	
25 kHz microID Developer's Kit																	>	
Developer's Kit																	>	
13.56 MHz Anticollision microlD Developer's Kit																	>	
MCP2510 CAN Developer's Kit																		>
* Contact the Microchip Technology In ** Contact Microchip Technology Inc. f [†] Development tool is available on see	nc. web si for availab lect device	te at www lity date. es.	.microchij	o.com for	nformatio	n on how	to use the	MPLAB-	-ICD In-C	circuit Det	ougger (D	V164001) with PIC	:16C62, 6	3, 64, 65	6, 72, 73, 7	'4, 76, 77	

TABLE 12-1: DEVELOPMENT TOOLS FROM MICROCHIP

 $\ensuremath{\textcircled{}^{\circ}}$ 1998-2013 Microchip Technology Inc.

13.4 AC (Timing) Characteristics

13.4.1 TIMING PARAMETER SYMBOLOGY

The timing parameter symbols have been created following one of the following formats:

1. TppS2p	pS	3. TCC:ST	(I ² C specifications only)
2. TppS		4. Ts	(I ² C specifications only)
Т			
F	Frequency	Т	Time
Lowercase	e letters (pp) and their meanings:		
рр			
сс	CCP1	OSC	OSC1
ck	CLKOUT	rd	RD
CS	CS	rw	RD or WR
di	SDI	SC	SCK
do	SDO	SS	SS
dt	Data in	tO	TOCKI
io	I/O port	t1	T1CKI
mc	MCLR	wr	WR
Uppercase	e letters and their meanings:		
S			
F	Fall	Р	Period
н	High	R	Rise
I	Invalid (Hi-impedance)	V	Valid
L	Low	Z	Hi-impedance
I ² C only			
AA	output access	High	High
BUF	Bus free	Low	Low
TCC:ST (I ²	C specifications only)		
CC			
HD	Hold	SU	Setup
ST			
DAT	DATA input hold	STO	STOP condition
STA	START condition		

FIGURE 13-8: BROWN-OUT RESET TIMING

TABLE 13-4:RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER
AND BROWN-OUT RESET REQUIREMENTS

Param	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
NO.							
30	TmcL	MCLR Pulse Width (low)	2			μS	VDD = 5V, -40°C to +125°C
31*	Twdt	Watchdog Timer Time-out Period (No Prescaler)	7	18	33	ms	VDD = 5V, -40°C to +125°C
32	Tost	Oscillator Start-up Timer Period	_	1024 Tosc		_	Tosc = OSC1 period
33*	Tpwrt	Power-up Timer Period	28	72	132	ms	$VDD = 5V, -40^{\circ}C \text{ to } +125^{\circ}C$
34	Tıoz	I/O Hi-impedance from MCLR Low or WDT reset			2.1	μS	
35	TBOR	Brown-out Reset Pulse Width	100	_	_	μS	V DD $\leq B$ VDD (D005)

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 13-10: CAPTURE/COMPARE/PWM TIMINGS

TABLE 13-6: CAPTURE/COMPARE/PWM REQUIREMENTS

Param No.	Sym		Characteristi	С	Min	Тур†	Max	Units	Conditions
50*	TccL	CCP1 input low	No Prescaler		0.5TCY + 20	-	_	ns	
		time	With Prescaler	PIC16CXX	10	-	-	ns	
				PIC16LCXX	20	-	-	ns	
51*	TccH	CCP1 input high	No Prescaler		0.5TCY + 20	_	-	ns	
		time	With Prescaler	PIC16CXX	10	_	_	ns	
				PIC16LCXX	20	-	-	ns	
52*	TccP	CCP1 input perio	d		<u>3Tcy + 40</u> N	—	_	ns	N = prescale value (1,4, or 16)
53*	TccR	CCP1 output rise time		PIC16CXX	—	10	25	ns	
				PIC16LCXX	—	25	45	ns	
54*	TccF	CCP1 output fall t	time	PIC16CXX	_	10	25	ns	
				PIC16LCXX	_	25	45	ns	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

