

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	I ² C, SPI
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	22
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 5.5V
Data Converters	A/D 5x8b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c72a-04i-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-1 PIC16C62B/PIC16C72A PINOUT DESCRIPTION

Pin Name	DIP Pin#	SOIC Pin#	l/O/P Type	Buffer Type	Description
OSC1/CLKIN	9	9	I	ST/CMOS ⁽³⁾	Oscillator crystal input/external clock source input.
OSC2/CLKOUT	10	10	0	_	Oscillator crystal output. Connects to crystal or resonator in crystal oscillator mode. In RC mode, the OSC2 pin outputs CLKOUT which has 1/4 the frequency of OSC1, and denotes the instruction cycle rate.
MCLR/VPP	1	1	I/P	ST	Master clear (reset) input or programming voltage input. This pin is an active low reset to the device.
					PORTA is a bi-directional I/O port.
RA0/AN0 ⁽⁴⁾	2	2	I/O	TTL	RA0 can also be analog input 0
RA1/AN1 ⁽⁴⁾	3	3	I/O	TTL	RA1 can also be analog input 1
RA2/AN2 ⁽⁴⁾	4	4	I/O	TTL	RA2 can also be analog input 2
RA3/AN3/VREF ⁽⁴⁾	5	5	I/O	TTL	RA3 can also be analog input 3 or analog reference voltage
RA4/T0CKI	6	6	I/O	ST	RA4 can also be the clock input to the Timer0 module. Output is open drain type.
RA5/ SS/ AN4 ⁽⁴⁾	7	7	I/O	TTL	RA5 can also be analog input 4 or the slave select for the synchronous serial port.
					PORTB is a bi-directional I/O port. PORTB can be software programmed for internal weak pull-up on all inputs.
RB0/INT	21	21	I/O	TTL/ST ⁽¹⁾	RB0 can also be the external interrupt pin.
RB1	22	22	I/O	TTL	
RB2	23	23	I/O	TTL	
RB3	24	24	I/O	TTL	
RB4	25	25	I/O	TTL	Interrupt on change pin.
RB5	26	26	I/O	TTL	Interrupt on change pin.
RB6	27	27	I/O	TTL/ST ⁽²⁾	Interrupt on change pin. Serial programming clock.
RB7	28	28	I/O	TTL/ST ⁽²⁾	Interrupt on change pin. Serial programming data.
					PORTC is a bi-directional I/O port.
RC0/T1OSO/T1CKI	11	11	I/O	ST	RC0 can also be the Timer1 oscillator output or Timer1 clock input.
RC1/T1OSI	12	12	I/O	ST	RC1 can also be the Timer1 oscillator input.
RC2/CCP1	13	13	I/O	ST	RC2 can also be the Capture1 input/Compare1 output/ PWM1 output.
RC3/SCK/SCL	14	14	I/O	ST	RC3 can also be the synchronous serial clock input/output for both SPI and I ² C modes.
RC4/SDI/SDA	15	15	I/O	ST	RC4 can also be the SPI Data In (SPI mode) or data I/O (I^2C mode).
RC5/SDO	16	16	I/O	ST	RC5 can also be the SPI Data Out (SPI mode).
RC6	17	17	I/O	ST	
RC7	18	18	I/O	ST	
Vss	8, 19	8, 19	Р	—	Ground reference for logic and I/O pins.
Vdd	20	20	Р	—	Positive supply for logic and I/O pins.
Legend: I = input	O = outp	but	I/O = i	nput/output	P = power or program
	— = Not	t used	TTL =	TTL input	ST = Schmitt Trigger input

Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.

This buffer is a Schmitt Trigger input when used in serial programming mode.
 This buffer is a Schmitt Trigger input when configured in RC oscillator mode and a CMOS input otherwise.

4: The A/D module is not available on the PIC16C62B.

2.2.2 SPECIAL FUNCTION REGISTERS

The Special Function Registers are registers used by the CPU and Peripheral Modules for controlling the desired operation of the device. These registers are implemented as static RAM. A list of these registers is given in Table 2-1. The Special Function Registers can be classified into two sets; core (CPU) and peripheral. Those registers associated with the core functions are described in detail in this section. Those related to the operation of the peripheral features are described in detail in the peripheral feature section.

TABLE 2-1	SPECIAL FUN	CTION REGISTER	SUMMARY

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets (4)
Bank 0	Bank 0										
00h	INDF ⁽¹⁾	Addressing	this locatio	n uses conte	ents of FSR	to address d	ata memory	(not a physi	cal register)	0000 0000	0000 0000
01h	TMR0	Timer0 mo	dule's regist	er						xxxx xxxx	uuuu uuuu
02h	PCL ⁽¹⁾	Program C	ounter's (PC	C) Least Sig	nificant Byte					0000 0000	0000 0000
03h	STATUS ⁽¹⁾	IRP ⁽⁵⁾	RP1 ⁽⁵⁾	RP0	TO	PD	Z	DC	С	0001 1xxx	000q quuu
04h	FSR ⁽¹⁾	Indirect dat	a memory a	ddress poir	nter					xxxx xxxx	uuuu uuuu
05h	PORTA ^(6,7)	—	—	PORTA Da	ta Latch whe	en written: P	ORTA pins w	hen read		0x 0000	0u 0000
06h	PORTB ^(6,7)	PORTB Da	ita Latch wh	en written: F	PORTB pins	when read				xxxx xxxx	uuuu uuuu
07h	PORTC ^(6,7)	PORTC Da	ata Latch wh	en written: I	PORTC pins	when read				xxxx xxxx	uuuu uuuu
08h-09h	—	Unimpleme	ented							—	_
0Ah	PCLATH ^(1,2)	—	—	_	Write Buffe	r for the uppe	er 5 bits of th	e Program (Counter	0 0000	0 0000
0Bh	INTCON ⁽¹⁾	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	—	ADIF ⁽³⁾	—	—	SSPIF	CCP1IF	TMR2IF	TMR1IF	-0 0000	-0 0000
0Dh	_	Unimpleme	ented							_	_
0Eh	TMR1L	Holding reg	gister for the	Least Signi	ificant Byte o	of the 16-bit T	MR1 registe	r		xxxx xxxx	uuuu uuuu
0Fh	TMR1H	Holding reg	gister for the	Most Signif	icant Byte o	f the 16-bit T	MR1 register	r		xxxx xxxx	uuuu uuuu
10h	T1CON	—	—	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR1ON	00 0000	uu uuuu
11h	TMR2	Timer2 mo	dule's regist	er						0000 0000	0000 0000
12h	T2CON	—	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	-000 0000
13h	SSPBUF	Synchrono	us Serial Po	rt Receive E	Buffer/Transr	nit Register				xxxx xxxx	uuuu uuuu
14h	SSPCON	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	0000 0000
15h	CCPR1L	Capture/Compare/PWM Register1 (LSB)								uuuu uuuu	
16h	CCPR1H	Capture/Compare/PWM Register1 (MSB)							xxxx xxxx	uuuu uuuu	
17h	CCP1CON	CCP1X CCP1Y CCP1M3 CCP1M2 CCP1M1 CCP1M000 0000							00 0000		
18h-1Dh	—	Unimplemented —							—		
1Eh	ADRES ⁽³⁾	A/D Result	Register							xxxx xxxx	uuuu uuuu
1Fh	ADCON0 ⁽³⁾	ADCS1	ADCS0	CHS2	CHS1	CHS0	GO/DONE	—	ADON	0000 00-0	0000 00-0

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0',

Shaded locations are unimplemented, read as '0'. **Note 1:** These registers can be addressed from either bank.

2: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for PC<12:8> whose contents are transferred to the upper byte of the program counter.

- 3: A/D not implemented on the PIC16C62B, maintain as '0'.
- 4: Other (non power-up) resets include: external reset through MCLR and the Watchdog Timer Reset.
- 5: The IRP and RP1 bits are reserved. Always maintain these bits clear.
- 6: On any device reset, these pins are configured as inputs.
- 7: This is the value that will be in the port output latch.

Name	Bit#	Buffer	Function
RB0/INT	bit0	TTL/ST ⁽¹⁾	Input/output pin or external interrupt input. Internal software programmable weak pull-up.
RB1	bit1	TTL	Input/output pin. Internal software programmable weak pull-up.
RB2	bit2	TTL	Input/output pin. Internal software programmable weak pull-up.
RB3	bit3	TTL	Input/output pin. Internal software programmable weak pull-up.
RB4	bit4	TTL	Input/output pin (with interrupt on change). Internal software programmable weak pull-up.
RB5	bit5	TTL	Input/output pin (with interrupt on change). Internal software programmable weak pull-up.
RB6	bit6	TTL/ST ⁽²⁾	Input/output pin (with interrupt on change). Internal software programmable weak pull-up. Serial programming clock.
RB7	bit7	TTL/ST ⁽²⁾	Input/output pin (with interrupt on change). Internal software programmable weak pull-up. Serial programming data.

Legend: TTL = TTL input, ST = Schmitt Trigger input

Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.

2: This buffer is a Schmitt Trigger input when used in serial programming mode.

TABLE 3-4 SUMMARY OF REGISTERS ASSOCIATED WITH PORTB

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets
06h	PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxx xxxx	uuuu uuuu
86h	TRISB	PORTB	PORTB Data Direction Register							1111 1111	1111 1111
81h	OPTION_REG	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	1111 1111

Legend: x = unknown, u = unchanged. Shaded cells are not used by PORTB.

5.2 <u>Timer1 Oscillator</u>

A crystal oscillator circuit is built-in between pins T1OSI (input) and T1OSO (amplifier output). It is enabled by setting control bit T1OSCEN (T1CON<3>). When the Timer1 oscillator is enabled, RC0 and RC1 pins become T1OSO and T1OSI inputs, overriding TRISC<1:0>.

The oscillator is a low power oscillator rated up to 200 kHz. It will continue to run during SLEEP. It is primarily intended for a 32 kHz crystal. Table 5-1 shows the capacitor selection for the Timer1 oscillator.

The Timer1 oscillator is identical to the LP oscillator. The user must provide a software time delay to ensure proper oscillator start-up.

TABLE 5-1	CAPACITOR SELECTION FOR
	THE TIMER1 OSCILLATOR

Osc Type	Freq	C1	C2							
LP	32 kHz	33 pF	23.0F							
	100 kHz	15 pF	्रीव ट्रा							
	200 kHz	15 pF	(15°pF							
These v	These values are for design guidance only.									
Crystals Tested:										
32.768 kHz	Epson C-00	Epson C-00(R32.768K-A ± 20 PPM								
100 kHz	Epson C-2 100.00 KC-P ± 20 P									
200 kHz	STD XTL 20	0.000 kHz	\pm 20 PPM							
 Note 1: Higher capacitance increases the stability of oscillator but also increases the start-up time. 2: Since each resonator/crystal has its own characteristics, the user should consult the resonator/crystal manufacturer for appropriate values of external components. 										

5.3 <u>Timer1 Interrupt</u>

The TMR1 Register pair (TMR1H:TMR1L) increments from 0000h to FFFFh and rolls over to 0000h. The TMR1 Interrupt, if enabled, is generated on overflow and is latched in interrupt flag bit TMR1IF (PIR1<0>). This interrupt can be enabled by setting TMR1 interrupt enable bit TMR1IE (PIE1<0>).

5.4 <u>Resetting Timer1 using a CCP Trigger</u> <u>Output</u>

If the CCP module is configured in compare mode to generate a "special event trigger" (CCP1M3:CCP1M0 = 1011), this signal will reset Timer1 and start an A/D conversion (if the A/D module is enabled).

Note:	The special event trigger from the CCP1					
	module will not set interrupt flag bit					
	TMR1IF (PIR1<0>).					

Timer1 must be configured for either timer or synchronized counter mode to take advantage of this feature. If Timer1 is running in asynchronous counter mode, this reset operation may not work.

In the event that a write to Timer1 coincides with a special event trigger from CCP1, the write will take precedence.

In this mode of operation, the CCPR1H:CCPR1L registers pair effectively becomes the period register for Timer1.

TABLE 5-2 REGISTERS ASSOCIATED WITH TIMER1 AS A TIMER/COUNTER

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value o POR, BOR	n	Value all o rese	e on other ets
0Bh,8Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 00	0x	0000	000u
0Ch	PIR1	_	ADIF	_		SSPIF	CCP1IF	TMR2IF	TMR1IF	-0 00	00	- 0	0000
8Ch	PIE1	_	ADIE	—	-	SSPIE	CCP1IE	TMR2IE	TMR1IE	-0 00	00	- 0	0000
0Eh	TMR1L Holding register for the Least Significant Byte of the 16-bit TMR1 register									xxxx xx	xx	uuuu	uuuu
0Fh	TMR1H	Holding register for the Most Significant Byte of the 16-bit TMR1 register							uuuu				
10h	T1CON	_	_	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR1ON	00 00	00	uu	uuuu

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used by the Timer1 module.

7.1 Capture Mode

In Capture mode, CCPR1H:CCPR1L captures the 16-bit value of the TMR1 register, when an event occurs on pin RC2/CCP1. An event is defined as:

- every falling edge
- · every rising edge
- every 4th rising edge
- every 16th rising edge

An event is selected by control bits CCP1M3:CCP1M0 (CCP1CON<3:0>). When a capture is made, the interrupt request flag bit ,CCP1IF (PIR1<2>), is set. It must be cleared in software. If another capture occurs before the value in register CCPR1 is read, the old captured value will be lost.

FIGURE 7-1: CAPTURE MODE OPERATION BLOCK DIAGRAM

7.1.1 CCP PIN CONFIGURATION

In Capture mode, the RC2/CCP1 pin should be configured as an input by setting the TRISC<2> bit.

Note: If the RC2/CCP1 is configured as an output, a write to the port can cause a capture condition.

7.1.2 TIMER1 MODE SELECTION

Timer1 must be running in timer mode or synchronized counter mode for the CCP module to use the capture feature. In asynchronous counter mode, the capture operation may not work consistently.

7.1.3 SOFTWARE INTERRUPT

When the Capture mode is changed, a false capture interrupt may be generated. The user should clear CCP1IE (PIE1<2>) before changing the capture mode to avoid false interrupts. Clear the interrupt flag bit, CCP1IE before setting CCP1IE.

7.1.4 CCP PRESCALER

There are four prescaler settings, specified by bits CCP1M3:CCP1M0. Whenever the CCP module is turned off, or the CCP module is not in capture mode, the prescaler counter is cleared. This means that any reset will clear the prescaler counter.

Switching from one capture prescaler to another may generate an interrupt. Also, the prescaler counter will not be cleared, therefore the first capture may be from a non-zero prescaler. Example 7-1 shows the recommended method for switching between capture prescalers. This example also clears the prescaler counter and will not generate the "false" interrupt.

EXAMPLE 7-1: CHANGING BETWEEN CAPTURE PRESCALERS

CLRF	CCP1CON	;Turn CCP module off
MOVLW	NEW_CAPT_PS	;Load the W reg with
		; the new prescaler
		; mode value and CCP ON
MOVWF	CCP1CON	;Load CCP1CON with this
		; value

7.3.3 SET-UP FOR PWM OPERATION

The following steps should be taken when configuring the CCP module for PWM operation:

- 1. Set the PWM period by writing to the PR2 register.
- 2. Set the PWM on-time by writing to the CCPR1L register and CCP1CON<5:4> bits.
- 3. Make the CCP1 pin an output by clearing the TRISC<2> bit.
- 4. Set the TMR2 prescale value and enable Timer2 by writing to T2CON.
- 5. Configure the CCP1 module for PWM operation.

