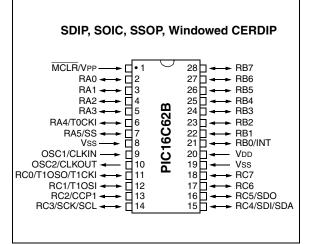


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	I ² C, SPI
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	22
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	OTP
EEPROM Size	· .
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 5.5V
Data Converters	A/D 5x8b
Oscillator Type	External
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c72a-04e-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams

Key Features PIC [®] Mid-Range Reference Manual (DS33023)	PIC16C62B	PIC16C72A
Operating Frequency	DC - 20 MHz	DC - 20 MHz
Resets (and Delays)	POR, BOR (PWRT, OST)	POR, BOR (PWRT, OST)
Program Memory (14-bit words)	2K	2K
Data Memory (bytes)	128	128
Interrupts	7	8
I/O Ports	Ports A,B,C	Ports A,B,C
Timers	3	3
Capture/Compare/PWM modules	1	1
Serial Communications	SSP	SSP
8-bit Analog-to-Digital Module	—	5 input channels

2.2.2 SPECIAL FUNCTION REGISTERS

The Special Function Registers are registers used by the CPU and Peripheral Modules for controlling the desired operation of the device. These registers are implemented as static RAM. A list of these registers is given in Table 2-1. The Special Function Registers can be classified into two sets; core (CPU) and peripheral. Those registers associated with the core functions are described in detail in this section. Those related to the operation of the peripheral features are described in detail in the peripheral feature section.

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets (4)
Bank 0					•						
00h	INDF ⁽¹⁾	Addressing	this locatio	n uses conte	ents of FSR	to address d	ata memory	(not a physi	cal register)	0000 0000	0000 0000
01h	TMR0	Timer0 mo	dule's regist	er						xxxx xxxx	uuuu uuuu
02h	PCL ⁽¹⁾	Program C	ounter's (PC	C) Least Sig	nificant Byte	!				0000 0000	0000 0000
03h	STATUS ⁽¹⁾	IRP ⁽⁵⁾	RP1 ⁽⁵⁾	RP0	TO	PD	Z	DC	С	0001 1xxx	000q quuu
04h	FSR ⁽¹⁾	Indirect dat	a memory a	ddress poir	nter					xxxx xxxx	uuuu uuuu
05h	PORTA ^(6,7)	—	_	PORTA Da	ta Latch whe	en written: P	ORTA pins w	hen read		0x 0000	0u 0000
06h	PORTB ^(6,7)	PORTB Da	ta Latch wh	en written: F	PORTB pins	when read				xxxx xxxx	uuuu uuuu
07h	PORTC ^(6,7)	PORTC Da	ita Latch wh	en written: I	PORTC pins	when read				xxxx xxxx	uuuu uuuu
08h-09h	_	Unimpleme	ented							—	—
0Ah	PCLATH ^(1,2)	_	_	_	Write Buffe	r for the uppe	er 5 bits of th	e Program (Counter	0 0000	0 0000
0Bh	INTCON ⁽¹⁾	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	—	ADIF ⁽³⁾	_	_	SSPIF	CCP1IF	TMR2IF	TMR1IF	-0 0000	-0 0000
0Dh	_	Unimpleme	ented							—	—
0Eh	TMR1L	Holding reg	jister for the	Least Signi	ificant Byte o	of the 16-bit 1	MR1 registe	r		xxxx xxxx	uuuu uuuu
0Fh	TMR1H	Holding reg	jister for the	Most Signif	icant Byte o	f the 16-bit T	MR1 register	r		xxxx xxxx	uuuu uuuu
10h	T1CON	_	—	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR1ON	00 0000	uu uuuu
11h	TMR2	Timer2 mo	dule's regist	er						0000 0000	0000 0000
12h	T2CON	_	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	-000 0000
13h	SSPBUF	Synchrono	us Serial Po	rt Receive E	Buffer/Transr	nit Register				xxxx xxxx	uuuu uuuu
14h	SSPCON	WCOL	SSPOV	SSPEN	СКР	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	0000 0000
15h	CCPR1L	Capture/Co	Capture/Compare/PWM Register1 (LSB)						xxxx xxxx	uuuu uuuu	
16h	CCPR1H	Capture/Co	Capture/Compare/PWM Register1 (MSB)					xxxx xxxx	uuuu uuuu		
17h	CCP1CON	—	_	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0000	00 0000
18h-1Dh	_	Unimplemented —						—	—		
1Eh	ADRES ⁽³⁾	A/D Result	A/D Result Register xxxx					xxxx xxxx	uuuu uuuu		
1Fh	ADCON0 ⁽³⁾	ADCS1	ADCS0	CHS2	CHS1	CHS0	GO/DONE	—	ADON	0000 00-0	0000 00-0

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0',

Shaded locations are unimplemented, read as '0'. **Note 1:** These registers can be addressed from either bank.

2: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for PC<12:8> whose contents are transferred to the upper byte of the program counter.

3: A/D not implemented on the PIC16C62B, maintain as '0'.

4: Other (non power-up) resets include: external reset through MCLR and the Watchdog Timer Reset.

5: The IRP and RP1 bits are reserved. Always maintain these bits clear.

6: On any device reset, these pins are configured as inputs.

7: This is the value that will be in the port output latch.

3.0 I/O PORTS

Some I/O port pins are multiplexed with an alternate function for the peripheral features on the device. In general, when a peripheral is enabled, that pin may not be used as a general purpose I/O pin.

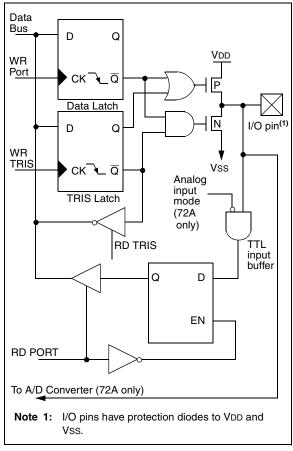
Additional information on I/O ports may be found in the PIC[®] MCU Mid-Range Reference Manual, (DS33023).

3.1 PORTA and the TRISA Register

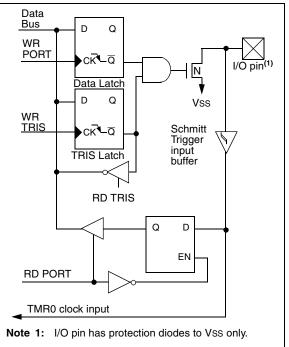
PORTA is a 6-bit wide bi-directional port. The corresponding data direction register is TRISA. Setting a TRISA bit (=1) will make the corresponding PORTA pin an input, i.e., put the corresponding output driver in a hi-impedance mode. Clearing a TRISA bit (=0) will make the corresponding PORTA pin an output, (i.e., put the contents of the output latch on the selected pin).

The PORTA register reads the state of the pins, whereas writing to it will write to the port latch. All write operations are read-modify-write operations. Therefore, a write to a port implies that the port pins are read, this value is modified, and then written to the port data latch.

Pin RA4 is multiplexed with the Timer0 module clock input to become the RA4/T0CKI pin. The RA4/T0CKI pin is a Schmitt Trigger input and an open drain output. All other RA port pins have TTL input levels and full CMOS output drivers.


Pin RA5 is multiplexed with the SSP to become the RA5/SS pin.

On the PIC16C72A device, other PORTA pins are multiplexed with analog inputs and analog VREF input. The operation of each pin is selected by clearing/setting the control bits in the ADCON1 register (A/D Control Register1).


Note:	On a Power-on Reset, pins with analog
	functions are configured as analog inputs
	with digital input buffers disabled . A digital
	read of these pins will return '0'.

The TRISA register controls the direction of the RA pins, even when they are being used as analog inputs. The user must ensure the bits in the TRISA register are maintained set when using them as analog inputs.

FIGURE 3-1: BLOCK DIAGRAM OF RA3:RA0 AND RA5 PINS

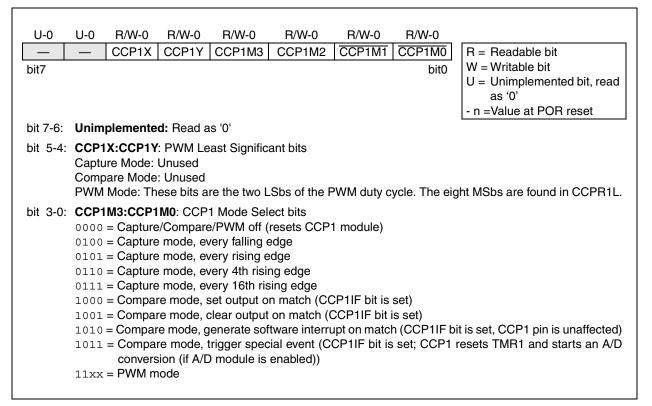
FIGURE 3-2: BLOCK DIAGRAM OF RA4/T0CKI PIN

© 1998-2013 Microchip Technology Inc.

7.0 CAPTURE/COMPARE/PWM (CCP) MODULE

The CCP (Capture/Compare/PWM) module contains a 16-bit register, which can operate as a 16-bit capture register, as a 16-bit compare register or as a PWM master/slave duty cycle register. Table 7-1 shows the timer resources of the CCP module modes.

Capture/Compare/PWM Register 1 (CCPR1) is comprised of two 8-bit registers: CCPR1L (low byte) and CCPR1H (high byte). The CCP1CON register controls the operation of CCP1. All are readable and writable. Additional information on the CCP module is available in the PIC[®] MCU Mid-Range Reference Manual, (DS33023).

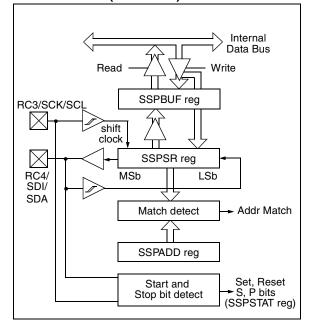

TABLE 7-1CCP MODE - TIMER
RESOURCE

CCP Mode	Timer Resource
Capture	Timer1
Compare	Timer1
PWM	Timer2

TABLE 7-2INTERACTION OF TWO CCP MODULES

CCPx Mode	CCPy Mode	Interaction
Capture	Capture	Same TMR1 time-base.
Capture	Compare	The compare should be configured for the special event trigger, which clears TMR1.
Compare	Compare	The compare(s) should be configured for the special event trigger, which clears TMR1.
PWM	PWM	The PWMs will have the same frequency and update rate (TMR2 interrupt).
PWM	Capture	None.
PWM	Compare	None.

REGISTER 7-1:CCP1CON REGISTER (ADDRESS 17h)


8.3 <u>SSP I²C Operation</u>

The SSP module in I²C mode fully implements all slave functions, except general call support, and provides interrupts on start and stop bits in hardware to support firmware implementations of the master functions. The SSP module implements the standard mode specifications, as well as 7-bit and 10-bit addressing.

Two pins are used for data transfer. These are the RC3/SCK/SCL pin, which is the clock (SCL), and the RC4/SDI/SDA pin, which is the data (SDA). The user must configure these pins as inputs or outputs through the TRISC<4:3> bits.

The SSP module functions are enabled by setting SSP Enable bit SSPEN (SSPCON<5>).

FIGURE 8-2: SSP BLOCK DIAGRAM (I²C MODE)

The SSP module has five registers for I^2C operation. These are the:

- SSP Control Register (SSPCON)
- SSP Status Register (SSPSTAT)
- Serial Receive/Transmit Buffer (SSPBUF)
- SSP Shift Register (SSPSR) Not accessible
- SSP Address Register (SSPADD)

The SSPCON register allows control of the I^2C operation. Four mode selection bits (SSPCON<3:0>) allow one of the following I^2C modes to be selected:

- I²C Slave mode (7-bit address)
- I²C Slave mode (10-bit address)
- I²C Slave mode (7-bit address), with start and stop bit interrupts enabled for firmware master mode support
- I²C Slave mode (10-bit address), with start and stop bit interrupts enabled for firmware master mode support
- I²C start and stop bit interrupts enabled for firmware master mode support, slave mode idle

Selection of any I^2C mode, with the SSPEN bit set, forces the SCL and SDA pins to be operated as open drain outputs, provided these pins are programmed to inputs by setting the appropriate TRISC bits.

Additional information on SSP I²C operation may be found in the PIC[®] MCU Mid-Range Reference Manual, (DS33023).

8.3.1 SLAVE MODE

In slave mode, the SCL and SDA pins must be configured as inputs (TRISC<4:3> set). The SSP module will override the input state with the output data when required (slave-transmitter).

When an address is matched or the data transfer after an address match is received, the hardware automatically will generate the acknowledge (\overline{ACK}) pulse, and load the SSPBUF register with the received value in the SSPSR register.

There are certain conditions that will cause the SSP module not to give this \overline{ACK} pulse. This happens if either of the following conditions occur:

- a) The buffer full bit BF (SSPSTAT<0>) was set before the transfer was completed.
- b) The overflow bit SSPOV (SSPCON<6>) was set before the transfer was completed.

In this case, the SSPSR register value is not loaded into the SSPBUF, but bit SSPIF (PIR1<3>) is set. Table 8-2 shows what happens when a data transfer byte is received, given the status of bits BF and SSPOV. The shaded cells show the condition where user software did not properly clear the overflow condition. Flag bit BF is cleared by reading the SSPBUF register, while bit SSPOV is cleared through software.

The SCL clock input must have a minimum high and low for proper operation. The high and low times of the I^2C specification, as well as the requirement of the SSP module, is shown in timing parameter #100, THIGH, and parameter #101, TLOW.

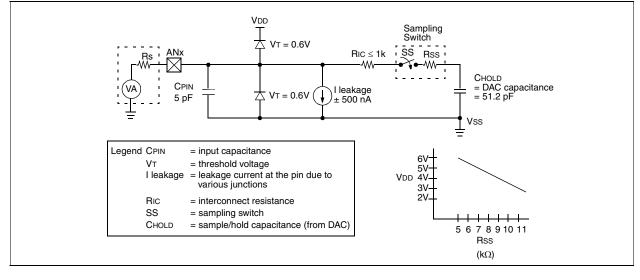
NOTES:

9.1 A/D Acquisition Requirements

For the A/D converter to meet its specified accuracy, the charge holding capacitor (CHOLD) must be allowed to fully charge to the input channel voltage level. The analog input model is shown in Figure 9-2. The source impedance (Rs) and the internal sampling switch (Rss) impedance directly affect the time required to charge the capacitor CHOLD. The sampling switch (Rss) impedance varies over the device voltage (VDD). The source impedance affects the offset voltage at the analog input (due to pin leakage current). The maximum recommended impedance for analog sources is 10 k Ω . After the analog input channel is selected (changed), this acquisition must pass before the conversion can be started.

To calculate the minimum acquisition time, TACQ, see Equation 9-1. This equation calculates the acquisition time to within 1/2 LSb error (512 steps for the A/D). The 1/2 LSb error is the maximum error allowed for the A/D to meet its specified accuracy.

Note:	When the conversion is started, the hold-					
	ing capacitor is disconnected from the input pin.					
	input pin.					


In general;

Assuming Rs = $10k\Omega$

Vdd =
$$3.0V$$
 (Rss = $10k\Omega$)

TACQ $\approx~13.0~\mu Sec$

By increasing VDD and reducing Rs and Temp., TACQ can be substantially reduced.

FIGURE 9-2: ANALOG INPUT MODEL

EQUATION 9-1: ACQUISITION TIME

- TACQ = Amplifier Settling Time + Hold Capacitor Charging Time + Temperature Coefficient
 - = TAMP + TC + TCOFF TAMP = $5\mu S$ TC = - $(51.2pF)(1k\Omega + Rss + Rs) In(1/511)$ TCOFF = $(Temp - 25^{\circ}C)(0.05\mu S/^{\circ}C)$

TABLE 10-6 INITIALIZATION CONDITIONS FOR ALL REGISTERS						
Register		cable ices	Power-on Reset, Brown-out Reset	MCLR Resets WDT Reset	Wake-up via WDT or Interrupt	
W	62B	72A	XXXX XXXX	uuuu uuuu	սսսս սսսս	
INDF	62B	72A	N/A	N/A	N/A	
TMR0	62B	72A	xxxx xxxx	uuuu uuuu	uuuu uuuu	
PCL	62B	72A	0000h	0000h	PC + 1 ⁽²⁾	
STATUS	62B	72A	0001 1xxx	000q quuu (3)	uuuq quuu (3)	
FSR	62B	72A	XXXX XXXX	uuuu uuuu	uuuu uuuu	
PORTA ⁽⁴⁾	62B	72A	0x 0000	0u 0000	uu uuuu	
PORTB ⁽⁵⁾	62B	72A	xxxx xxxx	uuuu uuuu	սսսս սսսս	
PORTC ⁽⁵⁾	62B	72A	xxxx xxxx	uuuu uuuu	uuuu uuuu	
PCLATH	62B	72A	0 0000	0 0000	u uuuu	
INTCON	62B	72A	0000 000x	0000 000u	uuuu uuuu (1)	
	62B	72A	0000	0000	uuuu (1)	
PIR1	62B	72A	-0 0000	-0 0000	-u uuuu (1)	
TMR1L	62B	72A	xxxx xxxx	uuuu uuuu	uuuu uuuu	
TMR1H	62B	72A	xxxx xxxx	uuuu uuuu	uuuu uuuu	
T1CON	62B	72A	00 0000	uu uuuu	uu uuuu	
TMR2	62B	72A	0000 0000	0000 0000	uuuu uuuu	
T2CON	62B	72A	-000 0000	-000 0000	-uuu uuuu	
SSPBUF	62B	72A	XXXX XXXX	uuuu uuuu	uuuu uuuu	
SSPCON	62B	72A	0000 0000	0000 0000	uuuu uuuu	
CCPR1L	62B	72A	XXXX XXXX	uuuu uuuu	uuuu uuuu	
CCPR1H	62B	72A	xxxx xxxx	uuuu uuuu	uuuu uuuu	
CCP1CON	62B	72A	00 0000	00 0000	uu uuuu	
ADRES	62B	72A	XXXX XXXX	uuuu uuuu	uuuu uuuu	
ADCON0	62B	72A	0000 00-0	0000 00-0	uuuu uu-u	
OPTION_REG	62B	72A	1111 1111	1111 1111	uuuu uuuu	
TRISA	62B	72A	11 1111	11 1111	uu uuuu	
TRISB	62B	72A	1111 1111	1111 1111	uuuu uuuu	
TRISC	62B	72A	1111 1111	1111 1111	uuuu uuuu	
	62B	72A	0000	0000	uuuu	
PIE1	62B	72A	-0 0000	-0 0000	-u uuuu	
PCON	62B	72A	0q	uq	uq	
PR2	62B	72A	1111 1111	1111 1111	1111 1111	
SSPADD	62B	72A	0000 0000	0000 0000	uuuu uuuu	
SSPSTAT	62B	72A	0000 0000	0000 0000	սսսս սսսս	
ADCON1	62B	72A	000	000	uuu	

TABLE 10-6	INITIALIZATION CONDITIONS FOR ALL REGISTERS

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', <math>q = value depends on condition

Note 1: One or more bits in INTCON and/or PIR1 will be affected (to cause wake-up).

2: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

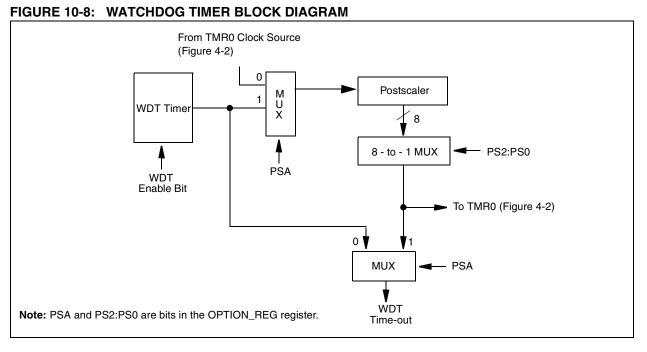
3: See Table 10-5 for reset value for specific condition.

4: On any device reset, these pins are configured as inputs.

5: This is the value that will be in the port output latch.

10.12 Watchdog Timer (WDT)

The Watchdog Timer is a free running on-chip RC oscillator which does not require any external components. This RC oscillator is separate from the RC oscillator of the OSC1/CLKIN pin. The WDT will run, even if the clock on the OSC1/CLKIN and OSC2/CLKOUT pins of the device has been stopped, for example, by execution of a SLEEP instruction.


During normal operation, a WDT time-out generates a device RESET (Watchdog Timer Reset). If the device is in SLEEP mode, a WDT time-out causes the device to wake-up and continue with normal operation (Watchdog Timer Wake-up). The $\overline{\text{TO}}$ bit in the STATUS register will be cleared upon a Watchdog Timer time-out.

The WDT can be permanently disabled by clearing configuration bit WDTE (Section 10.1).

The WDT time-out period (TWDT, parameter #31) is multiplied by the prescaler ratio, when the prescaler is assigned to the WDT. The prescaler assignment (assigned to either the WDT or Timer0) and prescaler ratio are set in the OPTION_REG register.

Note: The CLRWDT and SLEEP instructions clear the WDT and the postscaler, if assigned to the WDT, and prevent it from timing out and generating a device RESET condition.

Note: When a CLRWDT instruction is executed and the prescaler is assigned to the WDT, the prescaler count will be cleared, but the prescaler assignment is not changed.

FIGURE 10-9: SUMMARY OF WATCHDOG TIMER REGISTERS

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
2007h	Config. bits		BODEN	CP1	CP0	PWRTE	WDTE	FOSC1	FOSC0
81h	OPTION_REG	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0

Legend: Shaded cells are not used by the Watchdog Timer.

11.1 Instruction Descriptions

ADDLW	Add Literal and W
Syntax:	[<i>label</i>] ADDLW k
Operands:	$0 \leq k \leq 255$
Operation:	$(W) + k \to (W)$
Status Affected:	C, DC, Z
Description:	The contents of the W register are added to the eight bit literal 'k' and the result is placed in the W register.

ANDWF	AND W with f
Syntax:	[<i>label</i>] ANDWF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(W) .AND. (f) \rightarrow (destination)
Status Affected:	Z
Description:	AND the W register with register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'.

ADDWF	Add W and f
Syntax:	[<i>label</i>] ADDWF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(W) + (f) \rightarrow (destination)
Status Affected:	C, DC, Z
Description:	Add the contents of the W register with register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'.

BCF	Bit Clear f
Syntax:	[<i>label</i>] BCF f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	$0 \rightarrow (f < b >)$
Status Affected:	None
Description:	Bit 'b' in register 'f' is cleared.

ANDLW	AND Literal with W
Syntax:	[<i>label</i>] ANDLW k
Operands:	$0 \le k \le 255$
Operation:	(W) .AND. (k) \rightarrow (W)
Status Affected:	Z
Description:	The contents of W register are AND'ed with the eight bit literal 'k'. The result is placed in the W register.

BSF	Bit Set f
Syntax:	[<i>label</i>] BSF f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	$1 \rightarrow (f < b >)$
Status Affected:	None
Description:	Bit 'b' in register 'f' is set.

PIC16C62B/72A

IORLW	Inclusive OR Literal with W
Syntax:	[label] IORLW k
Operands:	$0 \le k \le 255$
Operation:	(W) .OR. $k \rightarrow$ (W)
Status Affected:	Z
Description:	The contents of the W register is OR'ed with the eight bit literal 'k'. The result is placed in the W register.

MOVLW	Move Literal to W
Syntax:	[<i>label</i>] MOVLW k
Operands:	$0 \leq k \leq 255$
Operation:	$k \rightarrow (W)$
Status Affected:	None
Description:	The eight bit literal 'k' is loaded into W register. The don't cares will assemble as 0's.

IORWF	Inclusive OR W with f
Syntax:	[label] IORWF f,d
Operands:	$\begin{array}{l} 0\leq f\leq 127\\ d\in [0,1] \end{array}$
Operation:	(W) .OR. (f) \rightarrow (destination)
Status Affected:	Z
Description:	Inclusive OR the W register with regis- ter 'f'. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in register 'f'.

MOVWF	Move W to f
Syntax:	[label] MOVWF f
Operands:	$0 \leq f \leq 127$
Operation:	$(W) \rightarrow (f)$
Status Affected:	None
Description:	Move data from W register to register

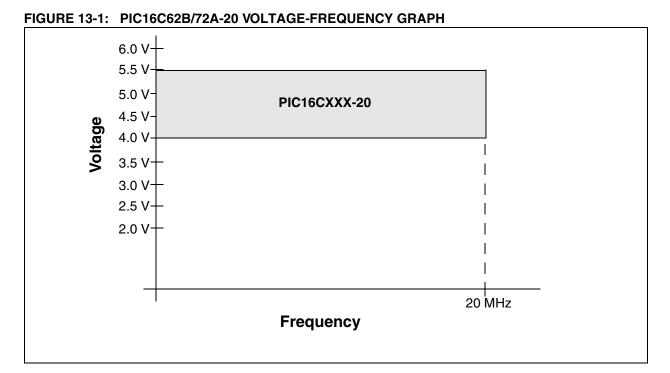
MOVF	Move f
Syntax:	[<i>label</i>] MOVF f,d
Operands:	$\begin{array}{l} 0\leq f\leq 127\\ d\in [0,1] \end{array}$
Operation:	(f) \rightarrow (destination)
Status Affected:	Z
Description:	The contents of register f is moved to a destination dependant upon the sta- tus of d. If $d = 0$, destination is W reg- ister. If $d = 1$, the destination is file register f itself. $d = 1$ is useful to test a file register since status flag Z is affected.

NOP	No Operation
Syntax:	[label] NOP
Operands:	None
Operation:	No operation
Status Affected:	None
Description:	No operation.

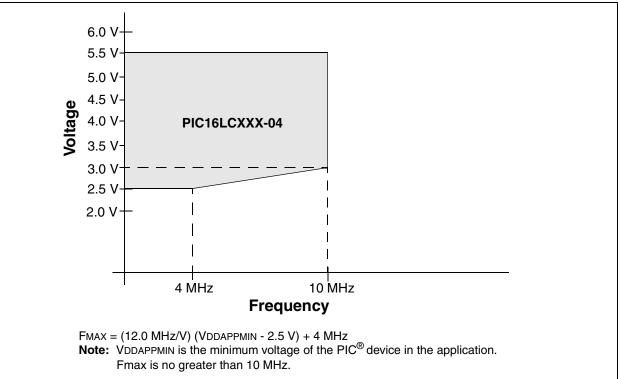
	PIC12CXX	PIC14000	PIC16C5X	PIC16C6X	PIC16CXX	PIC16F62	X7381319	X7Oðfolg	PIC16C8X	PIC16F8X	X6D91DI9	(\$3712)q	(X73713I9	PIC18CXX	63CXX 52CXX/ 54CXX/	хххсэн	мсяғххя	MCP2510
MPLAB™ Integrated Development Environment	>	>	>	>	>	>	`	>	`	>	>	>	>	>				
MPLAB™ C17 Compiler												>	>					
MPLAB™ C18 Compiler														>				
MPASM/MPLINK	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>		
MPLAB ^{TM-} ICE	>	>	>	>	>	**^	>	>	>	>	>	>	>	>				
PICMASTER/PICMASTER-CE	~	>	>	>	>		>	>	>		>	>	>					
In-Circuit Emulator	>		>	>	>		>	>	>		>							
et MPLAB-ICD In-Circuit Debugger De				*			*>			>								
PICSTART [®] Plus Low-Cost Universal Dev. Kit	^	`	>	~	~	**^	>	>	`	`	`	~	~	>				
ଖେମ୍ମ PRO MATE® I Universal Programmer ଦି	>	>	>	>	>	**>	>	>	>	>	>	>	>	>	>	>		
SIMICE	^		~															
PICDEM-1			>		>		⁺,		>			>						
PICDEM-2				<⁺			✓†							^				
PICDEM-3											~							
PICDEM-14A		>																
PICDEM-17													>					
KEELoo [®] Evaluation Kit																>		
KEELoo Transponder Kit																>		
microID TM Programmer's Kit																	`	
125 kHz microlD Developer's Kit																	>	
125 kHz Anticollision microlD Developer's Kit																	>	
13.56 MHz Anticollision microID Developer's Kit																	>	
MCP2510 CAN Developer's Kit																		>

TABLE 12-1: DEVELOPMENT TOOLS FROM MICROCHIP

 $\ensuremath{\textcircled{}^{\circ}}$ 1998-2013 Microchip Technology Inc.


13.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings (†)


Ambient temperature under bias	55°C to +125°C
Storage temperature	
Voltage on any pin with respect to Vss (except VDD, MCLR, and RA4)	
Voltage on VDD with respect to VSS	
Voltage on MCLR with respect to Vss (Note 2)	
Voltage on RA4 with respect to Vss	
Total power dissipation (Note 1)	
Maximum current out of Vss pin	
Maximum current into VDD pin	
Input clamp current, Iк (Vi < 0 or Vi > VDD)	
Output clamp current, Ioк (Vo < 0 or Vo > VDD)	
Maximum output current sunk by any I/O pin	25 mA
Maximum output current sourced by any I/O pin	25 mA
Maximum current sunk by PORTA and PORTB (combined)	
Maximum current sourced by PORTA and PORTB (combined)	200 mA
Maximum current sunk by PORTC	200 mA
Maximum current sourced by PORTC	200 mA
Note 1: Power dissipation is calculated as follows: Pdis = VDD x {IDD - \sum IOH} + \sum {(VDD-Value)	OH) x IOH} + $∑$ (VOI x IOL)

2: Voltage spikes below Vss at the MCLR/VPP pin, inducing currents greater than 80 mA, may cause latch-up. Thus, a series resistor of 50-100Ω should be used when applying a "low" level to the MCLR/VPP pin, rather than pulling this pin directly to Vss.

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

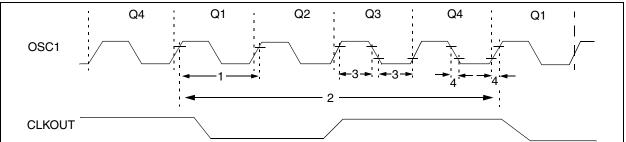
13.3 DC Characteristics:

cs: PIC16C62B/72A-04 (Commercial, Industrial, Extended) PIC16C62B/72A-20 (Commercial, Industrial, Extended) PIC16LC62B/72A-04 (Commercial, Industrial)

DC CHA	RISTICS	$\begin{array}{rl} \mbox{Standard Operating Conditions (unless otherwise stated)} \\ \mbox{Operating temperature} & 0^{\circ}C & \leq TA \leq +70^{\circ}C & \mbox{for commercial} \\ & -40^{\circ}C & \leq TA \leq +85^{\circ}C & \mbox{for industrial} \\ & -40^{\circ}C & \leq TA \leq +125^{\circ}C & \mbox{for extended} \\ \\ \mbox{Operating voltage VDD range as described in DC spec Section 13.7} \\ \mbox{and Section 13.2} \end{array}$						
Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions	
		Input Low Voltage						
	VIL	I/O ports						
D030 D030A		with TTL buffer	Vss Vss	-	0.15Vdd 0.8V	V V	For entire VDD range $4.5V \le VDD \le 5.5V$	
D031		with Schmitt Trigger buffer	Vss	-	0.2Vdd	V		
D032		MCLR, OSC1 (in RC mode)	Vss	-	0.2Vdd	V		
D033		OSC1 (in XT, HS and LP modes)	Vss	-	0.3Vdd	V	Note1	
		Input High Voltage						
	Vін	I/O ports		-				
D040		with TTL buffer	2.0	-	Vdd	V	$4.5V \leq V\text{DD} \leq 5.5V$	
D040A			0.25Vd D + 0.8V	-	Vdd	V	For entire VDD range	
D041		with Schmitt Trigger buffer	0.8Vdd	-	Vdd	v	For entire VDD range	
D042		MCLR	0.8Vdd	-	Vdd	V		
D042A		OSC1 (XT, HS and LP modes)	0.7Vdd	-	Vdd	V	Note1	
D043		OSC1 (in RC mode)	0.9Vdd	-	Vdd	V		
		Input Leakage Current (Notes 2, 3)						
D060	lı∟	I/O ports	-	-	±1	μA	$\label{eq:Vss} \begin{split} &Vss \leq V PIN \leq V DD, \\ &Pin \ at \ hi\ impedance \end{split}$	
D061		MCLR, RA4/T0CKI	-	-	±5	μA	$Vss \leq V \text{PIN} \leq V \text{DD}$	
D063		OSC1	-	-	±5	μA	Vss \leq VPIN \leq VDD, XT, HS and LP osc modes	
D070	IPURB	PORTB weak pull-up current	50	250	400	μA	VDD = 5V, VPIN = VSS	
D080	Vol	Output Low Voltage I/O ports	-	-	0.6	v	IOL = 8.5 mA, VDD = 4.5V, -40°C to +85°C	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.


Note 1: In RC oscillator mode, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the device be driven with external clock in RC mode.

3: Negative current is defined as current sourced by the pin.

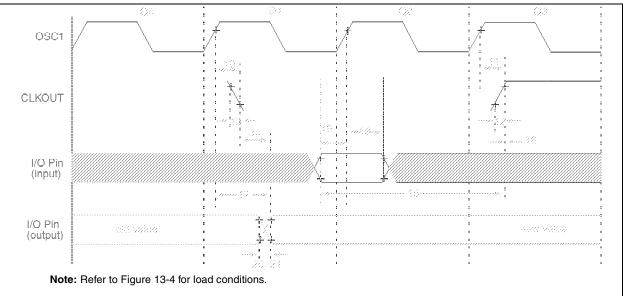
^{2:} The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

13.4.3 TIMING DIAGRAMS AND SPECIFICATIONS

FIGURE 13-5: EXTERNAL CLOCK TIMING

Param No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
1A	Fosc	External CLKIN Frequency			4	MHz	RC and XT osc modes
		(Note 1)	DC	—	4	MHz	HS osc mode (-04)
				—	20	MHz	HS osc mode (-20)
			DC	_	200	kHz	LP osc mode
		Oscillator Frequency	DC		4	MHz	RC osc mode
		(Note 1)	0.1	—	4	MHz	XT osc mode
			4	—	20	MHz	HS osc mode
			5	_	200	kHz	LP osc mode
1	Tosc	External CLKIN Period		—	—	ns	RC and XT osc modes
		(Note 1)	250	—	—	ns	HS osc mode (-04)
			50	—	—	ns	HS osc mode (-20)
			5	_	—	μS	LP osc mode
		Oscillator Period (Note 1)	250	—	—	ns	RC osc mode
			250	—	10,000	ns	XT osc mode
			250	—	250	ns	HS osc mode (-04)
				—	250	ns	HS osc mode (-20)
			5	_	—	μS	LP osc mode
2	Тсү	Instruction Cycle Time (Note 1)	200	_	DC	ns	Tcy = 4/Fosc
3*	TosL,	External Clock in (OSC1) High	100	—	—	ns	XT oscillator
	TosH	or Low Time	2.5	—	—	μS	LP oscillator
			15	_	—	ns	HS oscillator
4*	TosR,	External Clock in (OSC1) Rise	—	—	25	ns	XT oscillator
	TosF	or Fall Time	—	—	50	ns	LP oscillator
			_	_	15	ns	HS oscillator

TABLE 13-2: EXTERNAL CLOCK TIMING REQUIREMENTS


These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

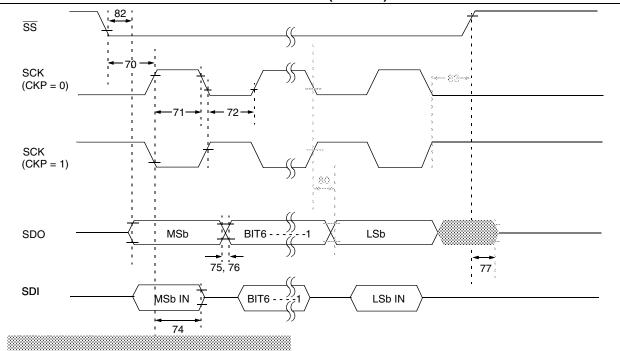
Note 1: Instruction cycle period (TCY) equals four times the input oscillator time-base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKIN pin.

When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices.

Param No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions	
10*	TosH2ckL	OSC1↑ to CLKOUT↓	—	75	200	ns	Note 1	
11*	TosH2ckH	OSC1↑ to CLKOUT↑		—	75	200	ns	Note 1
12*	TckR	CLKOUT rise time		_	35	100	ns	Note 1
13*	TckF	CLKOUT fall time		_	35	100	ns	Note 1
14*	TckL2ioV	CLKOUT ↓ to Port out valid		—		0.5TCY + 20	ns	Note 1
15*	TioV2ckH	Port in valid before CLKOUT ↑		Tosc + 200		_	ns	Note 1
16*	TckH2iol	Port in hold after CLKOUT ↑		0		_	ns	Note 1
17*	TosH2ioV	OSC1↑ (Q1 cycle) to Port out valid		—	50	150	ns	
18*	TosH2iol	OSC1 [↑] (Q2 cycle) to Port	PIC16CXX	100		_	ns	
18A*		input invalid (I/O in hold time)	PIC16LCXX	200		—	ns	
19*	TioV2osH	Port input valid to OSC11 (I/O in setup time)	0	_	_	ns	
20*	TioR	Port output rise time	PIC16CXX	—	10	40	ns	
20A*		PIC16LCXX		_		80	ns	
21*	TioF	Port output fall time PIC16CXX		—	10	40	ns	
21A*			PIC16LCXX	_	_	80	ns	
22††*	Tinp	INT pin high or low time		Тсү	_	—	ns	
23††*	Trbp	RB7:RB4 change INT high	or low time	Тсү	—	—	ns	

TABLE 13-3:	CLKOUT AND I/O TIMING REQUIREMENTS

* These parameters are characterized but not tested.

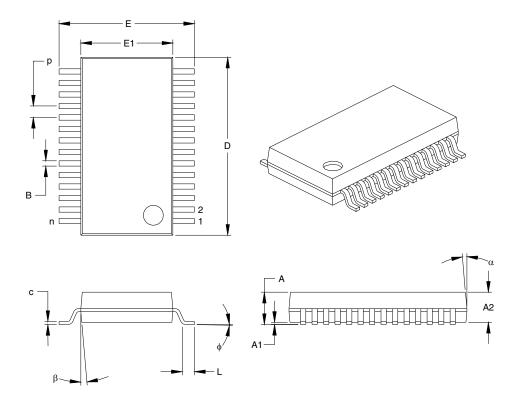

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

tt These parameters are asynchronous events not related to any internal clock edge.

Note 1: Measurements are taken in RC Mode where CLKOUT output is 4 x Tosc.

PIC16C62B/72A

FIGURE 13-14: EXAMPLE SPI SLAVE MODE TIMING (CKE = 1)


TABLE 13-10: EXAMPLE SPI SLAVE MODE REQUIREMENTS (CKE = 1)

Param. No.	Symbol	Characteris	Min	Тур†	Мах	Units	Conditions	
70	TssL2scH, TssL2scL	$\overline{SS}\downarrow$ to SCK \downarrow or SCK \uparrow input		Тсү	—		ns	
71	TscH	SCK input high time	Continuous	1.25Tcy + 30	—	_	ns	
71A		(slave mode)	Single Byte	40	—	_	ns	Note 1
72	TscL	SCK input low time	Continuous	1.25Tcy + 30	—	_	ns	
72A		(slave mode)	Single Byte	40	—		ns	Note 1
73A	Тв2в	Last clock edge of Byte1 edge of Byte2	1.5Tcy + 40	—	_	ns	Note 1	
74	TscH2diL, TscL2diL	Hold time of SDI data input to SCK edge		100	—	—	ns	
75	TdoR	SDO data output rise	PIC16CXX	—	10	25	ns	
	time		PIC16LCXX		20	45	ns	
76	TdoF	SDO data output fall time			10	25	ns	
77	TssH2doZ	SS↑ to SDO output hi-impedance		10	—	50	ns	
78	TscR	SCK output rise time	PIC16CXX		10	25	ns	
		(master mode)	PIC16LCXX		20	45	ns	
79	TscF	SCK output fall time (ma	ster mode)		10	25	ns	
80	TscH2doV,	scH2doV, SDO data output valid	PIC16CXX		—	50	ns	
	TscL2doV after SCK edge		PIC16LCXX		—	100	ns	
82	32 TssL2doV SDO data output valid		PIC16CXX		—	50	ns	
		after SS↓ edge	PIC16LCXX		—	100	ns	
83	TscH2ssH, TscL2ssH	SS ↑ after SCK edge		1.5TCY + 40	—	—	ns	

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Specification 73A is only required if specifications 71A and 72A are used.

28-Lead Plastic Shrink Small Outline (SS) - 209 mil, 5.30 mm (SSOP) 15.5

Units				MILLIMETERS*			
Dimension Limits			MAX	MIN	NOM	MAX	
n		28			28		
р		.026			0.66		
Α	.068	.073	.078	1.73	1.85	1.98	
A2	.064	.068	.072	1.63	1.73	1.83	
A1	.002	.006	.010	0.05	0.15	0.25	
E	.299	.309	.319	7.59	7.85	8.10	
E1	.201	.207	.212	5.11	5.25	5.38	
D	.396	.402	.407	10.06	10.20	10.34	
L	.022	.030	.037	0.56	0.75	0.94	
С	.004	.007	.010	0.10	0.18	0.25	
¢	0	4	8	0.00	101.60	203.20	
В	.010	.013	.015	0.25	0.32	0.38	
α	0	5	10	0	5	10	
β	0	5	10	0	5	10	
	n p A A2 A1 E D L c φ B α	n p A .068 A2 .064 A1 .002 E .299 E1 .201 D .396 L .022 c .004 φ 0 B .010 α 0	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	

*Controlling Parameter

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MS-150

Drawing No. C04-073

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, PIC³² logo, rfPIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MTP, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

Analog-for-the-Digital Age, Application Maestro, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rfLAB, Select Mode, SQI, Serial Quad I/O, Total Endurance, TSHARC, UniWinDriver, WiperLock, ZENA and Z-Scale are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

GestIC and ULPP are registered trademarks of Microchip Technology Germany II GmbH & Co. & KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 1998-2013, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

ISBN: 9781620769270

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and mulfacture of development systems is ISO 9001:2000 certified.