

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	I ² C, SPI
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	22
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 5.5V
Data Converters	A/D 5x8b
Oscillator Type	External
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c72a-04e-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets (4)
Bank 1											
80h	INDF ⁽¹⁾	Addressing	this locatio	n uses conte	ents of FSR	to address d	ata memory	(not a physi	cal register)	0000 0000	0000 0000
81h	OPTION_REG	RBPU	INTEDG	T0CS	TOSE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
82h	PCL ⁽¹⁾	Program C	ounter's (PC	C) Least Sig	nificant Byte	1				0000 0000	0000 0000
83h	STATUS ⁽¹⁾	IRP ⁽⁵⁾	RP1 ⁽⁵⁾	RP0	TO	PD	Z	DC	С	0001 1xxx	000q quuu
84h	FSR ⁽¹⁾	Indirect dat	a memory a	ddress poir	nter					xxxx xxxx	uuuu uuuu
85h	TRISA	—	—	PORTA Da	ta Direction	Register				11 1111	11 1111
86h	TRISB	PORTB Da	ta Direction	Register						1111 1111	1111 1111
87h	TRISC	PORTC Da	ta Direction	Register						1111 1111	1111 1111
88h-89h	_	Unimpleme	ented							_	_
8Ah	PCLATH ^(1,2)	—	_	—	Write Buffe	r for the upp	er 5 bits of th	e Program (Counter	0 0000	0 0000
8Bh	INTCON ⁽¹⁾	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
8Ch	PIE1	—	ADIE ⁽³⁾	_	—	SSPIE	CCP1IE	TMR2IE	TMR1IE	-0 0000	-0 0000
8Dh	_	Unimpleme	ented							_	_
8Eh	PCON	—	_	—	—	_	—	POR	BOR	dd	uu
8Fh-91h	_	Unimpleme	ented					•		_	_
92h	PR2	Timer2 Per	iod Registe	r						1111 1111	1111 1111
93h	SSPADD	Synchrono	us Serial Po	rt (I ² C mode	e) Address F	Register				0000 0000	0000 0000
94h	SSPSTAT	SMP	CKE	D/A	Р	S	R/W	UA	BF	0000 0000	0000 0000
95h-9Eh	—	Unimpleme	ented							—	—
9Fh	ADCON1 ⁽³⁾	_	_	_	_	_	PCFG2	PCFG1	PCFG0	000	000

TABLE 2-1 SPECIAL FUNCTION REGISTER SUMMARY (Cont.'d)

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0',

Shaded locations are unimplemented, read as '0'.

Note 1: These registers can be addressed from either bank.

2: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for PC<12:8> whose contents are transferred to the upper byte of the program counter.

3: A/D not implemented on the PIC16C62B, maintain as '0'.

4: Other (non power-up) resets include: external reset through MCLR and the Watchdog Timer Reset.

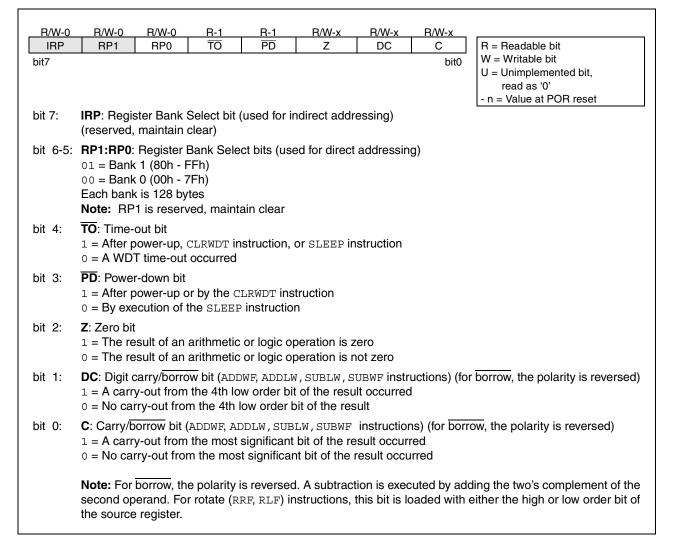
5: The IRP and RP1 bits are reserved. Always maintain these bits clear.

6: On any device reset, these pins are configured as inputs.

7: This is the value that will be in the port output latch.

2.2.2.1 STATUS REGISTER

The STATUS register, shown in Register 2-1, contains the arithmetic status of the ALU, the RESET status and the bank select bits for data memory.


The STATUS register can be the destination for any instruction, as with any other register. If the STATUS register is the destination for an instruction that affects the Z, DC or C bits, the write to these three bits is disabled. These bits are set or cleared according to the device logic. The TO and PD bits are not writable. The result of an instruction with the STATUS register as destination may be different than intended.

For example, CLRF STATUS will clear the upper-three bits and set the Z bit. This leaves the STATUS register as 000u uluu (where u = unchanged).

It is recommended, therefore, that only BCF, BSF, SWAPF and MOVWF instructions are used to alter the STATUS register, because these instructions do not affect the Z, C or DC bits from the STATUS register. For other instructions, not affecting any status bits, see the "Instruction Set Summary."

- **Note 1:** The IRP and RP1 bits are reserved. Maintain these bits clear to ensure upward compatibility with future products.
- Note 2: The C and DC bits operate as a borrow and digit borrow bit, respectively, in subtraction. See the SUBLW and SUBWF instructions.

REGISTER 2-1: STATUS REGISTER (ADDRESS 03h, 83h)

PIC16C62B/72A

2.2.2.4 PIE1 REGISTER

This register contains the individual enable bits for the peripheral interrupts.

REGISTER 2-4: PIE1 REGISTER (ADDRESS 8Ch)

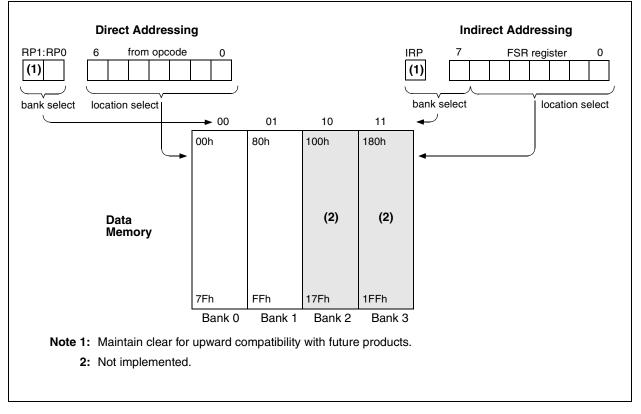
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 U-0 U-0 U-0 ADIE⁽¹⁾ SSPIE CCP1IE TMR2IE TMR1IE R = Readable bit W = Writable bit bit7 bit0 U = Unimplemented bit, read as '0' n = Value at POR reset Unimplemented: Read as '0' bit 7: ADIE⁽¹⁾: A/D Converter Interrupt Enable bit bit 6: 1 = Enables the A/D interrupt 0 = Disables the A/D interrupt bit 5-4: Unimplemented: Read as '0' bit 3: SSPIE: Synchronous Serial Port Interrupt Enable bit 1 = Enables the SSP interrupt 0 = Disables the SSP interrupt CCP1IE: CCP1 Interrupt Enable bit bit 2: 1 = Enables the CCP1 interrupt 0 = Disables the CCP1 interrupt TMR2IE: TMR2 to PR2 Match Interrupt Enable bit bit 1: 1 = Enables the TMR2 to PR2 match interrupt 0 = Disables the TMR2 to PR2 match interrupt TMR1IE: TMR1 Overflow Interrupt Enable bit bit 0: 1 = Enables the TMR1 overflow interrupt 0 = Disables the TMR1 overflow interrupt Note 1: The PIC16C62B does not have an A/D module. This bit location is reserved on these devices. Always maintain this bit clear.

Note: Bit PEIE (INTCON<6>) must be set to enable any peripheral interrupt.