PIC16C62B/72A

FIGURE 13-16: I²C BUS DATA TIMING

TABLE 13-12: I²C BUS DATA REQUIREMENTS

Param. No.	Sym	Characte	eristic	Min	Max	Units	Conditions
100*	Тнідн	Clock high time	100 kHz mode	4.0	—	μS	Device must operate at a min- imum of 1.5 MHz
			400 kHz mode	0.6	_	μS	Device must operate at a min- imum of 10 MHz
			SSP Module	1.5TCY	_		
101*	TLOW	Clock low time	100 kHz mode	4.7	_	μS	Device must operate at a min- imum of 1.5 MHz
			400 kHz mode	1.3		μs	Device must operate at a min- imum of 10 MHz
			SSP Module	1.5TCY	_		
102*	TR	SDA and SCL rise	100 kHz mode	—	1000	ns	
		time	400 kHz mode	20 + 0.1Cb	300	ns	Cb is specified to be from 10-400 pF
103*	TF	SDA and SCL fall	100 kHz mode	—	300	ns	
		time	400 kHz mode	20 + 0.1Cb	300	ns	Cb is specified to be from 10-400 pF
90*	TSU:STA	START condition	100 kHz mode	4.7	—	μs	Only relevant for repeated
		setup time	400 kHz mode	0.6	—	μs	START condition
91*	THD:STA	START condition hold	100 kHz mode	4.0		μs	After this period the first clock
		time	400 kHz mode	0.6	—	μs	pulse is generated
106*	THD:DAT	Data input hold time	100 kHz mode	0	—	ns	
			400 kHz mode	0	0.9	μs	
107*	TSU:DAT	Data input setup time	100 kHz mode	250		ns	Note 2
			400 kHz mode	100	—	ns	
92*	TSU:STO	STOP condition setup	100 kHz mode	4.7	—	μs	
		time	400 kHz mode	0.6	—	μs	
109*	ΤΑΑ	Output valid from	100 kHz mode	—	3500	ns	Note 1
		Clock	400 kHz mode	—		ns	
110*	TBUF	Bus free time	100 kHz mode	4.7	—	μs	Time the bus must be free
			400 kHz mode	1.3		μs	betore a new transmission can start
	Cb	Bus capacitive loading			400	pF	

* These parameters are characterized but not tested.

Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of the falling edge of SCL to avoid unintended generation of START or STOP conditions.

2: A fast-mode (400 kHz) I²C-bus device can be used in a standard-mode (100 kHz) I²C-bus system, but the requirement Tsu:DAT ≥ 250 ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line TR max.+tsu;DAT = 1000 + 250 = 1250 ns (according to the standard-mode I²C bus specification) before the SCL line is released.

TABLE 13-13:A/D CONVERTER CHARACTERISTICS:
PIC16C72A-04 (COMMERCIAL, INDUSTRIAL, EXTENDED)
PIC16C72A-20 (COMMERCIAL, INDUSTRIAL, EXTENDED)
PIC16LC72A-04 (COMMERCIAL, INDUSTRIAL)

Param No.	Sym	Characte	ristic	Min	Тур†	Max	Units	Conditions
A01	NR	Resolution		—	_	8-bits	bit	$\begin{array}{l} \text{VREF} = \text{VDD} = 5.12\text{V},\\ \text{VSS} \leq \text{VAIN} \leq \text{VREF} \end{array}$
A02	Eabs	Total Absolute error		—	_	< ± 1	LSB	$\begin{array}{l} \text{VREF} = \text{VDD} = 5.12\text{V},\\ \text{VSS} \leq \text{VAIN} \leq \text{VREF} \end{array}$
A03	EIL	Integral linearity error		—		< ± 1	LSB	$\begin{array}{l} \text{VREF} = \text{VDD} = 5.12\text{V},\\ \text{VSS} \leq \text{VAIN} \leq \text{VREF} \end{array}$
A04	Edl	Differential linearity e	ror	—		< ± 1	LSB	$\begin{array}{l} \text{VREF} = \text{VDD} = 5.12\text{V},\\ \text{VSS} \leq \text{VAIN} \leq \text{VREF} \end{array}$
A05	Efs	Full scale error				< ± 1	LSB	$\begin{array}{l} \text{VREF} = \text{VDD} = 5.12\text{V},\\ \text{VSS} \leq \text{VAIN} \leq \text{VREF} \end{array}$
A06	Eoff	Offset error		—		< ± 1	LSB	$\begin{array}{l} \text{VREF} = \text{VDD} = 5.12\text{V},\\ \text{VSS} \leq \text{VAIN} \leq \text{VREF} \end{array}$
A10	—	Monotonicity		_	guaranteed (Note 3)		—	$VSS \leq VAIN \leq VREF$
A20	VREF	Reference voltage		2.5V		Vdd + 0.3	V	
A25	VAIN	Analog input voltage		Vss - 0.3	_	VREF + 0.3	V	
A30	ZAIN	Recommended impedance of analog voltage source		—		10.0	kΩ	
A40	IAD	A/D conversion	PIC16CXX	_	180	-	μA	Average current con-
		current (VDD)	current (VDD) PIC16LCXX		90		μA	sumption when A/D is on. (Note 1)
A50	IREF	VREF input current (N	ote 2)	10	_	1000	μΑ	During VAIN acquisi- tion. Based on differ- ential of VHOLD to VAIN to charge CHOLD, see Section 9.1. During A/D conver- cion cycle

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: When A/D is off, it will not consume any current other than minor leakage current.

The power-down current spec includes any such leakage from the A/D module.

2: VREF current is from RA3 pin or VDD pin, whichever is selected as reference input.

3: The A/D conversion result never decreases with an increase in the Input Voltage and has no missing codes.

NOTES: