

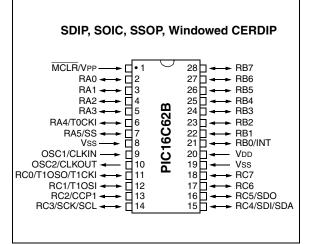
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


E·XFI

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	I²C, SPI
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	22
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 5.5V
Data Converters	A/D 5x8b
Oscillator Type	External
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c72a-04e-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams

Key Features PIC [®] Mid-Range Reference Manual (DS33023)	PIC16C62B	PIC16C72A
Operating Frequency	DC - 20 MHz	DC - 20 MHz
Resets (and Delays)	POR, BOR (PWRT, OST)	POR, BOR (PWRT, OST)
Program Memory (14-bit words)	2K	2K
Data Memory (bytes)	128	128
Interrupts	7	8
I/O Ports	Ports A,B,C	Ports A,B,C
Timers	3	3
Capture/Compare/PWM modules	1	1
Serial Communications	SSP	SSP
8-bit Analog-to-Digital Module	—	5 input channels

2.2 Data Memory Organization

The data memory is partitioned into multiple banks which contain the General Purpose Registers and the Special Function Registers. Bits RP1 and RP0 are the bank select bits.

RP1 ⁽¹⁾	RP0 (STATUS<6:5>)
= 00 \rightarrow	Bank0
= 01 \rightarrow	Bank1
= 10 \rightarrow	Bank2 (not implemented)
= 11 \rightarrow	Bank3 (not implemented)
Note 1:	Maintain this bit clear to ensure upward compati- bility with future products.

Each bank extends up to 7Fh (128 bytes). The lower locations of each bank are reserved for the Special Function Registers. Above the Special Function Registers are General Purpose Registers, implemented as static RAM. All implemented banks contain Special Function Registers. Some "high use" Special Function Registers from one bank may be mirrored in another bank for code reduction and quicker access.

2.2.1 GENERAL PURPOSE REGISTER FILE

The register file can be accessed either directly, or indirectly through the File Select Register FSR (Section 2.5).

FIGURE 2-2: REGISTER FILE MAP

File Address			File Address
00h	INDF ⁽¹⁾	INDF ⁽¹⁾	80h
01h	TMR0	OPTION_REG	81h
02h	PCL	PCL	82h
03h	STATUS	STATUS	83h
04h	FSR	FSR	84h
05h	PORTA	TRISA	85h
06h	PORTB	TRISB	86h
07h	PORTC	TRISC	87h
08h	—	_	88h
09h	—	_	89h
0Ah	PCLATH	PCLATH	8Ah
0Bh	INTCON	INTCON	8Bh
0Ch	PIR1	PIE1	8Ch
0Dh	—	—	8Dh
0Eh	TMR1L	PCON	8Eh
0Fh	TMR1H	_	8Fh
10h	T1CON	_	90h
11h	TMR2	_	91h
12h	T2CON	PR2	92h
13h	SSPBUF	SSPADD	93h
14h	SSPCON	SSPSTAT	94h
15h	CCPR1L	_	95h
16h	CCPR1H	_	96h
17h	CCP1CON	_	97h
18h	—	_	98h
19h	—	_	99h
1Ah	—	_	9Ah
1Bh	—	_	9Bh
1Ch	—	_	9Ch
1Dh	—	_	9Dh
1Eh	ADRES ⁽²⁾	_	9Eh
1Fh	ADCON0 ⁽²⁾	ADCON1 ⁽²⁾	9Fh
20h		General	A0h
		Purpose	
	General	Registers	BFh
	Purpose Registers	_	C0h
	riogiotoro	_	
7Fh		_	FFh
	Bank 0	Bank 1	
Un	implemented da	ata memory loca	tions,
	l as '0'.		
	ot a physical reg	5	tod on the
	C16C62B, read	re not implemen I as '0'.	

2.2.2 SPECIAL FUNCTION REGISTERS

The Special Function Registers are registers used by the CPU and Peripheral Modules for controlling the desired operation of the device. These registers are implemented as static RAM. A list of these registers is given in Table 2-1. The Special Function Registers can be classified into two sets; core (CPU) and peripheral. Those registers associated with the core functions are described in detail in this section. Those related to the operation of the peripheral features are described in detail in the peripheral feature section.

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets (4)
Bank 0					•						
00h	INDF ⁽¹⁾	Addressing	0000 0000	0000 0000							
01h	TMR0	Timer0 mo	dule's regist	er						xxxx xxxx	uuuu uuuu
02h	PCL ⁽¹⁾	Program C	ounter's (PC	C) Least Sig	nificant Byte	!				0000 0000	0000 0000
03h	STATUS ⁽¹⁾	IRP ⁽⁵⁾	RP1 ⁽⁵⁾	RP0	TO	PD	Z	DC	С	0001 1xxx	000q quuu
04h	FSR ⁽¹⁾	Indirect dat	a memory a	ddress poir	nter					xxxx xxxx	uuuu uuuu
05h	PORTA ^(6,7)	—	_	PORTA Da	ta Latch whe	en written: P	ORTA pins w	hen read		0x 0000	0u 0000
06h	PORTB ^(6,7)	PORTB Da	ta Latch wh	en written: F	PORTB pins	when read				xxxx xxxx	uuuu uuuu
07h	PORTC ^(6,7)	PORTC Da	ita Latch wh	en written: I	PORTC pins	when read				xxxx xxxx	uuuu uuuu
08h-09h	_	Unimpleme	ented							—	—
0Ah	PCLATH ^(1,2)	_	_	_	Write Buffe	r for the uppe	er 5 bits of th	e Program (Counter	0 0000	0 0000
0Bh	INTCON ⁽¹⁾	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	—	ADIF ⁽³⁾	_	_	SSPIF	CCP1IF	TMR2IF	TMR1IF	-0 0000	-0 0000
0Dh	_	Unimpleme	ented							—	—
0Eh	TMR1L	Holding reg	jister for the	Least Signi	ificant Byte o	of the 16-bit 1	MR1 registe	r		xxxx xxxx	uuuu uuuu
0Fh	TMR1H	Holding reg	jister for the	Most Signif	icant Byte o	f the 16-bit T	MR1 register	r		xxxx xxxx	uuuu uuuu
10h	T1CON	_	—	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR1ON	00 0000	uu uuuu
11h	TMR2	Timer2 mo	dule's regist	er						0000 0000	0000 0000
12h	T2CON	_	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	-000 0000
13h	SSPBUF	Synchrono	us Serial Po	rt Receive E	Buffer/Transr	nit Register				xxxx xxxx	uuuu uuuu
14h	SSPCON	WCOL	SSPOV	SSPEN	СКР	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	0000 0000
15h	CCPR1L	Capture/Co	mpare/PWI	M Register1	(LSB)					xxxx xxxx	uuuu uuuu
16h	CCPR1H	Capture/Co	Capture/Compare/PWM Register1 (MSB)						xxxx xxxx	uuuu uuuu	
17h	CCP1CON	—	_	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0000	00 0000
18h-1Dh	_	Unimpleme	ented							—	—
1Eh	ADRES ⁽³⁾	A/D Result	Register							xxxx xxxx	uuuu uuuu
1Fh	ADCON0 ⁽³⁾	ADCS1	ADCS0	CHS2	CHS1	CHS0	GO/DONE	—	ADON	0000 00-0	0000 00-0

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0',

Shaded locations are unimplemented, read as '0'. **Note 1:** These registers can be addressed from either bank.

2: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for PC<12:8> whose contents are transferred to the upper byte of the program counter.

3: A/D not implemented on the PIC16C62B, maintain as '0'.

4: Other (non power-up) resets include: external reset through MCLR and the Watchdog Timer Reset.

5: The IRP and RP1 bits are reserved. Always maintain these bits clear.

6: On any device reset, these pins are configured as inputs.

7: This is the value that will be in the port output latch.