2.5 Indirect Addressing, INDF and FSR Registers

The INDF register is not a physical register. Addressing INDF actually addresses the register whose address is contained in the FSR register (FSR is a *pointer*).

Reading INDF itself indirectly (FSR = 0) will produce 00h. Writing to the INDF register indirectly results in a no-operation (although STATUS bits may be affected).

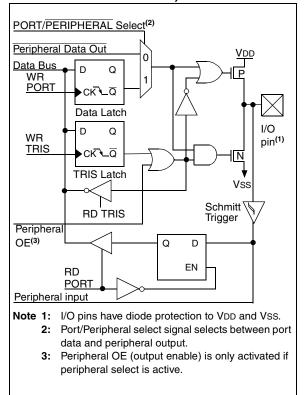

A simple program to clear RAM locations 20h-2Fh using indirect addressing is shown in Example 2-1.

EXAMPLE 2-1: HOW TO CLEAR RAM USING INDIRECT ADDRESSING

	movlw movwf		;initialize pointer ; to RAM
NEXT	clrf	INDF	;clear INDF register
	incf	FSR	;inc pointer
	btfss	FSR,4	;all done?
	goto	NEXT	;NO, clear next
CONTINUE			
	:		;YES, continue

An effective 9-bit address is obtained by concatenating the 8-bit FSR register and the IRP bit (STATUS<7>), as shown in Figure 2-3. However, IRP is not used in the PIC16C62B/72A.

FIGURE 2-3: DIRECT/INDIRECT ADDRESSING


3.3 PORTC and the TRISC Register

PORTC is an 8-bit wide bi-directional port. The corresponding data direction register is TRISC. Setting a TRISC bit (=1) will make the corresponding PORTC pin an input, (i.e., put the corresponding output driver in a hi-impedance mode). Clearing a TRISC bit (=0) will make the corresponding PORTC pin an output, (i.e., put the contents of the output latch on the selected pin).

PORTC is multiplexed with several peripheral functions (Table 3-5). PORTC pins have Schmitt Trigger input buffers.

When enabling peripheral functions, care should be taken in defining TRIS bits for each PORTC pin. Some peripherals override the TRIS bit to make a pin an output, while other peripherals override the TRIS bit to make a pin an input. Since the TRIS bit override maybe in effect while the peripheral is enabled, read-modify-write instructions (BSF, BCF, XORWF) with TRISC as destination should be avoided. The user should refer to the corresponding peripheral section for the correct TRIS bit settings.

FIGURE 3-5: PORTC BLOCK DIAGRAM (PERIPHERAL OUTPUT OVERRIDE)

4.0 TIMER0 MODULE

The Timer0 module timer/counter has the following features:

- 8-bit timer/counter
 - Read and write
 - INT on overflow
- 8-bit software programmable prescaler
- INT or EXT clock select
 - EXT clock edge select

Figure 4-1 is a simplified block diagram of the Timer0 module.

Additional information on timer modules is available in the PIC[®] MCU Mid-Range Reference Manual, (DS33023).

4.1 <u>Timer0 Operation</u>

Timer0 can operate as a timer or as a counter.

Timer mode is selected by clearing bit TOCS (OPTION_REG<5>). In timer mode, the Timer0 module will increment every instruction cycle (without prescaler). If the TMR0 register is written, the increment is inhibited for the following two instruction cycles. The user can work around this by writing an adjusted value to the TMR0 register.

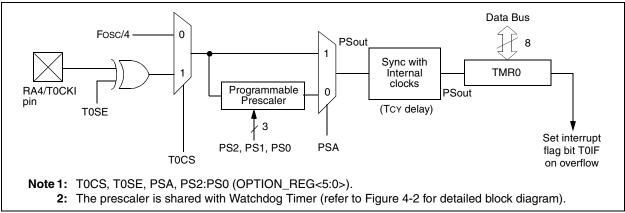
Counter mode is selected by setting bit T0CS (OPTION_REG<5>). In counter mode, Timer0 will increment either on every rising or falling edge of pin RA4/T0CKI. The incrementing edge is determined by the Timer0 Source Edge Select bit T0SE (OPTION_REG<4>). Clearing bit T0SE selects the rising edge. Restrictions on the external clock input are discussed below.

When an external clock input is used for Timer0, it must meet certain requirements. The requirements ensure the external clock can be synchronized with the internal phase clock (Tosc). Also, there is a delay in the actual incrementing of Timer0 after synchronization. Additional information on external clock requirements is available in the Electrical Specifications section of this manual, and in the PIC[®] MCU Mid-Range Reference Manual, (DS33023).

4.2 <u>Prescaler</u>

An 8-bit counter is available as a prescaler for the Timer0 module, or as a postscaler for the Watchdog Timer, respectively (Figure 4-2). For simplicity, this counter is being referred to as "prescaler" throughout this data sheet. There is only one prescaler available which is shared between the Timer0 module and the Watchdog Timer. A prescaler assignment for the Timer0 module means that there is no prescaler for the Watchdog Timer, and vice-versa.

The prescaler is not readable or writable.


The PSA and PS2:PS0 bits (OPTION_REG<3:0>) determine the prescaler assignment and prescale ratio.

Clearing bit PSA will assign the prescaler to the Timer0 module. When the prescaler is assigned to the Timer0 module, prescale values of 1:2, 1:4, ..., 1:256 are selectable.

Setting bit PSA will assign the prescaler to the Watchdog Timer (WDT). When the prescaler is assigned to the WDT, prescale values of 1:1, 1:2, ..., 1:128 are selectable.

When assigned to the Timer0 module, all instructions writing to the TMR0 register (e.g. CLRF 1, MOVWF 1, BSF 1, x....etc.) will clear the prescaler. When assigned to WDT, a CLRWDT instruction will clear the prescaler along with the WDT.

Note: Writing to TMR0 when the prescaler is assigned to Timer0 will clear the prescaler count, but will not change the prescaler assignment or ratio.

FIGURE 4-1: TIMER0 BLOCK DIAGRAM

NOTES:

8.0 SYNCHRONOUS SERIAL PORT (SSP) MODULE

8.1 SSP Module Overview

The Synchronous Serial Port (SSP) module is a serial interface useful for communicating with other peripheral or microcontroller devices. These peripheral devices may be Serial EEPROMs, shift registers, display drivers, A/D converters, etc. The SSP module can operate in one of two modes:

- Serial Peripheral Interface (SPI)
- Inter-Integrated Circuit (I²C)

For more information on SSP operation (including an I²C Overview), refer to the PIC[®] MCU Mid-Range Reference Manual, (DS33023). Also, refer to Application Note AN578, *"Use of the SSP Module in the I²C Multi-Master Environment."*

8.2 SPI Mode

This section contains register definitions and operational characteristics of the SPI module.

Additional information on SPI operation may be found in the PIC[®] MCU Mid-Range Reference Manual, (DS33023).

8.2.1 OPERATION OF SSP MODULE IN SPI MODE

A block diagram of the SSP Module in SPI Mode is shown in Figure 8-1.

The SPI mode allows 8-bits of data to be synchronously transmitted and received simultaneously. To accomplish communication, three pins are used:

- Serial Data Out (SDO)RC5/SDO
- Serial Data In (SDI)RC4/SDI/SDA
- Serial Clock (SCK)RC3/SCK/SCL

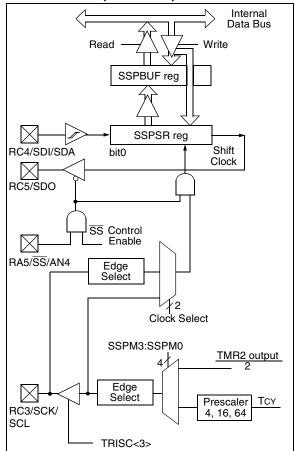
Additionally, a fourth pin may be used when in a slave mode of operation:

Slave Select (SS)RA5/SS/AN4

When initializing the SPI, several options need to be specified. This is done by programming the appropriate control bits in the SSPCON register (SSPCON<5:0>) and SSPSTAT<7:6>. These control bits allow the following to be specified:

- Master Operation (SCK is the clock output)
- Slave Mode (SCK is the clock input)
- Clock Polarity (Idle state of SCK)
- Clock Edge (Output data on rising/falling edge of SCK)
- Clock Rate (master operation only)
- Slave Select Mode (Slave mode only)

To enable the serial port, SSP Enable bit, SSPEN (SSPCON<5>) must be set. To reset or reconfigure SPI mode, clear bit SSPEN, re-initialize the SSPCON reg-

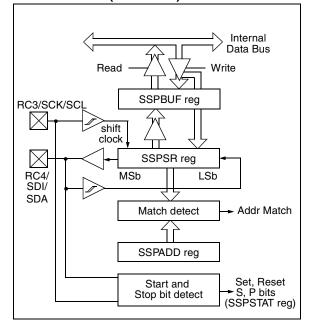

ister, and then set bit SSPEN. This configures the SDI, SDO, SCK and \overline{SS} pins as serial port pins. For the pins to behave as the serial port function, they must have their data direction bits (in the TRISC register) appropriately programmed. That is:

- SDI must have TRISC<4> set
- SDO must have TRISC<5> cleared
- SCK (master operation) must have TRISC<3> cleared
- SCK (Slave mode) must have TRISC<3> set
- SS must have TRISA<5> set (if used)

Note: When the SPI is in Slave Mode with \overline{SS} pin control enabled, (SSPCON<3:0> = 0100) the SPI module will reset if the \overline{SS} pin is set to VDD.

Note: If the SPI is used in Slave Mode with CKE = '1', then the \overline{SS} pin control must be enabled.

FIGURE 8-1: SSP BLOCK DIAGRAM (SPI MODE)


8.3 <u>SSP I²C Operation</u>

The SSP module in I²C mode fully implements all slave functions, except general call support, and provides interrupts on start and stop bits in hardware to support firmware implementations of the master functions. The SSP module implements the standard mode specifications, as well as 7-bit and 10-bit addressing.

Two pins are used for data transfer. These are the RC3/SCK/SCL pin, which is the clock (SCL), and the RC4/SDI/SDA pin, which is the data (SDA). The user must configure these pins as inputs or outputs through the TRISC<4:3> bits.

The SSP module functions are enabled by setting SSP Enable bit SSPEN (SSPCON<5>).

FIGURE 8-2: SSP BLOCK DIAGRAM (I²C MODE)

The SSP module has five registers for I^2C operation. These are the:

- SSP Control Register (SSPCON)
- SSP Status Register (SSPSTAT)
- Serial Receive/Transmit Buffer (SSPBUF)
- SSP Shift Register (SSPSR) Not accessible
- SSP Address Register (SSPADD)

The SSPCON register allows control of the I^2C operation. Four mode selection bits (SSPCON<3:0>) allow one of the following I^2C modes to be selected:

- I²C Slave mode (7-bit address)
- I²C Slave mode (10-bit address)
- I²C Slave mode (7-bit address), with start and stop bit interrupts enabled for firmware master mode support
- I²C Slave mode (10-bit address), with start and stop bit interrupts enabled for firmware master mode support
- I²C start and stop bit interrupts enabled for firmware master mode support, slave mode idle

Selection of any I^2C mode, with the SSPEN bit set, forces the SCL and SDA pins to be operated as open drain outputs, provided these pins are programmed to inputs by setting the appropriate TRISC bits.

Additional information on SSP I²C operation may be found in the PIC[®] MCU Mid-Range Reference Manual, (DS33023).

8.3.1 SLAVE MODE

In slave mode, the SCL and SDA pins must be configured as inputs (TRISC<4:3> set). The SSP module will override the input state with the output data when required (slave-transmitter).

When an address is matched or the data transfer after an address match is received, the hardware automatically will generate the acknowledge (\overline{ACK}) pulse, and load the SSPBUF register with the received value in the SSPSR register.

There are certain conditions that will cause the SSP module not to give this \overline{ACK} pulse. This happens if either of the following conditions occur:

- a) The buffer full bit BF (SSPSTAT<0>) was set before the transfer was completed.
- b) The overflow bit SSPOV (SSPCON<6>) was set before the transfer was completed.

In this case, the SSPSR register value is not loaded into the SSPBUF, but bit SSPIF (PIR1<3>) is set. Table 8-2 shows what happens when a data transfer byte is received, given the status of bits BF and SSPOV. The shaded cells show the condition where user software did not properly clear the overflow condition. Flag bit BF is cleared by reading the SSPBUF register, while bit SSPOV is cleared through software.

The SCL clock input must have a minimum high and low for proper operation. The high and low times of the I^2C specification, as well as the requirement of the SSP module, is shown in timing parameter #100, THIGH, and parameter #101, TLOW.

9.4 <u>A/D Conversions</u>

Note:	The GO/DONE bit should NOT be set in
	the same instruction that turns on the A/D.

9.5 Use of the CCP Trigger

An A/D conversion can be started by the "special event trigger" of the CCP1 module. This requires that the CCP1M3:CCP1M0 bits (CCP1CON<3:0>) be programmed as 1011 and that the A/D module be enabled (ADON bit is set). When the trigger occurs, the

TABLE 9-2 SUMMARY OF A/D REGISTERS

GO/DONE bit will be set, starting the A/D conversion, and the Timer1 counter will be reset to zero. Timer1 is reset to automatically repeat the A/D acquisition period with minimal software overhead. The appropriate analog input channel must be selected and the minimum acquisition time must pass before the "special event trigger" sets the GO/DONE bit (starts a conversion).

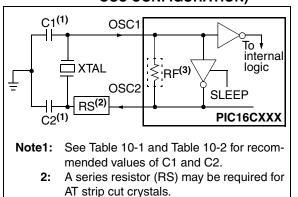
If the A/D module is not enabled (ADON is cleared), then the "special event trigger" will be ignored by the A/D module, but will still reset the Timer1 counter.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
0Bh,8Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	_	ADIF	—	_	SSPIF	CCP1IF	TMR2IF	TMR1IF	-0 0000	-0 0000
8Ch	PIE1	_	ADIE	—	_	SSPIE	CCP1IE	TMR2IE	TMR1IE	-0 0000	-0 0000
1Eh	ADRES	A/D Res	ult Regist	er						xxxx xxxx	uuuu uuuu
1Fh	ADCON0	ADCS1	ADCS0	CHS2	CHS1	CHS0	GO/DONE	—	ADON	0000 00-0	0000 00-0
9Fh	ADCON1	_	—	—	—	—	PCFG2	PCFG1	PCFG0	000	000
05h	PORTA	_	_	RA5	RA4	RA3	RA2	RA1	RA0	0x 0000	0u 0000
85h	TRISA		—	PORTA D	Data Direct	tion Regis	ter			11 1111	11 1111

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used for A/D conversion.

10.2 Oscillator Configurations

10.2.1 OSCILLATOR TYPES


The PIC16CXXX can be operated in four different oscillator modes. The user can program two configuration bits (FOSC1 and FOSC0) to select one of these four modes:

- LP Low Power Crystal
- XT Crystal/Resonator
- HS High Speed Crystal/Resonator
- RC Resistor/Capacitor

10.2.2 CRYSTAL OSCILLATOR/CERAMIC RESONATORS

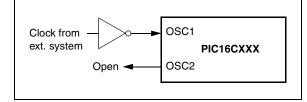

In XT, LP or HS modes, a crystal or ceramic resonator is connected to the OSC1/CLKIN and OSC2/CLKOUT pins to establish oscillation (Figure 10-2). The PIC16CXXX oscillator design requires the use of a parallel cut crystal. Use of a series cut crystal may give a frequency out of the crystal manufacturers specifications. When in XT, LP or HS modes, the device can use an external clock source to drive the OSC1/CLKIN pin (Figure 10-3).

FIGURE 10-2: CRYSTAL/CERAMIC RESONATOR OPERATION (HS, XT OR LP OSC CONFIGURATION)

3: RF varies with the crystal chosen.

FIGURE 10-3: EXTERNAL CLOCK INPUT OPERATION (HS, XT OR LP OSC CONFIGURATION)

TABLE 10-1 CERAMIC RESONATORS

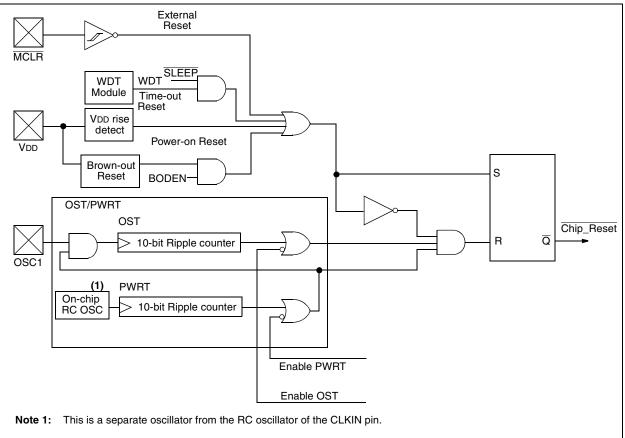
Ranges Tested:

Ranges I	estea:						
Mode	Freq	OSC1 OSC2					
XT	455 kHz	68 - 100 pF	68 - 100 pF				
	2.0 MHz	15 - 68 pF 🛛 🤇	15 - 68 pF				
	4.0 MHz	15 - 68 pF	∖15, - 68 pF				
HS	8.0 MHz	10 - 68(pF	े10 - 68 pF				
	16.0 MHz	10,-22,0F	10 - 22 pF				
These values are for design guidance only. See notes at bottom of page.							
Resonators Used:							
455 kHz	Panasonie E	FO-A455K04B	± 0.3%				
2.0 MHz	Murata Érie CSA2.00MG ± 0.5%						
4.0 MHz	Murata Erie CSA4.00MG ± 0.5%						
8.0 MAHZ	Murata Erie CSA8.00MT ± 0.5%						
16.0 MHz	MHz Murata Erie CSA16.00MX ± 0.5%						
Resona	ators did not hav	ve built-in capacito	ors.				

TABLE 10-2CAPACITOR SELECTION FOR
CRYSTAL OSCILLATOR

Osc Type	Crystal Freq	Cap. Range C1	Cap. Range C2					
LP	32 kHz	33 pF	33 pF					
	200 kHz	15 pF	15 pF					
XT	200 kHz	47-68 pF						
	1 MHz	15 pF 🔍	↓15.pF 15.pF					
	4 MHz	15 pF 🕟	15 pF					
HS	4 MHz	15 pt	✓ 15 pF					
	8 MHz	15-33 pF						
	20 MHz							
	These values are for design guidance only. See notes at bottom of page.							
	Crystals Used							
32 kHz	Epson C-00	01R32.768K-A	± 20 PPM					
200 kt/2	STO XTL 2	± 20 PPM						
1 MHz	ECS ECS-	10-13-1	± 50 PPM					
4 MHz	ECS ECS-4	40-20-1	± 50 PPM					
8 MHz	EPSON CA	-301 8.000M-C	± 30 PPM					

Note 1: Higher capacitance increases the stability of the oscillator, but also increases the start-up time.


EPSON CA-301 20.000M-C

20 MHz

2: Since each resonator/crystal has its own characteristics, the user should consult the resonator/crystal manufacturer for appropriate values of external components.

± 30 PPM

- **3:** Rs may be required in HS mode, as well as XT mode, to avoid overdriving crystals with low drive level specification.
- 4: Oscillator performance should be verified when migrating between devices (including PIC16C62A to PIC16C62B and PIC16C72 to PIC16C72A)

FIGURE 10-5: SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT

TABLE 11-2 PIC16CXXX INSTRUCTION SET

Operands MSb LSb Affected BYTE-ORIENTED FILE REGISTER OPERATIONS	Mnemonic,		Description	Cycles		14-Bit	Opcode	•	Status	Notes
ADDWF f, d Add W and f 1 00 0111 dfff ffff C,DC,Z ANDWF f, d AND W with f 1 00 0101 dfff ffff Z CLRF f Clear W 1 00 0001 lfff ffff Z COMF f, d Complement f 1 00 0011 dfff ffff Z COMF f, d Decrement f 1 00 1011 dfff ffff Z DECFS f, d Increment f 1 00 1010 dfff fff Z INCF5 f, d Increment f skip if 0 1(2) 00 1101 dfff fff Z INCF52 f, d Move f 1 00 0000 diff fff Z MOVF f, d Move f 1 00 0100 dfff fff Z MOVF f, d Rotate Leift through Carry <th>Operands</th> <th></th> <th colspan="5">MSb</th> <th>LSb</th> <th>Affected</th> <th></th>	Operands		MSb					LSb	Affected	
ANDWF f, d AND W with f 1 00 0101 dfff ffff Z CLRF f Clear W 1 00 0001 1fff ffff Z COMF f, d Complement f 1 00 0011 dfff ffff Z COMF f, d Decrement f, Skip if 0 1(2) 00 1011 dfff ffff Z DECFSZ f, d Increment f, Skip if 0 1(2) 00 111 dfff ffff Z MOVF f, d Move f 1 00 000 dffff Z MOVF f d Move f 1 00 000 000 000 000 000 000 RF f, d Rotate Left fhrough Carry 1 00 100 dfff ffff Z SUBWF f, d Swap nibbles in f 1 00 010 dfff ffff Z SUBWF f, b </th <th>BYTE-ORIE</th> <th>NTED</th> <th>FILE REGISTER OPERATIONS</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	BYTE-ORIE	NTED	FILE REGISTER OPERATIONS							
CLRF f Clear f Clear f 1 00 0001 lfff ffff Z COMF f, d Complement f 1 00 0001 dff ffff Z DECF f, d Decrement f 1 00 1001 dff ffff Z DECF f, d Decrement f, Skip if 0 1(2) 00 1010 dff ffff Z INCFSZ f, d Increment f, Skip if 0 1(2) 00 1010 dfff fff Z INCFSZ f, d Increment f, Skip if 0 1(2) 00 111 dfff Z INCFSZ f, d Increment f, Skip if C 1 00 000 dfff Z INCFSZ f, d Increment f, Skip if C 1 00 100 dfff Z MOVF f, d Move W to f 1 00 100 000 000 000 R GR GR GR GR	ADDWF	f, d	Add W and f	1	00	0111	dfff	ffff	C,DC,Z	1,2
CLRW - Clear W 1 00 0001 0000 0011 Z COMF f, d Cormplement f 1 00 0011 dff ffff Z DECF f, d Decrement f, Skip if 0 1(2) 00 0011 dff ffff Z INCF f, d Increment f, Skip if 0 1(2) 00 1010 dff ffff Z INCF f, d Increment f, Skip if 0 1(2) 00 1010 dff ffff Z INCF f, d Increment f, Skip if 0 1(2) 00 1011 dff ffff Z INCF f, d Increment f, Skip if 0 1 00 0000 dff ffff Z MOVF f, d Move f 1 00 0000 dff ffff Z SUBWF f, d Rotate Left ftmough Carry 1 00 0010 dff ffff C,DC,Z SUBWF f, d Subtract W from f 1 00 1010 dfff fffff Z Z SUBWF	ANDWF	f, d	AND W with f	1	00	0101	dfff	ffff	Z	1,2
COMF f, d Complement f 1 00 1001 dfff ffff Z DECFSZ f, d Decrement f, Skip if 0 1(2) 00 1011 dfff ffff Z INCF f, d Increment f 1 00 1010 dfff fffff Z INCFSZ f, d Increment f, Skip if 0 1(2) 00 1111 dfff fffff Z IORWF f, d Increment f, Skip if 0 1(2) 00 1111 dfff fffff Z MOVF f Move f 1 00 0000 dfff fffff Z MOVF f Move V to f 1 00 0000 dfff fffff Z SUBWF f, d Subtract W from f 1 00 100 dfff fffff C,DC,Z SWAPF f, d Subtract W from f 1 00 0101 dfff fffff Z BIT-ORIENTED FILE Ecolusive OR W w	CLRF	f	Clear f	1	00	0001	lfff	ffff	Z	2
DECF f, d Decrement f 1 00 0011 dfff fff Z DECFSZ f, d Increment f 1 00 1010 dfff fff Z INCF f, d Increment f 1 00 1010 dfff ffff Z INCFSZ f, d Increment f, Skip if 0 1(2) 00 1111 dfff fff Z INCFSZ f, d Inclusive OR W with f 1 00 0100 dfff fff Z MOVF f, d Move f 1 00 1000 dfff ffff Z MOVWF f, d Rotate Left fthrough Carry 1 00 1101 dfff fff C C Z SUBWF f, d Rotate Left fthrough Carry 1 00 1100 dfff fff C C C C C C C C C C C C C C	CLRW	-	Clear W	1	00	0001	0000	0011		
DECFSZ f, d Decrement f, Skip if 0 1(2) 0 1011 dfff ffff INCF f, d Increment f 1 0 1010 dfff ffff Z INCFSZ f, d Increment f, Skip if 0 1(2) 0 1111 dfff ffff Z INCFSZ f, d Inclusive CR W with f 1 0 0.000 dfff ffff Z MOVF f, d Move f 1 0 0.000 dfff ffff Z MOVWF f Move W to f 1 0 0.0000 0.000 C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.	COMF	f, d	Complement f		00	1001	dfff	ffff	Z	1,2
INCF f, d Increment f 1 00 1010 dfff fff Z INCFSZ f, d Increment f, Skip if 0 1(2) 00 1111 dfff fff Z IORWF f, d Move OR W with f 1 00 0100 dfff fff Z MOVF f, d Move W to f 1 00 0000 lfff fff Z MOVF f Move W to f 1 00 0000 lfff Gff Z MOVF f Rotate Left fthrough Carry 1 00 1100 dfff Gff C C SUBWF f, d Rotate Left fthrough Carry 1 00 1100 dfff fff C C,DC,Z SUBWF f, d Subtract W from f 1 00 1010 dfff ffff C C,DC,Z SUBWF f, d Exclusive OR W with f 1 01 010 bb bfff fffff	DECF	f, d	Decrement f	1	00	0011	dfff	ffff	Z	1,2
INCFSZ f, d Increment f, Skip if 0 1(2) 00 1111 dff ffff Z MOVF f, d Inclusive OR W with f 1 00 0100 dfff ffff Z MOVF f, d Move f 1 00 0000 dfff ffff Z MOVF f, d Move f 1 00 0000 dfff ffff Z MOVF f, d Move f 1 00 0000 dfff ffff NOP No Operation 1 00 100 dfff ffff C SUBWF f, d Rotate Left fthrough Carry 1 00 1100 dfff ffff C C,DC,Z SWAPF f, d Swap nibbles in f 1 00 110 dfff ffff Z BIT-ORIENTED FILE REGISTER OPERATIONS 1 1 01 0bb bfff fffff Z BTFSS f, b Bit Test f, Skip if Set 1 1 1	DECFSZ	f, d	Decrement f, Skip if 0	1(2)	00	1011	dfff	ffff		1,2,3
IORWF f, d Inclusive OR W with f 1 00 0100 dfff ffff Z MOVF f, d Move f 1 00 0100 dfff ffff Z MOVWF f Move W to f 1 00 0000 lfff ffff Z MOVWF f Move W to f 1 00 0000 lfff ffff Z NOP No Operation 1 00 1000 dfff ffff C RRF f, d Rotate Left fthrough Carry 1 00 1100 dfff ffff C,DC,Z SWAPF f, d Subtract W from f 1 00 110 dfff ffff C,DC,Z SWAPF f, d Exclusive OR W with f 1 01 00bb bfff ffff Z BIT-ORIENTED FILE REGISTER OPERATIONS 1 11 01 01bb bfff ffff BTFSS f, b Bit Test f, S	INCF	f, d	Increment f		00	1010	dfff	ffff	Z	1,2
MOVF f, d Move f Move f 1 00 1000 dfff ffff Z MOVWF f Move W to f 1 00 0000 0kx0 0000 Rff ffff C NOP - No Operation 1 00 0000 0kx0 0000 Rk ffff C C RFF f, d Rotate Left fthrough Carry 1 00 1100 dfff ffff C	INCFSZ			1(2)	00	1111	dfff	ffff		1,2,3
MOVWF f Move W to f 1 00 00000 lfff ffff NOP - No Operation 1 00 0000 0xx0 0000 RLF f, d Rotate Left fthrough Carry 1 00 1101 dfff ffff C SUBWF f, d Subtract W from f 1 00 1100 dfff ffff C D C,DC,Z D C,DC,Z D D D 1100 dfff ffff C D<		,		-		0100			—	1,2
NOP - No Operation 1 00 0000 0xxx 0000 RLF f, d Rotate Left f through Carry 1 00 1101 dfff ffff C SUBWF f, d Subtract W from f 1 00 0100 dfff ffff C SWAPF f, d Swap nibbles in f 1 00 0110 dfff ffff C C,DC,Z SWAPF f, d Swap nibbles in f 1 00 0110 dfff ffff C C,DC,Z XORWF f, d Exclusive OR W with f 1 00 0110 dfff ffff Z BIT-ORIENTED FILE REGISTER OPERATIONS Bit Clear f 1 01 010bb bfff fffff Z BFFSC f, b Bit Test f, Skip if Clear 1 1 11 11bb bfff ffff LITERAL AND CONTROL OPERATIONS Interal with W 1 11 111 111k kkkk kkkk Z ADDLW k Add literal and W 1	MOVF	f, d	Move f	-	00	1000	dfff	ffff	Z	1,2
RLF f, d Rotate Leff through Carry 1 00 1101 dff ffff C RRF f, d State Right f through Carry 1 00 1101 dff ffff C SUBWF f, d Subtract W from f 1 00 1100 dff ffff C C,DC,Z SWAPF f, d Swap nibbles in f 1 00 1101 dff ffff C,DC,Z SWAPF f, d Swap nibbles in f 1 00 1101 dff ffff C,DC,Z SWAPF f, d Swap nibbles in f 1 00 1101 dff ffff Z BIT-ORIENTED FILE REGISTER OPERATIONS I 1 01 00bb bfff ffff BTFSS f, b Bit Test f, Skip if Clear 1 1 11 111b bfff ffff LITERAL AND CONTROL OPERATIONS I 11 111 1111 111k kkkk kkkk Z CALL k Calls subroutine 2 10 <td></td> <td>f</td> <td></td> <td>-</td> <td>00</td> <td>0000</td> <td>lfff</td> <td>ffff</td> <td></td> <td></td>		f		-	00	0000	lfff	ffff		
RRFf, dRotate Right f through Carry1001100dfffffffCSUBWFf, dSubtract W from f1000010dfffffffC,DC,ZSWAPFf, dSwap nibbles in f1001110dfffffffC,DC,ZSWAPFf, dExclusive OR W with f1000110dfffffffZBIT-ORIENTED FILEREGISTER OPERATIONSBCFf, bBit Clear f10100bbbfffffffBSFf, bBit Set f10110bbbfffffffBTFSSf, bBit Test f, Skip if Clear1 (2)0111bbbfffffffBTFSSf, bBit Test f, Skip if Set1 (2)0111bbbfffffffLITERAL AND CONTROL OPERATIONSADDLWkAdd literal and W111111kkkkkkkkZADDLWkAdd literal and W111111kkkk kkkkZClaulkCall subroutine2100kkk kkkkkTO,PDGOTOkGo to address2101kkk kkkkkZIORLWkInclusive OR literal with W1111000kkkk kkkkRETURReturn from interrupt20000000100IO,PDRETURNReturn from Subroutine200000000001000SLEEPGo into standby mode100 <td< td=""><td>NOP</td><td>-</td><td>No Operation</td><td>-</td><td>00</td><td>0000</td><td>0xx0</td><td>0000</td><td></td><td></td></td<>	NOP	-	No Operation	-	00	0000	0xx0	0000		
SUBWFf, dSubtract W from f1000010dfffffffC,DC,ZSWAPFf, dSwap nibbles in f1001110dfffffffZBIT-ORIENTED FILE REGISTER OPERATIONSBCFf, bBit Clear f10100bbbfffffffBSFf, bBit Clear f10101bbbfffffffBTFSCf, bBit Test f, Skip if Clear1 (2)0110bbbfffffffBTFSSf, bBit Test f, Skip if Set1 (2)0111bbbfffffffLITERAL AND CONTROL OPERATIONSADDLWkAdd literal and W111111111xkkkkkkkkZCALLkCall subroutine2100kkkkkkkZCALLkGo to address2101kkkkkkkZGOTOkGo to address210111100xkkkkZMOVLWkInclusive OR literal with W1111100xkkkkZMOVLWkReturn from interrupt20000001001TO,PDRETFIE-Return from interrupt21101xxkkkkkkkkRETURN-Return from Subroutine21101xxkkkkkkkkRETURN-Go into standby mode10000000101TO,PD	RLF	,	o ,	-	00	1101	dfff	ffff	С	1,2
SWAPFf, dSwap nibbles in f1001110dfffffffZBIT-ORIENTED FILE REGISTER OPERATIONSBCFf, bBit Clear f10100bbbfffffffZBSFf, bBit Clear f10101bbbfffffffZBTFSCf, bBit Test f, Skip if Clear110101bbbfffffffBTFSSf, bBit Test f, Skip if Set1120111bbbfffFfffLITERAL AND COVTROL OPERATIONSADDLWkAdd literal and W111111101kkkkkkkkZCALLkCall subroutine2100kkkkkkkKkkZCALLkCall subroutine2101kkkkkkkZGo to address2101kkkkkkkZOVUW1111000kkkkKkkZMOVLW1110000000001001Return from interrupt200000000001001Return from subroutine21101xxkkkkkkkRETURN -Return from Subroutine20000001001Go into standby mode10000000101 <td>RRF</td> <td>,</td> <td></td> <td></td> <td>00</td> <td>1100</td> <td>dfff</td> <td>ffff</td> <td>-</td> <td>1,2</td>	RRF	,			00	1100	dfff	ffff	-	1,2
XORWFf, dExclusive OR W with f1000110dfffffffZBIT-ORIENTED FILE REGISTER OPERATIONSBCFf, bBit Clear f10100bbbffffffffBSFf, bBit Set f10101bbbffffffffBTFSCf, bBit Test f, Skip if Clear1 (2)0110bbbffffffffBTFSSf, bBit Test f, Skip if Set1 (2)0111bbbfffffffLITERAL AND CONTROL OPERATIONSADDLWkAdd literal and W111111111xkkkkkkkkZCALLkCall subroutine2100kkkkkkkZTO,PDGOTOkGo to address2101kkkkkkkKkkkZMOVLWkInclusive OR literal with W11100xkkkkKkkkZMOVLWkReturn from interrupt20000000001TO,PDRETFIE-Return from Subroutine21101xxkkkkKkkkFO,PDRETURN-Return from Subroutine200000000001001TO,PDRETURN-Return from Subroutine200000000001001TO,PDRETER-Go into standby mode10000001001TO,PD	SUBWF	f, d	Subtract W from f	-	00	0010	dfff	ffff	C,DC,Z	1,2
Bit Clear fBSFf, bBit Clear f10100bbbfffffffBFFSCf, bBit Test f, Skip if Clear1 (2)0110bbbfffffffBTFSCf, bBit Test f, Skip if Clear1 (2)0110bbbfffffffBTFSSf, bBit Test f, Skip if Set1 (2)0110bbbfffffffLITERAL AND CONTROL OPERATIONSADDLWkAdd literal and W111111111.kkkkkkkkZCALLkAdd literal and W1111001kkkkkkkkZCALLkCall subroutine2100kkkkkkkkkkkZCALLkCall subroutine2100kkkkkkkkkkkZCALLkGo to address210111000kkkkkkkkZGOTOkGo to address210111000kkkkZMOVLWkInclusive OR literal with W1111000kkkkZMOVLWkReturn from interrupt20000001001TO,PDGo into standby mode101000000001001TO,PD	SWAPF	f, d	Swap nibbles in f		00	1110	dfff	ffff		1,2
BCFf, bBit Clear f10100bbbfffffffBSFf, bBit Set f10101bbbfffffffBTFSCf, bBit Test f, Skip if Clear110101bbbfffffffBTFSSf, bBit Test f, Skip if Set11111bbbfffffffLITERAL AND CONTROL OPERATIONSADDLWkAdd literal and W111111 xkkkkkkkZADDLWkAdd literal with W1111001 kkkkkkkkC,DC,ZCALLkCall subroutine2100000001101000GOTOkGo to address2101kkkkkkkkkkkZIORLWkInclusive OR literal with W1111000 kkkkkkkkZMOVLWkReturn from interrupt200000000001001RETFIE-Return with literal in W21101xxkkkkkkkkKRETURN-Return from Subroutine200000000001000SLEEP-Go into standby mode10000000110TO,PD	-			1	00	0110	dfff	ffff	Z	1,2
BSFf, bBit Set f10101bbbfffffffBTFSCf, bBit Test f, Skip if Clear110110bbbfffffffBTFSSf, bBit Test f, Skip if Set110110bbbfffffffLITERAL AND CONTROL OPERATIONSADDLWkAdd literal and W111111kkkkkkkC,DC,ZADDLWkAdd literal with W1111001kkkkkkkkZCALLkCall subroutine210000001100100TO,PDGOTOkGo to address21011kkkkkkkkkkkkZIORLWkInclusive OR literal with W1111000kkkkKkkkZMOVLWkReturn from interrupt200000000011001TO,PDRETLWkReturn with literal in W21101xxkkkkkkkkKkkkRETURN-Return from Subroutine200000000001001TO,PDSLEEP-Go into standby mode100000001100101TO,PD	-									
BTFSC BTFSSf, b bBit Test f, Skip if Clear Bit Test f, Skip if Set1 (2) 1 (2)0110bbbfffffffLITERAL AND CONTROL OPERATIONSADDLW ANDLW CALLkAdd literal and W111111111xkkkkkkkkC,DC,ZADDLW ANDLWkAdd literal with W1111111001kkkkkkkkZCALL CALL GOTO GOTO GOTO GOTO KCall subroutine Go to address2100kkkkkkkkkkkZTO,PDGOTO GOTO GOTO GOTO KGo to address2101kkkkkkkZIORLW KInclusive OR literal with W1111000kkkkKkkkZMOVLW RETFIE FTIE <br< td=""><td></td><td>,</td><td></td><td></td><td>01</td><td>00bb</td><td></td><td></td><td></td><td>1,2</td></br<>		,			01	00bb				1,2
BTFSSf, bBit Test f, Skip if Set1 (2)0111bbbfffffffLITERAL AND COVERATIONSADDLWkAdd literal and W111111 x kkkkkkkkC,DC,ZANDLWkAND literal with W111111 x kkkkkkkkC,DC,ZCALLkCall subroutine2100kkkkkkkkkkkZCALLkCall subroutine2100kkkkkkkkkkkZGOTOkGo to address2101kkkkkkkkkkkZIORLWkInclusive OR literal with W1111000kkkkKkkkZMOVLWkMove literal to W1111000kkkkkkkkZRETFIE-Return from interrupt200000000011001RETLWkReturn from Subroutine200000000001000SLEEP-Go into standby mode10000000110TO,PD	-			-	01	01bb	bfff	ffff		1,2
LITERAL AND CONTROL OPERATIONSADDLWkAdd literal and W111111 111xkkkkkkkkC,DC,ZANDLWkAND literal with W1111001kkkkkkkkC,DC,ZCALLkCall subroutine2100kkkkkkkkkkkkkkkZCALLkCall subroutine2100kkkkkkkkkkkZCALLkCall subroutine21000000011001000GOTOkGo to address2101kkkkkkkkkkkZIORLWkInclusive OR literal with W1111000kkkkkkkkZMOVLWkMove literal to W1110000000001001Return from interrupt200000000010011RETLIPReturn from interrupt20000000000100010001000SLEEP-Go into standby mode100000001101001TO,PD					01	10bb	bfff	ffff		3
ADDLWkAdd literal and W111111 x kkkkkkkkC,DC,ZANDLWkAND literal with W1111001 kkkkkkkkZCALLkCall subroutine2100kkkkkkkkkkkZCLRWDT-Clear Watchdog Timer100000001100100TO,PDGOTOkGo to address2101kkkkkkkkkkkZIORLWkInclusive OR literal with W1111000kkkkkkkkZMOVLWkMove literal to W1110000000001001RETFIE-Return from interrupt200000000001001RETURN-Return with literal in W21101xxkkkkkkkkRETURN-Return from Subroutine200000000001000TO,PDSLEEP-Go into standby mode10000000110011TO,PD				1 (2)	01	11bb	bfff	ffff		3
ANDLWkAND literal with W1111001kkkkkkkkZCALLkCall subroutine2100kkkkkkkkkkkKkkkZCLRWDT-Clear Watchdog Timer100000001100100TO,PDGOTOkGo to address2101kkkkkkkkkkkKkkkZIORLWkInclusive OR literal with W1111000kkkkkkkkZMOVLWkMove literal to W111000000001001RETFIE-Return from interrupt200000000001001RETLWReturn with literal in W21101xxkkkkkkkkRETURN-Return from Subroutine200000000001000TO,PDSLEEP-Go into standby mode100000001100011TO,PD		ND CO								•
CALL k Call subroutine 2 10 0kkk kkkk kkkkk kkkk kkkk kkkkk kkkk kkkkk kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk				-	11					
CLRWDT - Clear Watchdog Timer 1 00 0000 0110 100 GOTO k Go to address 2 10 1kkk kkkk kkkk IORLW k Inclusive OR literal with W 1 11 1000 kkkk kkkk Z MOVLW k Move literal to W 1 11 1000 kkkk kkkk Z RETFIE - Return from interrupt 2 00 0000 0000 1001 RETLW k Return with literal in W 2 11 01xx kkkk kkkk RETURN - Return from Subroutine 2 00 0000 0000 1000 SLEEP - Go into standby mode 1 00 0000 0110 TO,PD					11	1001	kkkk	kkkk	Z	
GOTO k Go to address 2 10 1kkk kkkk kkkk IORLW k Inclusive OR literal with W 1 11 1000 kkkk kkkk Z MOVLW k Move literal to W 1 11 1000 kkkk kkkk Z RETFIE - Return from interrupt 2 00 0000 1001 RETLW k Return with literal in W 2 11 01xx kkkk kkkk RETURN - Return from Subroutine 2 00 0000 1000 SLEEP - Go into standby mode 1 00 0000 011 TO, PD	-				10	0kkk	kkkk			
IORLW k Inclusive OR literal with W 1 11 1000 kkkk kkkk Z MOVLW k Move literal to W 1 11 1000 kkkk kkkk Z MOVLW k Move literal to W 1 11 1000 kkkk kkkk kkkk RETFIE - Return from interrupt 2 00 0000 0000 1001 RETLW k Return with literal in W 2 11 01xx kkkk kkkk RETURN - Return from Subroutine 2 00 0000 0000 1000 SLEEP - Go into standby mode 1 00 0000 011 TO,PD			5	-	00				TO,PD	
MOVLW k Move literal to W 1 11 00xx kkkk kkkk RETFIE - Return from interrupt 2 00 0000 0000 1001 RETLW k Return with literal in W 2 11 01xx kkkk kkkk RETURN - Return from Subroutine 2 00 0000 0000 1000 SLEEP - Go into standby mode 1 00 0000 011 TO,PD					10	1kkk				
RETFIE - Return from interrupt 2 00 0000 0000 1001 RETLW k Return with literal in W 2 11 01xx kkkk kkkk RETURN - Return from Subroutine 2 00 0000 0000 1000 SLEEP - Go into standby mode 1 00 0000 011 TO,PD	-				11				Z	
RETLW k Return with literal in W 2 11 01xx kkkk kkkk RETURN - Return from Subroutine 2 00 0000 0000 1000 SLEEP - Go into standby mode 1 00 0000 011 TO,PD	-	k		-	11	00xx	kkkk	kkkk		
RETURN - Return from Subroutine 2 00 0000 1000 SLEEP - Go into standby mode 1 00 0000 0110 TO,PD		-	•		00	0000				
SLEEP - Go into standby mode 1 00 0000 0110 TO, PD		k			11	01xx	kkkk	kkkk		
	RETURN	-			00	0000	0000	1000		
SUBLW k Subtract W from literal 1 11 11 0 w kikiki kikiki CDC 7	SLEEP	-	Go into standby mode	1	00	0000	0110	0011	TO,PD	
	SUBLW	k	Subtract W from literal	1	11	110x	kkkk	kkkk	C,DC,Z	
XORLW k Exclusive OR literal with W 1 11 1010 kkkk Kkkk Z	XORLW	k	Exclusive OR literal with W	1	11	1010	kkkk	kkkk	Z	