TABLE 3-5 PORTC FUNCTIONS

Name	Bit#	Buffer Type	Function	TRISC Override
RC0/T1OSO/T1CKI	bit0	ST	Input/output port pin or Timer1 oscillator output/Timer1 clock input	Yes
RC1/T1OSI	bit1	ST	Input/output port pin or Timer1 oscillator input	Yes
RC2/CCP1	bit2	ST	Input/output port pin or Capture1 input/Compare1 output/PWM1 output	No
RC3/SCK/SCL	bit3	ST	RC3 can also be the synchronous serial clock for both SPI and I^2C modes.	No
RC4/SDI/SDA	bit4	ST	RC4 can also be the SPI Data In (SPI mode) or data I/O (I^2C mode).	No
RC5/SDO	bit5	ST	Input/output port pin or Synchronous Serial Port data output	No
RC6	bit6	ST	Input/output port pin	No
RC7	bit7	ST	Input/output port pin	No

Legend: ST = Schmitt Trigger input

TABLE 3-6SUMMARY OF REGISTERS ASSOCIATED WITH PORTC

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets
07h	PORTC	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	xxxx xxxx	uuuu uuuu
87h	87h TRISC PORTC Data Direction Register									1111 1111	1111 1111

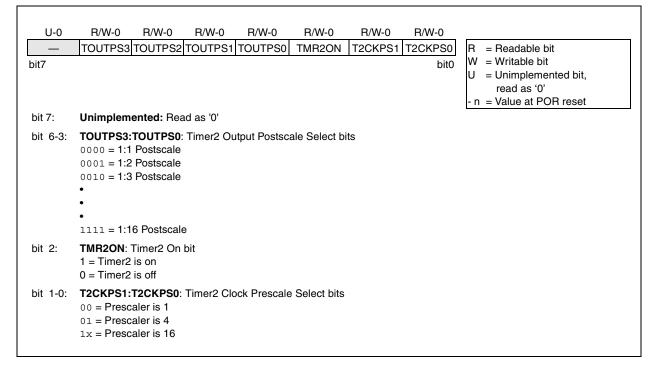
Legend: x = unknown, u = unchanged.

6.0 TIMER2 MODULE

The Timer2 module timer has the following features:

- 8-bit timer (TMR2 register)
- Readable and writable
- 8-bit period register (PR2)
 - Readable and writable
- Software programmable prescaler (1:1, 1:4, 1:16)
- Software programmable postscaler (1:1 to 1:16)
- Interrupt on match (TMR2 = PR2)
- Timer2 can be used by SSP and CCP

Timer2 has a control register, shown in Register 6-1. Timer2 can be shut off by clearing control bit TMR2ON (T2CON<2>) to minimize power consumption.


Figure 6-1 is a simplified block diagram of the Timer2 module.

Additional information on timer modules is available in the PIC[®] MCU Mid-Range Reference Manual, (DS33023).

FIGURE 6-1: TIMER2 BLOCK DIAGRAM

REGISTER 6-1:T2CON: TIMER2 CONTROL REGISTER (ADDRESS 12h)

6.1 <u>Timer2 Operation</u>

The Timer2 output is also used by the CCP module to generate the PWM "On-Time", and the PWM period with a match with PR2.

The TMR2 register is readable and writable, and is cleared on any device reset.

The input clock (Fosc/4) has a prescale option of 1:1, 1:4 or 1:16, selected by control bits T2CKPS1:T2CKPS0 (T2CON<1:0>).

The match output of TMR2 goes through a 4-bit postscaler (which gives a 1:1 to 1:16 scaling) to generate a TMR2 interrupt (latched in flag bit TMR2IF, (PIR1<1>)).

The prescaler and postscaler counters are cleared when any of the following occurs:

- a write to the TMR2 register
- a write to the T2CON register
- any device reset (Power-on Reset, MCLR reset, Watchdog Timer reset or Brown-out Reset)

TMR2 is not cleared when T2CON is written.

6.2 <u>Timer2 Interrupt</u>

The Timer2 module has an 8-bit period register PR2. Timer2 increments from 00h until it matches PR2 and then resets to 00h on the next increment cycle. PR2 is a readable and writable register. The PR2 register is initialized to FFh upon reset.

6.3 Output of TMR2

The output of TMR2 (before the postscaler) is fed to the Synchronous Serial Port module, which optionally uses it to generate shift clock.

TABLE 6-1 REGISTERS ASSOCIATED WITH TIMER2 AS A TIMER/COUNTER

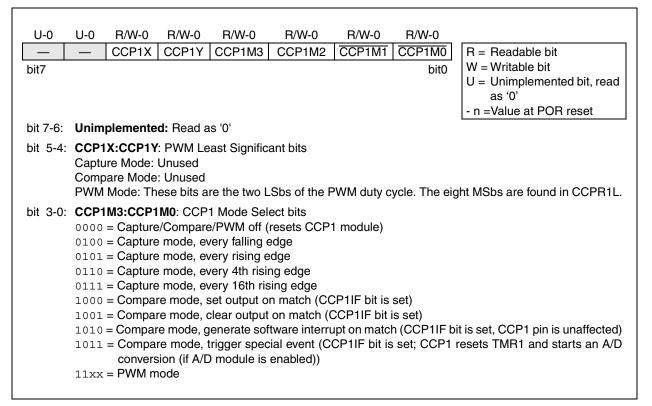
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other resets
0Bh,8Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	_	ADIF	_	_	SSPIF	CCP1IF	TMR2IF	TMR1IF	-00- 0000	0000 0000
8Ch	PIE1	_	ADIE	_	_	SSPIE	CCP1IE	TMR2IE	TMR1IE	-0 0000	0000 0000
11h	TMR2 Timer2 module's register										0000 0000
12h	T2CON	_	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	-000 0000
92h	PR2 Timer2 Period Register									1111 1111	1111 1111

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used by the Timer2 module.

7.0 CAPTURE/COMPARE/PWM (CCP) MODULE

The CCP (Capture/Compare/PWM) module contains a 16-bit register, which can operate as a 16-bit capture register, as a 16-bit compare register or as a PWM master/slave duty cycle register. Table 7-1 shows the timer resources of the CCP module modes.

Capture/Compare/PWM Register 1 (CCPR1) is comprised of two 8-bit registers: CCPR1L (low byte) and CCPR1H (high byte). The CCP1CON register controls the operation of CCP1. All are readable and writable. Additional information on the CCP module is available in the PIC[®] MCU Mid-Range Reference Manual, (DS33023).


TABLE 7-1CCP MODE - TIMER
RESOURCE

CCP Mode	Timer Resource
Capture	Timer1
Compare	Timer1
PWM	Timer2

TABLE 7-2INTERACTION OF TWO CCP MODULES

CCPx Mode	CCPy Mode	Interaction
Capture	Capture	Same TMR1 time-base.
Capture	Compare	The compare should be configured for the special event trigger, which clears TMR1.
Compare	Compare	The compare(s) should be configured for the special event trigger, which clears TMR1.
PWM	PWM	The PWMs will have the same frequency and update rate (TMR2 interrupt).
PWM	Capture	None.
PWM	Compare	None.

REGISTER 7-1:CCP1CON REGISTER (ADDRESS 17h)

8.0 SYNCHRONOUS SERIAL PORT (SSP) MODULE

8.1 SSP Module Overview

The Synchronous Serial Port (SSP) module is a serial interface useful for communicating with other peripheral or microcontroller devices. These peripheral devices may be Serial EEPROMs, shift registers, display drivers, A/D converters, etc. The SSP module can operate in one of two modes:

- Serial Peripheral Interface (SPI)
- Inter-Integrated Circuit (I²C)

For more information on SSP operation (including an I²C Overview), refer to the PIC[®] MCU Mid-Range Reference Manual, (DS33023). Also, refer to Application Note AN578, *"Use of the SSP Module in the I²C Multi-Master Environment."*

8.2 SPI Mode

This section contains register definitions and operational characteristics of the SPI module.

Additional information on SPI operation may be found in the PIC[®] MCU Mid-Range Reference Manual, (DS33023).

8.2.1 OPERATION OF SSP MODULE IN SPI MODE

A block diagram of the SSP Module in SPI Mode is shown in Figure 8-1.

The SPI mode allows 8-bits of data to be synchronously transmitted and received simultaneously. To accomplish communication, three pins are used:

- Serial Data Out (SDO)RC5/SDO
- Serial Data In (SDI)RC4/SDI/SDA
- Serial Clock (SCK)RC3/SCK/SCL

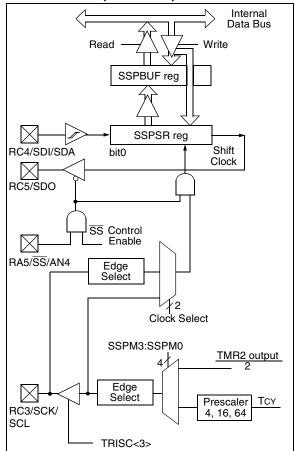
Additionally, a fourth pin may be used when in a slave mode of operation:

Slave Select (SS)RA5/SS/AN4

When initializing the SPI, several options need to be specified. This is done by programming the appropriate control bits in the SSPCON register (SSPCON<5:0>) and SSPSTAT<7:6>. These control bits allow the following to be specified:

- Master Operation (SCK is the clock output)
- Slave Mode (SCK is the clock input)
- Clock Polarity (Idle state of SCK)
- Clock Edge (Output data on rising/falling edge of SCK)
- Clock Rate (master operation only)
- Slave Select Mode (Slave mode only)

To enable the serial port, SSP Enable bit, SSPEN (SSPCON<5>) must be set. To reset or reconfigure SPI mode, clear bit SSPEN, re-initialize the SSPCON reg-


ister, and then set bit SSPEN. This configures the SDI, SDO, SCK and \overline{SS} pins as serial port pins. For the pins to behave as the serial port function, they must have their data direction bits (in the TRISC register) appropriately programmed. That is:

- SDI must have TRISC<4> set
- SDO must have TRISC<5> cleared
- SCK (master operation) must have TRISC<3> cleared
- SCK (Slave mode) must have TRISC<3> set
- SS must have TRISA<5> set (if used)

Note: When the SPI is in Slave Mode with \overline{SS} pin control enabled, (SSPCON<3:0> = 0100) the SPI module will reset if the \overline{SS} pin is set to VDD.