Note 1: When an I/O register is modified as a function of itself (e.g., MOVF PORTB, 1), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if assigned to the Timer0 Module.

3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

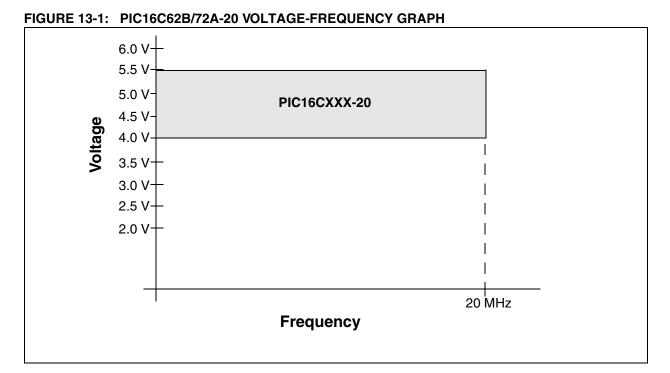
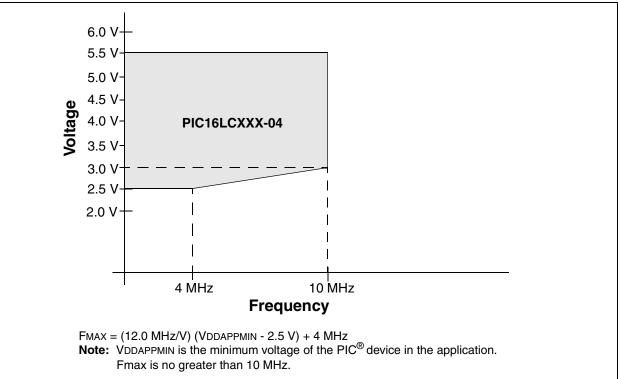
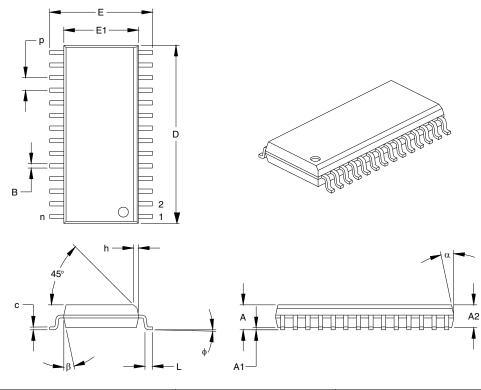

	PIC12CXX	PIC14000	PIC16C5X	PIC16C6X	PIC16CXX	PIC16F62	X7381319	X7Oðfolg	PIC16C8X	PIC16F8X	X6D91DI9	(\$3712)q	(X73713I9	PIC18CXX	63CXX 52CXX/ 54CXX/	хххсэн	мсяғххя	MCP2510
MPLAB™ Integrated Development Environment	>	>	>	>	>	>	`	>	`	>	>	>	>	>				
MPLAB™ C17 Compiler												>	>					
MPLAB™ C18 Compiler														>				
MPASM/MPLINK	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>		
MPLAB ^{TM-} ICE	>	>	>	>	>	**^	>	>	>	>	>	>	>	>				
PICMASTER/PICMASTER-CE	~	>	>	>	>		>	>	>		>	>	>					
In-Circuit Emulator	>		>	>	>		>	>	>		>							
et MPLAB-ICD In-Circuit Debugger De				*			*>			>								
PICSTART [®] Plus Low-Cost Universal Dev. Kit	^	`	>	~	~	**^	>	>	`	`	`	~	~	>				
ଖେମ୍ମ PRO MATE® I Universal Programmer ଦି	>	>	>	>	>	**>	>	>	>	>	>	>	>	>	>	>		
SIMICE	^		~															
PICDEM-1			>		>		⁺,		>			>						
PICDEM-2				<⁺			✓†							^				
PICDEM-3											~							
PICDEM-14A		>																
PICDEM-17													>					
KEELoo [®] Evaluation Kit																>		
KEELoo Transponder Kit																>		
microID TM Programmer's Kit																	`	
125 kHz microlD Developer's Kit																	>	
125 kHz Anticollision microlD Developer's Kit																	>	
13.56 MHz Anticollision microID Developer's Kit																	>	
MCP2510 CAN Developer's Kit																		>

TABLE 12-1: DEVELOPMENT TOOLS FROM MICROCHIP


 $\ensuremath{\textcircled{}^{\circ}}$ 1998-2013 Microchip Technology Inc.

PIC16C62B/72A


NOTES:

28-Lead Plastic Small Outline (SO) - Wide, 300 mil (SOIC) 15.4

	Units		INCHES*		MILLIMETERS		
Dimension	Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		28			28	
Pitch	р		.050			1.27	
Overall Height	Α	.093	.099	.104	2.36	2.50	2.64
Molded Package Thickness	A2	.088	.091	.094	2.24	2.31	2.39
Standoff	A1	.004	.008	.012	0.10	0.20	0.30
Overall Width	E	.394	.407	.420	10.01	10.34	10.67
Molded Package Width	E1	.288	.295	.299	7.32	7.49	7.59
Overall Length	D	.695	.704	.712	17.65	17.87	18.08
Chamfer Distance	h	.010	.020	.029	0.25	0.50	0.74
Foot Length	L	.016	.033	.050	0.41	0.84	1.27
Foot Angle Top	φ	0	4	8	0	4	8
Lead Thickness	С	.009	.011	.013	0.23	0.28	0.33
Lead Width	В	.014	.017	.020	0.36	0.42	0.51
Mold Draft Angle Top	α	0	12	15	0	12	15
Mold Draft Angle Bottom	β	0	12	15	0	12	15

*Controlling Parameter

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side.

JEDEC Equivalent: MS-013 Drawing No. C04-052

NOTES:

SSP	
Enable (SSPIE Bit)	14
Flag (SSPIF Bit)	
RA5/SS/AN4 Pin	6
RC3/SCK/SCL Pin	
RC4/SDI/SDA Pin	
RC5/SDO Pin	
SSPADD Register	
SSPBUF Register	
SSPCON Register	
SSPSTAT Register	,
TMR2 Output for Clock Shift	,
Write Collision Detect (WCOL Bit)	
SSPCON Register	
CKP Bit	
SSPEN Bit	
SSPM3:SSPM0 Bits	
SSPOV Bit	
WCOL Bit	
SSPSTAT Register	
BF Bit	
CKE Bit	
D/Ā Bit	46
P bit	
R/W Bit	42, 43, 44, 46
S Bit	
SMP Bit	
UA Bit	
Stack	17
STATUS Register	9, 11, 63
C Bit	
DC Bit	11
IRP Bit	11
PD Bit	11, 57
RP1:RP0 Bits	
TO Bit	
Z Bit	,

т

T1CON Register	
T1CKPS1:T1CKPS0 Bits	
T1OSCEN Bit	
T1SYNC Bit	
TMR1CS Bit	
TMR1ON Bit	
T2CON Register	
T2CKPS1:T2CKPS0 Bits	
TMR2ON Bit	
TOUTPS3:TOUTPS0 Bits	
Timer0	
Block Diagram	25
Clock Source Edge Select (T0SE Bit)	
Clock Source Select (T0CS Bit)	
Overflow Enable (T0IE Bit)	,
Overflow Flag (T0IF Bit)	
Overflow Interrupt	26, 63
RA4/T0CKI Pin, External Clock	
Timing Diagram	
TMR0 Register	

Timer1	
Block Diagram	
Capacitor Selection	
Clock Source Select (TMR1CS Bit)	27
External Clock Input Sync (T1SYNC Bit)	27
Module On/Off (TMR1ON Bit)	
Oscillator	
Oscillator Enable (T1OSCEN Bit)	
Overflow Enable (TMR1IE Bit)	
Overflow Flag (TMR1IF Bit)	
Overflow Interrupt	
RC0/T1OSO/T1CKI Pin	
RC1/T1OSI	
Special Event Trigger (CCP)	
T1CON Register	
Timing Diagram	
TMR1H Register	
TMR1L Register	
Timer2	
Block Diagram	32
PR2 Register	
SSP Clock Shift	
T2CON Register	
TMR2 Register	
TMR2 to PR2 Match Enable (TMR2IE Bit) .	/
TMR2 to PR2 Match Flag (TMR2IF Bit)	
TMR2 to PR2 Match Interrupt	
Timing Diagrams	
I ² C Reception (7-bit Address)	43
Wake-up from SLEEP via Interrupt	
Timing Diagrams and Specifications	
A/D Conversion	
Brown-out Reset (BOR)	
Capture/Compare/PWM (CCP)	
CLKOUT and I/O	
External Clock	
I ² C Bus Data	
I ² C Bus Start/Stop Bits	
Oscillator Start-up Timer (OST) Power-up Timer (PWRT)	
Reset Timer0 and Timer1	
Watchdog Timer (WDT)	

w

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this document.

TO: RE:	Technical Publications Manager Reader Response	Total Pages Sent	
Fror	n: Name		
	Company		
	Address		
	City / State / ZIP / Country		
	Telephone: ()	FAX: ()	
Арр	lication (optional):		
Wou	Ild you like a reply?YN		
Dev	ice: 24xx010	Literature Number: DS35008C	
Questions:			
1. What are the best features of this document?			
2.	2. How does this document meet your hardware and software development needs?		
3.	3. Do you find the organization of this document easy to follow? If not, why?		
4.	4. What additions to the document do you think would enhance the structure and subject?		
5.	. What deletions from the document could be made without affecting the overall usefulness?		
6.	6. Is there any incorrect or misleading information (what and where)?		
7.	How would you improve this document?		