Note: If the SPI is used in Slave Mode with CKE = '1', then the \overline{SS} pin control must be enabled.

FIGURE 8-1: SSP BLOCK DIAGRAM (SPI MODE)

9.0 ANALOG-TO-DIGITAL CONVERTER (A/D) MODULE

Note: This section applies to the PIC16C72A only.

The analog-to-digital (A/D) converter module has five input channels.

The A/D allows conversion of an analog input signal to a corresponding 8-bit digital number (refer to Application Note AN546 for use of A/D Converter). The output of the sample and hold is the input into the converter, which generates the result via successive approximation. The analog reference voltage is software selectable to either the device's positive supply voltage (VDD) or the voltage level on the RA3/AN3/VREF pin.

The A/D converter has the feature of being able to operate while the device is in SLEEP mode. To operate in sleep, the A/D conversion clock must be derived from the A/D's internal RC oscillator.

Additional information on the A/D module is available in the PIC[®] MCU Mid-Range Reference Manual, (DS33023).

The A/D module has three registers. These registers are:

- A/D Result Register (ADRES)
- A/D Control Register 0 (ADCON0)
- A/D Control Register 1 (ADCON1)

A device reset forces all registers to their reset state. This forces the A/D module to be turned off, and any conversion is aborted.

The ADCON0 register, shown in Figure 9-1, controls the operation of the A/D module. The ADCON1 register, shown in Figure 9-2, configures the functions of the port pins. The port pins can be configured as analog inputs (RA3 can also be a voltage reference) or as digital I/O.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0				
ADCS1 bit7	ADCS0	CHS2	CHS1	CHS0	GO/DONE	_	ADON bit0	R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'			
bit 7-6:	ADCS1:ADCS0: A/D Conversion Clock Select bits 00 = Fosc/2 01 = Fosc/8 10 = Fosc/32 11 = FRC (clock derived from an internal RC oscillator)										
bit 5-3:	CHS2:CH 000 = cha 001 = cha 010 = cha 011 = cha 100 = cha	annel 0, (F annel 1, (F annel 2, (F annel 3, (F	RÃO/ANO) RA1/AN1) RA2/AN2) RA3/AN3)	el Select bi	ts						
bit 2:	GO/DON	E: A/D Co	nversion	Status bit							
		onversion onversion	not in pro		this bit starts t s bit is automa			ware when the A/D			
bit 1:	Unimpler	nented: F	Read as '0	ı							
bit 0:	ADON : $A_{1} = A/D c$	onverter r			l consumes no		n ourront				

REGISTER 9-1: ADCON0 REGISTER (ADDRESS 1Fh)

10.8 <u>Time-out Sequence</u>

When a POR reset occurs, the PWRT delay starts (if enabled). When PWRT ends, the OST counts 1024 oscillator cycles (LP, XT, HS modes only). When OST completes, the device comes out of reset. The total time-out will vary based on oscillator configuration and the status of the PWRT. For example, in RC mode with the PWRT disabled, there will be no time-out at all.

If MCLR is kept low long enough, the time-outs will expire. Bringing MCLR high will begin execution immediately. This is useful for testing purposes or to synchronize more than one PIC16CXXX device operating in parallel.

Status Register

Table 10-5 shows the reset conditions for the STATUS, PCON and PC registers, while Table 10-6 shows the reset conditions for all the registers.

10.9 <u>Power Control/Status Register</u> (PCON)

The $\overline{\text{BOR}}$ bit is unknown on Power-on Reset. If the Brown-out Reset circuit is used, the $\overline{\text{BOR}}$ bit must be set by the user and checked on subsequent resets to see if it was cleared, indicating a Brown-out has occurred.

POR (Power-on Reset Status bit) is cleared on a Power-on Reset and unaffected otherwise. The user

IRP	RP1	RP0	TO	PD	Z	DC	С

POR BOF

TABLE 10-3 TIME-OUT IN VARIOUS SITUATIONS

Oppillator Configuration	Power	-up	Brown out	Wake-up from
Oscillator Configuration	PWRTE = 0	PWRTE = 1	Brown-out	SLEEP
XT, HS, LP	72 ms + 1024Tosc	1024Tosc	72 ms + 1024Tosc	1024Tosc
RC	72 ms		72 ms	—

TABLE 10-4 STATUS BITS AND THEIR SIGNIFICANCE

POR	BOR	ТО	PD	
0	x	1	1	Power-on Reset
0	x	0	x	Illegal, TO is set on POR
0	x	x	0	Illegal, PD is set on POR
1	0	1	1	Brown-out Reset
1	1	0	1	WDT Reset
1	1	0	0	WDT Wake-up
1	1	u	u	MCLR Reset during normal operation
1	1	1	0	MCLR Reset during SLEEP or interrupt wake-up from SLEEP

TABLE 10-5 RESET CONDITION FOR SPECIAL REGISTERS

Condition	Program Counter	STATUS Register	PCON Register
Power-on Reset	000h	0001 1xxx	0x
MCLR Reset during normal operation	000h	000u uuuu	uu
MCLR Reset during SLEEP	000h	0001 0uuu	uu
WDT Reset	000h	0000 luuu	uu
WDT Wake-up	PC + 1	uuu0 0uuu	uu
Brown-out Reset	000h	0001 luuu	u0
Interrupt wake-up from SLEEP	PC + 1 ⁽¹⁾	uuul 0uuu	uu

Legend: u = unchanged, x = unknown, - = unimplemented bit read as '0'.

Note 1: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

10.10 Interrupts

The interrupt control register (INTCON) records individual interrupt requests in flag bits. It also has individual and global interrupt enable bits.

Note:	Individual interrupt flag bits are set regard-
	less of the status of their corresponding
	mask bit or the GIE bit.

A global interrupt enable bit, GIE (INTCON<7>) enables or disables all interrupts. When bit GIE is enabled, and an interrupt's flag bit and mask bit are set, the interrupt will vector immediately. Individual interrupts can be disabled through their corresponding enable bits in various registers. Individual interrupt flag bits are set regardless of the status of the GIE bit. The GIE bit is cleared on reset.

The "return from interrupt" instruction, RETFIE, exits the interrupt routine and sets the GIE bit, which reenables interrupts.

The RB0/INT pin interrupt, the RB port change interrupt and the TMR0 overflow interrupt flags are contained in the INTCON register. The peripheral interrupt flags are contained in the special function registers PIR1 and PIR2. The corresponding interrupt enable bits are contained in special function registers PIE1 and PIE2, and the peripheral interrupt enable bit is contained in special function register INTCON.

When an interrupt is responded to, the GIE bit is cleared to disable any further interrupts, the return address is pushed onto the stack and the PC is loaded with 0004h. Once in the interrupt service routine, the source of the interrupt can be determined by polling the interrupt flag bits. The interrupt flag bit must be cleared in software before re-enabling interrupts to avoid recursive interrupts.

For external interrupt events, such as the INT pin or PORTB change interrupt, the interrupt latency will be three or four instruction cycles, depending on when the interrupt event occurs. The latency is the same for one or two cycle instructions. Individual interrupt flag bits are set regardless of the status of their corresponding mask bit or the GIE bit

FIGURE 10-7: INTERRUPT LOGIC

10.13 Power-down Mode (SLEEP)

Power-down mode is entered by executing a $\ensuremath{\mathtt{SLEEP}}$ instruction.

If enabled, the Watchdog Timer will be cleared but keeps running, the \overline{PD} bit (STATUS<3>) is cleared, the \overline{TO} (STATUS<4>) bit is set, and the oscillator driver is turned off. The I/O ports maintain the status they had, before the SLEEP instruction was executed (driving high, low or hi-impedance).

For lowest current consumption in this mode, place all I/O pins at either VDD or VSS, ensure no external circuitry is drawing current from the I/O pin, power-down the A/D and disable external clocks. Pull all I/O pins that are hi-impedance inputs, high or low externally, to avoid switching currents caused by floating inputs. The TOCKI input should also be at VDD or VSS for lowest current consumption. The contribution from on-chip pull-ups on PORTB should be considered.

The MCLR pin must be at a logic high level (VIHMC, parameter D042).

10.13.1 WAKE-UP FROM SLEEP

The device can wake up from SLEEP through one of the following events:

- 1. External reset input on $\overline{\text{MCLR}}$ pin.
- 2. Watchdog Timer Wake-up (if WDT was enabled).
- 3. Interrupt from INT pin, RB port change, or some Peripheral Interrupts.

External $\overline{\text{MCLR}}$ Reset will cause a device reset. All other events are considered a continuation of program execution and cause a "wake-up". The $\overline{\text{TO}}$ and $\overline{\text{PD}}$ bits in the STATUS register can be used to determine the cause of device reset. The $\overline{\text{PD}}$ bit, which is set on power-up, is cleared when SLEEP is invoked. The $\overline{\text{TO}}$ bit is cleared if a WDT time-out occurred (and caused wake-up).

The following peripheral interrupts can wake the device from SLEEP:

- 1. TMR1 interrupt. Timer1 must be operating as an asynchronous counter.
- 2. CCP capture mode interrupt.
- 3. Special event trigger (Timer1 in asynchronous mode using an external clock. CCP1 is in compare mode).
- 4. SSP (Start/Stop) bit detect interrupt.
- 5. SSP transmit or receive in slave mode (SPI/I²C).
- 6. USART RX or TX (synchronous slave mode).

Other peripherals cannot generate interrupts since during SLEEP, no on-chip clocks are present.

When the SLEEP instruction is being executed, the next instruction (PC + 1) is pre-fetched. For the device to wake-up through an interrupt event, the corresponding interrupt enable bit must be set (enabled). Wake-up is

regardless of the state of the GIE bit. If the GIE bit is clear (disabled), the device resumes execution at the instruction after the SLEEP instruction. If the GIE bit is set (enabled), the device executes the instruction after the SLEEP instruction and then branches to the interrupt address (0004h). In cases where the execution of the instruction following SLEEP is not desirable, a NOP should follow the SLEEP instruction.

10.13.2 WAKE-UP USING INTERRUPTS

When global interrupts are disabled (GIE cleared) and any interrupt source has both its interrupt enable bit and interrupt flag bit set, one of the following will occur:

- If the interrupt occurs **before** the execution of a SLEEP instruction, the SLEEP instruction will complete as a NOP. Therefore, the WDT and WDT postscaler will not be cleared, the TO bit will not be set and PD bits will not be cleared.
- If the interrupt occurs during or after the execution of a SLEEP instruction, the device will immediately wake up from sleep. The SLEEP instruction will be completely executed before the wake-up. Therefore, the WDT and WDT postscaler will be cleared, the TO bit will be set and the PD bit will be cleared.

Even if the flag bits were checked before executing a SLEEP instruction, it may be possible for flag bits to become set before the SLEEP instruction completes. To determine whether a SLEEP instruction executed, test the \overline{PD} bit. If the \overline{PD} bit is set, the SLEEP instruction was executed as a NOP.

To ensure that the WDT is cleared, a CLRWDT instruction should be executed before a SLEEP instruction.

^{© 1998-2013} Microchip Technology Inc.

TABLE 11-2 PIC16CXXX INSTRUCTION SET

Operands MSb LSb Affected BYTE-ORIENTED FILE REGISTER OPERATIONS	Mnemonic,		Description	Cycles		14-Bit Opcode			Status	Notes
ADDWF f, d Add W and f 1 00 0111 dfff ffff C,DC,Z ANDWF f, d AND W with f 1 00 0101 dfff ffff Z CLRF f Clear W 1 00 0001 lfff ffff Z COMF f, d Complement f 1 00 0011 dfff ffff Z COMF f, d Decrement f 1 00 1011 dfff ffff Z DECFS f, d Increment f 1 00 1010 dfff fff Z INCF5 f, d Increment f skip if 0 1(2) 00 1101 dfff fff Z INCF52 f, d Move f 1 00 0000 diff fff Z MOVF f, d Move f 1 00 0100 dfff fff Z MOVF f, d Rotate Leift through Carry <th>Operands</th> <th></th> <th></th> <th></th> <th>MSb</th> <th></th> <th></th> <th>LSb</th> <th>Affected</th> <th></th>	Operands				MSb			LSb	Affected	
ANDWF f, d AND W with f 1 00 0101 dfff ffff Z CLRF f Clear W 1 00 0001 1fff ffff Z COMF f, d Complement f 1 00 0011 dfff ffff Z COMF f, d Decrement f, Skip if 0 1(2) 00 1011 dfff ffff Z DECFSZ f, d Increment f, Skip if 0 1(2) 00 111 dfff ffff Z MOVF f, d Move f 1 00 000 dffff Z MOVF f d Move f 1 00 000 000 000 000 000 000 RF f, d Rotate Left fhrough Carry 1 00 100 dfff ffff Z SUBWF f, d Swap nibbles in f 1 00 010 dfff ffff Z SUBWF f, b </th <th>BYTE-ORIE</th> <th>NTED</th> <th>FILE REGISTER OPERATIONS</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	BYTE-ORIE	NTED	FILE REGISTER OPERATIONS							
CLRF f Clear f Clear f 1 00 0001 lfff ffff Z COMF f, d Complement f 1 00 0001 dff ffff Z DECF f, d Decrement f 1 00 1001 dff ffff Z DECF f, d Decrement f, Skip if 0 1(2) 00 1010 dff ffff Z INCFSZ f, d Increment f, Skip if 0 1(2) 00 1010 dfff fff Z INCFSZ f, d Increment f, Skip if 0 1(2) 00 111 dfff Z INCFSZ f, d Increment f, Skip if C 1 00 000 dfff Z INCFSZ f, d Increment f, Skip if C 1 00 100 dfff Z MOVF f, d Move W to f 1 00 100 000 000 000 R GR GR GR GR	ADDWF	f, d	Add W and f	1	00	0111	dfff	ffff	C,DC,Z	1,2
CLRW - Clear W 1 00 0001 0000 0011 Z COMF f, d Cormplement f 1 00 0011 dff ffff Z DECF f, d Decrement f, Skip if 0 1(2) 00 0011 dff ffff Z INCF f, d Increment f, Skip if 0 1(2) 00 1010 dff ffff Z INCF f, d Increment f, Skip if 0 1(2) 00 1010 dff ffff Z INCF f, d Increment f, Skip if 0 1(2) 00 1011 dff ffff Z INCF f, d Increment f, Skip if 0 1 00 0000 dff ffff Z MOVF f, d Move f 1 00 0000 dff ffff Z SUBWF f, d Rotate Left ftmough Carry 1 00 0010 dff ffff C,DC,Z SUBWF f, d Subtract W from f 1 00 1010 dfff fffff Z Z SUBWF	ANDWF	f, d	AND W with f	1	00	0101	dfff	ffff	Z	1,2
COMF f, d Complement f 1 00 1001 dfff ffff Z DECFSZ f, d Decrement f, Skip if 0 1(2) 00 1011 dfff ffff Z INCF f, d Increment f 1 00 1010 dfff fffff Z INCFSZ f, d Increment f, Skip if 0 1(2) 00 1111 dfff fffff Z IORWF f, d Increment f, Skip if 0 1(2) 00 1111 dfff fffff Z MOVF f Move f 1 00 0000 dfff fffff Z MOVF f Move V to f 1 00 0000 dfff fffff Z SUBWF f, d Subtract W from f 1 00 100 dfff fffff C,DC,Z SWAPF f, d Subtract W from f 1 00 0101 dfff fffff Z BIT-ORIENTED FILE Ecolusive OR W w	CLRF	f	Clear f	1	00	0001	lfff	ffff	Z	2
DECF f, d Decrement f 1 00 0011 dfff fff Z DECFSZ f, d Increment f 1 00 1010 dfff fff Z INCF f, d Increment f 1 00 1010 dfff ffff Z INCFSZ f, d Increment f, Skip if 0 1(2) 00 1111 dfff fff Z INCFSZ f, d Inclusive OR W with f 1 00 0100 dfff fff Z MOVF f, d Move f 1 00 1000 dfff ffff Z MOVWF f, d Rotate Left fthrough Carry 1 00 1101 dfff fff C C Z SUBWF f, d Rotate Left fthrough Carry 1 00 1100 dfff fff C C C C C C C C C C C C C C	CLRW	-	Clear W	1	00	0001	0000	0011		
DECFSZ f, d Decrement f, Skip if 0 1(2) 0 1011 dfff ffff INCF f, d Increment f 1 0 1010 dfff ffff Z INCFSZ f, d Increment f, Skip if 0 1(2) 0 1111 dfff ffff Z INCFSZ f, d Inclusive CR W with f 1 0 0.000 dfff ffff Z MOVF f, d Move f 1 0 0.000 dfff ffff Z MOVWF f Move W to f 1 0 0.0000 0.000 C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.	COMF	f, d	Complement f		00	1001	dfff	ffff	Z	1,2
INCF f, d Increment f 1 00 1010 dfff fff Z INCFSZ f, d Increment f, Skip if 0 1(2) 00 1111 dfff fff Z IORWF f, d Move OR W with f 1 00 0100 dfff fff Z MOVF f, d Move W to f 1 00 0000 lfff fff Z MOVF f Move W to f 1 00 0000 lfff Gff Z MOVF f Rotate Left fthrough Carry 1 00 1100 dfff Gff C C SUBWF f, d Rotate Left fthrough Carry 1 00 1100 dfff fff C C,DC,Z SUBWF f, d Subtract W from f 1 00 1010 dfff ffff C C,DC,Z SUBWF f, d Exclusive OR W with f 1 01 010 bb bfff fffff	DECF	f, d	Decrement f	1	00	0011	dfff	ffff	Z	1,2
INCFSZ f, d Increment f, Skip if 0 1(2) 00 1111 dff ffff Z MOVF f, d Inclusive OR W with f 1 00 0100 dfff ffff Z MOVF f, d Move f 1 00 0000 dfff ffff Z MOVF f, d Move f 1 00 0000 dfff ffff Z MOVF f, d Move f 1 00 0000 dfff ffff NOP No Operation 1 00 100 dfff ffff C SUBWF f, d Rotate Left fthrough Carry 1 00 1100 dfff ffff C C,DC,Z SWAPF f, d Swap nibbles in f 1 00 110 dfff ffff Z BIT-ORIENTED FILE REGISTER OPERATIONS 1 1 01 0bb bfff fffff Z BTFSS f, b Bit Test f, Skip if Set 1 1 1	DECFSZ	f, d	Decrement f, Skip if 0	1(2)	00	1011	dfff	ffff		1,2,3
IORWF f, d Inclusive OR W with f 1 00 0100 dfff ffff Z MOVF f, d Move f 1 00 0100 dfff ffff Z MOVWF f Move W to f 1 00 0000 lfff ffff Z MOVWF f Move W to f 1 00 0000 lfff ffff Z NOP No Operation 1 00 1000 dfff ffff C RRF f, d Rotate Left fthrough Carry 1 00 1100 dfff ffff C,DC,Z SWAPF f, d Subtract W from f 1 00 110 dfff ffff C,DC,Z SWAPF f, d Exclusive OR W with f 1 01 00bb bfff ffff Z BIT-ORIENTED FILE REGISTER OPERATIONS 1 11 01 01bb bfff ffff BTFSS f, b Bit Test f, S	INCF	f, d	Increment f		00	1010	dfff	ffff	Z	1,2
MOVF f, d Move f Move f 1 00 1000 dfff ffff Z MOVWF f Move W to f 1 00 0000 0kx0 0000 Rff ffff C NOP - No Operation 1 00 0000 0kx0 0000 Rk ffff C C RFF f, d Rotate Left fthrough Carry 1 00 1100 dfff ffff C	INCFSZ			1(2)	00	1111	dfff	ffff		1,2,3
MOVWF f Move W to f 1 00 00000 lfff ffff NOP - No Operation 1 00 0000 0xx0 0000 RLF f, d Rotate Left fthrough Carry 1 00 1101 dfff ffff C SUBWF f, d Subtract W from f 1 00 1100 dfff ffff C D C,DC,Z D C,DC,Z D D D 1100 dfff ffff C D<		,		-		0100			—	1,2
NOP - No Operation 1 00 0000 0xxx 0000 RLF f, d Rotate Left f through Carry 1 00 1101 dfff ffff C SUBWF f, d Subtract W from f 1 00 0100 dfff ffff C SWAPF f, d Swap nibbles in f 1 00 0110 dfff ffff C C,DC,Z SWAPF f, d Swap nibbles in f 1 00 0110 dfff ffff C C,DC,Z XORWF f, d Exclusive OR W with f 1 00 0110 dfff ffff Z BIT-ORIENTED FILE REGISTER OPERATIONS Bit Clear f 1 01 010bb bfff fffff Z BFFSC f, b Bit Test f, Skip if Clear 1 1 11 11bb bfff ffff LITERAL AND CONTROL OPERATIONS Interal with W 1 11 111 111k kkkk kkkk Z ADDLW k Add literal and W 1	MOVF	f, d	Move f	-	00	1000	dfff	ffff	Z	1,2
RLF f, d Rotate Leff through Carry 1 00 1101 dff ffff C RRF f, d State Right f through Carry 1 00 1101 dff ffff C SUBWF f, d Subtract W from f 1 00 1100 dff ffff C C,DC,Z SWAPF f, d Swap nibbles in f 1 00 1101 dff ffff C,DC,Z SWAPF f, d Swap nibbles in f 1 00 1101 dff ffff C,DC,Z SWAPF f, d Swap nibbles in f 1 00 1101 dff ffff Z BIT-ORIENTED FILE REGISTER OPERATIONS I 1 01 00bb bfff ffff BTFSS f, b Bit Test f, Skip if Clear 1 1 11 111b bfff ffff LITERAL AND CONTROL OPERATIONS I 11 111 1111 111k kkkk kkkk Z CALL k Calls subroutine 2 10 <td></td> <td>f</td> <td></td> <td>-</td> <td>00</td> <td>0000</td> <td>lfff</td> <td>ffff</td> <td></td> <td></td>		f		-	00	0000	lfff	ffff		
RRFf, dRotate Right f through Carry1001100dfffffffCSUBWFf, dSubtract W from f1000010dfffffffC,DC,ZSWAPFf, dSwap nibbles in f1001110dfffffffC,DC,ZSWAPFf, dExclusive OR W with f1000110dfffffffZBIT-ORIENTED FILEREGISTER OPERATIONSBCFf, bBit Clear f10100bbbfffffffBSFf, bBit Set f10110bbbfffffffBTFSSf, bBit Test f, Skip if Clear1 (2)0111bbbfffffffBTFSSf, bBit Test f, Skip if Set1 (2)0111bbbfffffffLITERAL AND CONTROL OPERATIONSADDLWkAdd literal and W111111kkkkkkkkZADDLWkAdd literal and W111111kkkk kkkkZClaulkCall subroutine2100kkk kkkkkTO,PDGOTOkGo to address2101kkk kkkkkZIORLWkInclusive OR literal with W1111000kkkk kkkkRETURReturn from interrupt20000000100IO,PDRETURNReturn from Subroutine200000000001000SLEEPGo into standby mode100 <td< td=""><td>NOP</td><td>-</td><td>No Operation</td><td>-</td><td>00</td><td>0000</td><td>0xx0</td><td>0000</td><td></td><td></td></td<>	NOP	-	No Operation	-	00	0000	0xx0	0000		
SUBWFf, dSubtract W from f1000010dfffffffC,DC,ZSWAPFf, dSwap nibbles in f1001110dfffffffZBIT-ORIENTED FILE REGISTER OPERATIONSBCFf, bBit Clear f10100bbbfffffffBSFf, bBit Clear f10101bbbfffffffBTFSCf, bBit Test f, Skip if Clear1 (2)0110bbbfffffffBTFSSf, bBit Test f, Skip if Set1 (2)0111bbbfffffffLITERAL AND CONTROL OPERATIONSADDLWkAdd literal and W111111111xkkkkkkkkZCALLkCall subroutine2100kkkkkkkZCALLkGo to address2101kkkkkkkZGOTOkGo to address210111100xkkkkZMOVLWkInclusive OR literal with W1111100xkkkkZMOVLWkReturn from interrupt20000001001TO,PDRETFIE-Return from interrupt21101xxkkkkkkkkRETURN-Return from Subroutine21101xxkkkkkkkkRETURN-Go into standby mode10000000101TO,PD	RLF	,	o ,	-	00	1101	dfff	ffff	С	1,2
SWAPFf, dSwap nibbles in f1001110dfffffffZBIT-ORIENTED FILE REGISTER OPERATIONSBCFf, bBit Clear f10100bbbfffffffZBSFf, bBit Clear f10101bbbfffffffZBTFSCf, bBit Test f, Skip if Clear110101bbbfffffffBTFSSf, bBit Test f, Skip if Set1120111bbbfffFfffLITERAL AND COVTROL OPERATIONSADDLWkAdd literal and W111111101kkkkkkkkZCALLkCall subroutine2100kkkkkkkKkkZCALLkCall subroutine2101kkkkkkkZGo to address2101kkkkkkkZOVUW1111000kkkkKkkZMOVLW1110000000001001Return from interrupt200000000001001Return from subroutine21101xxkkkkkkkRETURN -Return from Subroutine20000001001Go into standby mode10000000101 <td>RRF</td> <td>,</td> <td></td> <td></td> <td>00</td> <td>1100</td> <td>dfff</td> <td>ffff</td> <td>-</td> <td>1,2</td>	RRF	,			00	1100	dfff	ffff	-	1,2
XORWFf, dExclusive OR W with f1000110dfffffffZBIT-ORIENTED FILE REGISTER OPERATIONSBCFf, bBit Clear f10100bbbffffffffBSFf, bBit Set f10101bbbffffffffBTFSCf, bBit Test f, Skip if Clear1 (2)0110bbbffffffffBTFSSf, bBit Test f, Skip if Set1 (2)0111bbbfffffffLITERAL AND CONTROL OPERATIONSADDLWkAdd literal and W111111111xkkkkkkkkZCALLkCall subroutine2100kkkkkkkZTO,PDGOTOkGo to address2101kkkkkkkKkkkZMOVLWkInclusive OR literal with W11100xkkkkKkkkZMOVLWkReturn from interrupt20000000001TO,PDRETFIE-Return from Subroutine21101xxkkkkKkkkFO,PDRETURN-Return from Subroutine200000000001001TO,PDRETURN-Return from Subroutine200000000001001TO,PDRETER-Go into standby mode10000001001TO,PD	SUBWF	f, d	Subtract W from f	-	00	0010	dfff	ffff	C,DC,Z	1,2
Bit Clear fBSFf, bBit Clear f10100bbbfffffffBFFSCf, bBit Test f, Skip if Clear1 (2)0110bbbfffffffBTFSCf, bBit Test f, Skip if Clear1 (2)0110bbbfffffffBTFSSf, bBit Test f, Skip if Set1 (2)0110bbbfffffffLITERAL AND CONTROL OPERATIONSADDLWkAdd literal and W111111111.kkkkkkkkZCALLkAdd literal and W1111001kkkkkkkkZCALLkCall subroutine2100kkkkkkkkkkkZCALLkCall subroutine2100kkkkkkkkkkkZCALLkGo to address210111000kkkkkkkkZGOTOkGo to address210111000kkkkZMOVLWkInclusive OR literal with W1111000kkkkZMOVLWkReturn from interrupt20000001001TO, PDGo into standby mode101000001000TO, PD	SWAPF	f, d	Swap nibbles in f		00	1110	dfff	ffff		1,2
BCFf, bBit Clear f10100bbbfffffffBSFf, bBit Set f10101bbbfffffffBTFSCf, bBit Test f, Skip if Clear110101bbbfffffffBTFSSf, bBit Test f, Skip if Set11111bbbfffffffLITERAL AND CONTROL OPERATIONSADDLWkAdd literal and W111111 xkkkkkkkZADDLWkAdd literal with W1111001 kkkkkkkkC,DC,ZCALLkCall subroutine2100000001101000GOTOkGo to address2101kkkkkkkkkkkZIORLWkInclusive OR literal with W1111000 kkkkkkkkZMOVLWkReturn from interrupt200000000001001RETFIE-Return with literal in W21101xxkkkkkkkkKRETURN-Return from Subroutine200000000001000SLEEP-Go into standby mode10000000110TO,PD	-			1	00	0110	dfff	ffff	Z	1,2
BSFf, bBit Set f10101bbbfffffffBTFSCf, bBit Test f, Skip if Clear110110bbbfffffffBTFSSf, bBit Test f, Skip if Set110110bbbfffffffLITERAL AND CONTROL OPERATIONSADDLWkAdd literal and W111111kkkkkkkC,DC,ZADDLWkAdd literal with W1111001kkkkkkkkZCALLkCall subroutine210000001100100TO,PDGOTOkGo to address21011kkkkkkkkkkkkZIORLWkInclusive OR literal with W1111000kkkkKkkkZMOVLWkReturn from interrupt200000000011001TO,PDRETLWkReturn with literal in W21101xxkkkkkkkkKkkkRETURN-Return from Subroutine200000000001001TO,PDSLEEP-Go into standby mode100000001100101TO,PD	-									
BTFSC BTFSSf, b bBit Test f, Skip if Clear Bit Test f, Skip if Set1 (2) 1 (2)0110bbbfffffffLITERAL AND CONTROL OPERATIONSADDLW ANDLW CALLkAdd literal and W111111111xkkkkkkkkC,DC,ZADDLW ANDLWkAdd literal with W1111111001kkkkkkkkZCALL CALL GOTO GOTO GOTO GOTO KCall subroutine Go to address2100kkkkkkkkkkkZTO,PDGOTO GOTO GOTO GOTO KGo to address2101kkkkkkkZIORLW KInclusive OR literal with W1111000kkkkKkkkZMOVLW RETFIE FTIE <br< td=""><td></td><td>,</td><td></td><td></td><td>01</td><td>00bb</td><td></td><td></td><td></td><td>1,2</td></br<>		,			01	00bb				1,2
BTFSSf, bBit Test f, Skip if Set1 (2)0111bbbfffffffLITERAL AND COVERATIONSADDLWkAdd literal and W111111 x kkkkkkkkC,DC,ZANDLWkAND literal with W111111 x kkkkkkkkC,DC,ZCALLkCall subroutine2100kkkkkkkkkkkZCALLkCall subroutine2100kkkkkkkkkkkZGOTOkGo to address2101kkkkkkkkkkkZIORLWkInclusive OR literal with W1111000kkkkKkkkZMOVLWkMove literal to W1111000kkkkkkkkZRETFIE-Return from interrupt200000000011001RETLWkReturn from Subroutine200000000001000SLEEP-Go into standby mode10000000110TO,PD	-			-	01	01bb	bfff	ffff		1,2
LITERAL AND CONTROL OPERATIONSADDLWkAdd literal and W111111 111xkkkkkkkkC,DC,ZANDLWkAND literal with W1111001kkkkkkkkC,DC,ZCALLkCall subroutine2100kkkkkkkkkkkkkkkZCALLkCall subroutine2100kkkkkkkkkkkZCALLkCall subroutine21000000011001000GOTOkGo to address2101kkkkkkkkkkkZIORLWkInclusive OR literal with W1111000kkkkkkkkZMOVLWkMove literal to W1110000000001001Return from interrupt200000000010011RETLIPReturn from interrupt20000000000100010001000SLEEP-Go into standby mode100000001101001TO,PD					01	10bb	bfff	ffff		3
ADDLWkAdd literal and W111111 x kkkkkkkkC,DC,ZANDLWkAND literal with W1111001 kkkkkkkkZCALLkCall subroutine2100kkkkkkkkkkkZCLRWDT-Clear Watchdog Timer100000001100100TO,PDGOTOkGo to address2101kkkkkkkkkkkZIORLWkInclusive OR literal with W1111000kkkkkkkkZMOVLWkMove literal to W1110000000001001RETFIE-Return from interrupt200000000001001RETURN-Return with literal in W21101xxkkkkkkkkRETURN-Return from Subroutine200000000001000TO,PDSLEEP-Go into standby mode10000000110011TO,PD				1 (2)	01	11bb	bfff	ffff		3
ANDLWkAND literal with W1111001kkkkkkkkZCALLkCall subroutine2100kkkkkkkkkkkKkkkZCLRWDT-Clear Watchdog Timer100000001100100TO,PDGOTOkGo to address2101kkkkkkkkkkkKkkkZIORLWkInclusive OR literal with W1111000kkkkkkkkZMOVLWkMove literal to W111000000001001RETFIE-Return from interrupt200000000001001RETLWReturn with literal in W21101xxkkkkkkkkRETURN-Return from Subroutine200000000001000TO,PDSLEEP-Go into standby mode100000001100011TO,PD										•
CALL k Call subroutine 2 10 0kkk kkkk kkkkk kkkk kkkk kkkkk kkkk kkkkk kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk				-	11					
CLRWDT - Clear Watchdog Timer 1 00 0000 0110 100 GOTO k Go to address 2 10 1kkk kkkk kkkk IORLW k Inclusive OR literal with W 1 11 1000 kkkk kkkk Z MOVLW k Move literal to W 1 11 1000 kkkk kkkk Z RETFIE - Return from interrupt 2 00 0000 0000 1001 RETLW k Return with literal in W 2 11 01xx kkkk kkkk RETURN - Return from Subroutine 2 00 0000 0000 1000 SLEEP - Go into standby mode 1 00 0000 0110 TO,PD					11	1001	kkkk	kkkk	Z	
GOTO k Go to address 2 10 1kkk kkkk kkkk IORLW k Inclusive OR literal with W 1 11 1000 kkkk kkkk Z MOVLW k Move literal to W 1 11 1000 kkkk kkkk Z RETFIE - Return from interrupt 2 00 0000 1001 RETLW k Return with literal in W 2 11 01xx kkkk kkkk RETURN - Return from Subroutine 2 00 0000 1000 SLEEP - Go into standby mode 1 00 0000 011 TO, PD	-				10	0kkk	kkkk			
IORLW k Inclusive OR literal with W 1 11 1000 kkkk kkkk Z MOVLW k Move literal to W 1 11 1000 kkkk kkkk Z MOVLW k Move literal to W 1 11 1000 kkkk kkkk kkkk RETFIE - Return from interrupt 2 00 0000 0000 1001 RETLW k Return with literal in W 2 11 01xx kkkk kkkk RETURN - Return from Subroutine 2 00 0000 0000 1000 SLEEP - Go into standby mode 1 00 0000 011 TO,PD			5	-	00				TO,PD	
MOVLW k Move literal to W 1 11 00xx kkkk kkkk RETFIE - Return from interrupt 2 00 0000 0000 1001 RETLW k Return with literal in W 2 11 01xx kkkk kkkk RETURN - Return from Subroutine 2 00 0000 0000 1000 SLEEP - Go into standby mode 1 00 0000 011 TO,PD					10	1kkk				
RETFIE - Return from interrupt 2 00 0000 0000 1001 RETLW k Return with literal in W 2 11 01xx kkkk kkkk RETURN - Return from Subroutine 2 00 0000 0000 1000 SLEEP - Go into standby mode 1 00 0000 011 TO,PD	-				11				Z	
RETLW k Return with literal in W 2 11 01xx kkkk kkkk RETURN - Return from Subroutine 2 00 0000 0000 1000 SLEEP - Go into standby mode 1 00 0000 011 TO,PD	-	k		-	11	00xx	kkkk	kkkk		
RETURN - Return from Subroutine 2 00 0000 1000 SLEEP - Go into standby mode 1 00 0000 0110 TO,PD		-	•		00	0000				
SLEEP - Go into standby mode 1 00 0000 0110 TO, PD		k			11	01xx	kkkk	kkkk		
	RETURN	-			00	0000	0000	1000		
SUBLW k Subtract W from literal 1 11 11 0 w kikiki kikiki CDC 7	SLEEP	-	Go into standby mode	1	00	0000	0110	0011	TO,PD	
	SUBLW	k	Subtract W from literal	1	11	110x	kkkk	kkkk	C,DC,Z	
XORLW k Exclusive OR literal with W 1 11 1010 kkkk Kkkk Z	XORLW	k	Exclusive OR literal with W	1	11	1010	kkkk	kkkk	Z	

Note 1: When an I/O register is modified as a function of itself (e.g., MOVF PORTB, 1), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if assigned to the Timer0 Module.

3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

PIC16C62B/72A

BTFSS	Bit Test f, Skip if Set
Syntax:	[<i>label</i>] BTFSS f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b < 7 \end{array}$
Operation:	skip if (f) = 1
Status Affected:	None
Description:	If bit 'b' in register 'f' is '0', then the next instruction is executed. If bit 'b' is '1', then the next instruction is discarded and a NOP is executed instead, making this a 2TCY instruction.

CLRF	Clear f
Syntax:	[<i>label</i>] CLRF f
Operands:	$0 \le f \le 127$
Operation:	$\begin{array}{l} 00h \rightarrow (f) \\ 1 \rightarrow Z \end{array}$
Status Affected:	Z
Description:	The contents of register 'f' are cleared and the Z bit is set.

BTFSC	Bit Test, Skip if Clear
Syntax:	[<i>label</i>] BTFSC f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	skip if (f) = 0
Status Affected:	None
Description:	If bit 'b' in register 'f' is '1', then the next instruction is executed. If bit 'b' in register 'f' is '0', then the next instruction is discarded, and a NOP is executed instead, making this a 2TCY instruction.

CLRW	Clear W
Syntax:	[label] CLRW
Operands:	None
Operation:	$\begin{array}{l} 00h \rightarrow (W) \\ 1 \rightarrow Z \end{array}$
Status Affected:	Z
Description:	W register is cleared. Zero bit (Z) is set.

CALL	Call Subroutine	CLRWDT	Clear Watchdog Timer
Syntax:	[<i>label</i>] CALL k	Syntax:	[label] CLRWDT
Operands:	$0 \le k \le 2047$	Operands:	None
Operation:	(PC)+ 1 \rightarrow TOS, k \rightarrow PC<10:0>, (PCLATH<4:3>) \rightarrow PC<12:11>	Operation:	$00h \rightarrow WDT$ 0 $\rightarrow WDT$ prescaler, 1 $\rightarrow \overline{TO}$
Status Affected:	None		$1 \rightarrow \overline{PD}$
Description:	Call Subroutine. First, return address	Status Affected:	TO, PD
	(PC+1) is pushed onto the stack. The eleven bit immediate address is loaded into PC bits <10:0>. The upper bits of the PC are loaded from PCLATH. CALL is a two cycle instruction.	Description:	CLRWDT instruction resets the Watch- dog Timer. It also resets the prescaler of the WDT. Status bits TO and PD are set.

PIC16C62B/72A

IORLW	Inclusive OR Literal with W
Syntax:	[label] IORLW k
Operands:	$0 \le k \le 255$
Operation:	(W) .OR. $k \rightarrow$ (W)
Status Affected:	Z
Description:	The contents of the W register is OR'ed with the eight bit literal 'k'. The result is placed in the W register.

MOVLW	Move Literal to W					
Syntax:	[<i>label</i>] MOVLW k					
Operands:	$0 \leq k \leq 255$					
Operation:	$k \rightarrow (W)$					
Status Affected:	None					
Description:	The eight bit literal 'k' is loaded into W register. The don't cares will assemble as 0's.					

IORWF	Inclusive OR W with f
Syntax:	[label] IORWF f,d
Operands:	$\begin{array}{l} 0\leq f\leq 127\\ d\in [0,1] \end{array}$
Operation:	(W) .OR. (f) \rightarrow (destination)
Status Affected:	Z
Description:	Inclusive OR the W register with regis- ter 'f'. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in register 'f'.

MOVWF	Move W to f					
Syntax:	[label] MOVWF f					
Operands:	$0 \leq f \leq 127$					
Operation:	$(W) \rightarrow (f)$					
Status Affected:	None					
Description:	Move data from W register to register					

MOVF	Move f
Syntax:	[<i>label</i>] MOVF f,d
Operands:	$\begin{array}{l} 0\leq f\leq 127\\ d\in [0,1] \end{array}$
Operation:	(f) \rightarrow (destination)
Status Affected:	Z
Description:	The contents of register f is moved to a destination dependant upon the sta- tus of d. If $d = 0$, destination is W reg- ister. If $d = 1$, the destination is file register f itself. $d = 1$ is useful to test a file register since status flag Z is affected.

No Operation
[label] NOP
None
No operation
None
No operation.

12.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers are supported with a full range of hardware and software development tools:

- Integrated Development Environment
 - MPLAB™ IDE Software
- Assemblers/Compilers/Linkers
 - MPASM Assembler
 - MPLAB-C17 and MPLAB-C18 C Compilers
 - MPLINK/MPLIB Linker/Librarian
- Simulators
 - MPLAB-SIM Software Simulator
- Emulators
 - MPLAB-ICE Real-Time In-Circuit Emulator
 - PICMASTER[®]/PICMASTER-CE In-Circuit Emulator
 - ICEPIC™
- In-Circuit Debugger
 - MPLAB-ICD for PIC16F877
- Device Programmers
 - PRO MATE[®] II Universal Programmer
 - PICSTART[®] Plus Entry-Level Prototype Programmer
- Low-Cost Demonstration Boards
 - SIMICE
 - PICDEM-1
 - PICDEM-2
 - PICDEM-3
 - PICDEM-17
 - SEEVAL®
 - KEELOQ[®]

12.1 <u>MPLAB Integrated Development</u> <u>Environment Software</u>

- The MPLAB IDE software brings an ease of software development previously unseen in the 8-bit microcontroller market. MPLAB is a Windows[®]-based application which contains:
- Multiple functionality
 - editor
 - simulator
 - programmer (sold separately)
 - emulator (sold separately)
- A full featured editor
- A project manager
- · Customizable tool bar and key mapping
- · A status bar
- On-line help

MPLAB allows you to:

- Edit your source files (either assembly or 'C')
- One touch assemble (or compile) and download to PIC MCU tools (automatically updates all project information)
- Debug using:
 - source files
 - absolute listing file
 - object code

The ability to use MPLAB with Microchip's simulator, MPLAB-SIM, allows a consistent platform and the ability to easily switch from the cost-effective simulator to the full featured emulator with minimal retraining.

12.2 MPASM Assembler

MPASM is a full featured universal macro assembler for all PIC MCUs. It can produce absolute code directly in the form of HEX files for device programmers, or it can generate relocatable objects for MPLINK.

MPASM has a command line interface and a Windows shell and can be used as a standalone application on a Windows 3.x or greater system. MPASM generates relocatable object files, Intel standard HEX files, MAP files to detail memory usage and symbol reference, an absolute LST file which contains source lines and generated machine code, and a COD file for MPLAB debugging.

MPASM features include:

- MPASM and MPLINK are integrated into MPLAB projects.
- MPASM allows user defined macros to be created for streamlined assembly.
- MPASM allows conditional assembly for multi purpose source files.
- MPASM directives allow complete control over the assembly process.

12.3 <u>MPLAB-C17 and MPLAB-C18</u> <u>C Compilers</u>

The MPLAB-C17 and MPLAB-C18 Code Development Systems are complete ANSI 'C' compilers and integrated development environments for Microchip's PIC17CXXX and PIC18CXXX family of microcontrollers, respectively. These compilers provide powerful integration capabilities and ease of use not found with other compilers.

For easier source level debugging, the compilers provide symbol information that is compatible with the MPLAB IDE memory display.

12.4 MPLINK/MPLIB Linker/Librarian

MPLINK is a relocatable linker for MPASM and MPLAB-C17 and MPLAB-C18. It can link relocatable objects from assembly or C source files along with precompiled libraries using directives from a linker script.

PIC16C62B/72A

NOTES:

			Standar	d Opera	ating Co	ondition	s (unless otherwise stated)
DC CHA	RACTE	RISTICS	Operatir	ng temp	erature		\leq TA \leq +70°C for commercial
	1	1	1	1	1	-40°C	
Param No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
D001	Vdd	Supply Voltage	2.5	-	5.5	V	LP, XT, RC osc modes (DC - 4 MHz)
			VBOR*	-	5.5	V	BOR enabled (Note 7)
D002*	Vdr	RAM Data Retention Voltage (Note 1)	-	1.5	-	V	
D003	VPOR	VDD Start Voltage to ensure internal Power-on Reset signal	-	Vss	-	V	See section on Power-on Reset for details
D004* D004A*	SVDD	VDD Rise Rate to ensure internal Power-on Reset signal	0.05 TBD	- -	-	V/ms	PWRT enabled (PWRTE bit clear) PWRT disabled (PWRTE bit set) See section on Power-on Reset for details
D005	VBOR	Brown-out Reset voltage trip point	3.65	-	4.35	V	BODEN bit set
D010	IDD	Supply Current (Note 2, 5)	-	2.0	3.8	mA	XT, RC osc modes Fosc = 4 MHz, VDD = 3.0V (Note 4)
D010A			-	22.5	48	μA	LP OSC MODE FOSC = 32 kHz, VDD = 3.0V, WDT disabled
D020	IPD	Power-down Current	-	7.5	30	μA	VDD = 3.0V, WDT enabled, -40°C to +85°C
D021		(Note 3, 5)	-	0.9	5	μA	VDD = $3.0V$, WDT disabled, $0^{\circ}C$ to $+70^{\circ}C$
D021A			-	0.9	5	μA	VDD = 3.0V, WDT disabled, -40°C to +85°C
		Module Differential Current (Note 6)					
D022*	Δ IWDT	Watchdog Timer	-	6.0	20	μA	WDTE BIT SET, VDD = 4.0V
D022A*	Δ IBOR	Brown-out Reset	-	TBD	200	μA	BODEN bit set, VDD = 5.0V

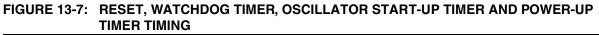
13.2 DC Characteristics: PIC16LC62B/72A-04 (Commercial, Industrial)

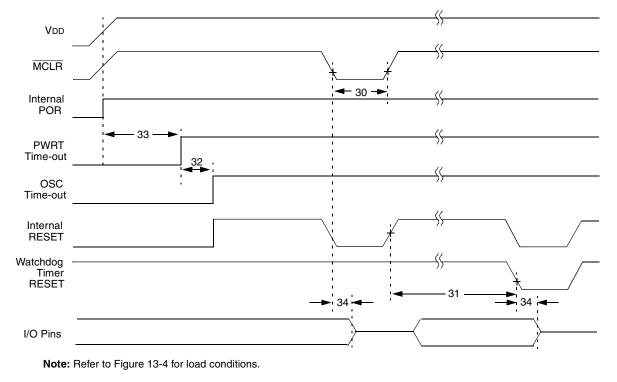
† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

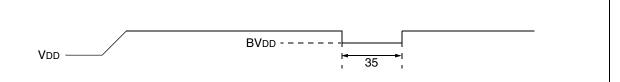
2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:


OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD,


 $\overline{MCLR} = VDD$; WDT enabled/disabled as specified.

- 3: The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and VSS.
- 4: For RC osc mode, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.


5: Timer1 oscillator (when enabled) adds approximately 20 µA to the specification. This value is from characterization and is for design guidance only. This is not tested.

- 6: The Δ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.
- 7: This is the voltage where the device enters the Brown-out Reset. When BOR is enabled, the device will perform a brown-out reset when VDD falls below VBOR.

FIGURE 13-8: BROWN-OUT RESET TIMING

TABLE 13-4:RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER
AND BROWN-OUT RESET REQUIREMENTS

Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
30	TmcL	MCLR Pulse Width (low)	2		_	μs	VDD = 5V, -40°C to +125°C
31*	Twdt	Watchdog Timer Time-out Period (No Prescaler)	7	18	33	ms	VDD = 5V, -40°C to +125°C
32	Tost	Oscillator Start-up Timer Period		1024 Tosc	—	—	Tosc = OSC1 period
33*	Tpwrt	Power-up Timer Period	28	72	132	ms	$VDD = 5V, -40^{\circ}C \text{ to } +125^{\circ}C$
34	Tıoz	I/O Hi-impedance from MCLR Low or WDT reset	_	_	2.1	μS	
35	TBOR	Brown-out Reset Pulse Width	100	_	_	μS	$VDD \le BVDD$ (D005)

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

PIC16C62B/72A

PIR1 Register	9, 15
ADIF Bit	
CCP1IF Bit	
SSPIF Bit	
TMR1IF Bit	-
TMR2IF Bit	
Pointer, FSR	
PORTA	
Analog Port Pins	
PORTA Register	
RA3:RA0 and RA5 Port Pins	
RA4/T0CKI Pin	
RA5/SS/AN4 Pin	
TRISA Register	
PORTB	,
PORTB Register	
Pull-up Enable (RBPU Bit)	
RB0/INT Edge Select (INTEDG Bit)	
RB0/INT Pin, External	
RB3:RB0 Port Pins	
RB7:RB4 Interrupt on Change	
RB7:RB4 Interrupt on Change	
Enable (RBIE Bit)	10 60
RB7:RB4 Interrupt on Change	13, 03
	10 01 60
Flag (RBIF Bit) RB7:RB4 Port Pins	
TRISB Register	
5	,
PORTC	
Block Diagram	
PORTC Register	
RC0/T1OSO/T1CKI Pin	
RC1/T1OSI Pin	
RC2/CCP1 Pin	
RC3/SCK/SCL Pin	
RC4/SDI/SDA Pin	
RC5/SDO Pin	,
RC6 Pin	-
RC7 Pin	
TRISC Register	10, 23
Postscaler, Timer2 Select (TOUTPS3:TOUTPS0 Bits)	01
Postscaler, WDT	
Assignment (PSA Bit)	
Block Diagram	
Rate Select (PS2:PS0 Bits)	
Switching Between Timer0 and WDT	
Power-on Reset (POR)	
Oscillator Start-up Timer (OST)	55, 59
POR Status (POR Bit)	
Power Control (PCON) Register	
Power-down (PD Bit)	11, 57
Power-on Reset Circuit, External	
Power-up Timer (PWRT)	
PWRT Enable (PWRTE Bit)	
Time-out (TO Bit)	
Time-out Sequence	
Timing Diagram	
Prescaler, Capture	
Prescaler, Timer0	
Assignment (PSA Bit)	
Block Diagram	
Rate Select (PS2:PS0 Bits)	12, 25
Switching Between Timer0 and WDT	
Prescaler, Timer1	
Select (T1CKPS1:T1CKPS0 Bits)	27

Prescaler, Timer2	36
Select (T2CKPS1:T2CKPS0 Bits)	31
PRO MATE® II Universal Programmer	
Program Counter	
PCL Register	
PCLATH Register	
Reset Conditions	60
Program Memory	7
Interrupt Vector	7
Paging	
Program Memory Map	7
Reset Vector	7
Program Verification	66
Programming Pin (Vpp)	6
Programming, Device Instructions	67
PWM (CCP Module)	36
Block Diagram	36
CCPR1H:CCPR1L Registers	
Duty Cycle	36
Example Frequencies/Resolutions	37
Output Diagram	36
Period	36
Set-Up for PWM Operation	37
TMR2 to PR2 Match	31, 36
TMR2 to PR2 Match Enable (TMR2IE Bit)	14
TMR2 to PR2 Match Flag (TMR2IF Bit)	15

Q

Q-Clock	
R	

Register File	8
Register File Map	
Reset	55, 57
Block Diagram	58
Reset Conditions for All Registers	61
Reset Conditions for PCON Register	60
Reset Conditions for Program Counter	60
Reset Conditions for STATUS Register	60
Timing Diagram	92
Revision History	111

S

SEEVAL® Evaluation and Programming System . SLEEP	
Software Simulator (MPLAB-SIM)	
Special Features of the CPU	55
Special Function Registers	9
Speed, Operating	1
SPI (SSP Module)	
Block Diagram	
Buffer Full Status (BF Bit)	
Clock Edge Select (CKE Bit)	
Clock Polarity Select (CKP Bit)	
Data Input Sample Phase (SMP Bit)	
Mode Select (SSPM3:SSPM0 Bits)	
Receive Overflow Indicator (SSPOV Bit)	47
Serial Clock (RC3/SCK/SCL)	
Serial Data In (RC4/SDI/SDA)	
Serial Data Out (RC5/SDO)	
Slave Select (RA5/SS/AN4)	
Synchronous Serial Port Enable (SSPEN Bit)	47