TABLE 7-4 EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 20 MHz

PWM Frequency	1.22 kHz	4.88 kHz	19.53 kHz	78.12 kHz	156.3 kHz	208.3 kHz
Timer Prescaler (1, 4, 16)	16	4	1	1	1	1
PR2 Value	0xFF	0xFF	0xFF	0x3F	0x1F	0x17
Maximum Resolution (bits)	10	10	10	8	7	5.5

TABLE 7-5 REGISTERS ASSOCIATED WITH PWM AND TIMER2

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other resets
0Bh,8Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	—	ADIF	_	—	SSPIF	CCP1IF	TMR2IF	TMR1IF	-0 0000	-0 0000
8Ch	PIE1	—	ADIE	—	—	SSPIE	CCP1IE	TMR2IE	TMR1IE	-0 0000	-0 0000
87h	TRISC	PORTC D	PORTC Data Direction Register							1111 1111	1111 1111
11h	TMR2	Timer2 mo	Timer2 module's register							0000 0000	0000 0000
92h	PR2	Timer2 mo	Timer2 module's period register 111						1111 1111	1111 1111	
12h	T2CON	—	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	-000 0000
15h	CCPR1L	Capture/C	Capture/Compare/PWM register1 (LSB)							xxxx xxxx	uuuu uuuu
16h	CCPR1H	Capture/C	ompare/PW	'M register1	(MSB)					xxxx xxxx	uuuu uuuu
17h	CCP1CON	_		CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0000	00 0000

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used by PWM and Timer2.

TABLE 8-1	REGISTERS ASSOCIATED WITH SPI OPERATION

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other resets
0Bh,8Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	—	ADIF	—	_	SSPIF	CCP1IF	TMR2IF	TMR1IF	-0 0000	-0 0000
8Ch	PIE1	—	ADIE	—	—	SSPIE	CCP1IE	TMR2IE	TMR1IE	-0 0000	-0 0000
13h	SSPBUF	Synchronous Serial Port Receive Buffer/Transmit Register						xxxx xxxx	uuuu uuuu		
14h	SSPCON	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	0000 0000
94h	SSPSTAT	SMP	CKE	D/A	Р	S	R/W	UA	BF	0000 0000	0000 0000
85h	TRISA	—	—	PORTA Data Direction Register				11 1111	11 1111		
87h	TRISC	PORTC Dat	a Direction	n Register						1111 1111	1111 1111

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used by the SSP in SPI mode.

10.2 Oscillator Configurations

10.2.1 OSCILLATOR TYPES

The PIC16CXXX can be operated in four different oscillator modes. The user can program two configuration bits (FOSC1 and FOSC0) to select one of these four modes:

- LP Low Power Crystal
- XT Crystal/Resonator
- HS High Speed Crystal/Resonator
- RC Resistor/Capacitor

10.2.2 CRYSTAL OSCILLATOR/CERAMIC RESONATORS

In XT, LP or HS modes, a crystal or ceramic resonator is connected to the OSC1/CLKIN and OSC2/CLKOUT pins to establish oscillation (Figure 10-2). The PIC16CXXX oscillator design requires the use of a parallel cut crystal. Use of a series cut crystal may give a frequency out of the crystal manufacturers specifications. When in XT, LP or HS modes, the device can use an external clock source to drive the OSC1/CLKIN pin (Figure 10-3).

FIGURE 10-2: CRYSTAL/CERAMIC RESONATOR OPERATION (HS, XT OR LP OSC CONFIGURATION)

3: RF varies with the crystal chosen.

FIGURE 10-3: EXTERNAL CLOCK INPUT OPERATION (HS, XT OR LP OSC CONFIGURATION)

TABLE 10-1 CERAMIC RESONATORS

Ranges Tested:

nanyes resteu.						
Mode	Freq	OSC1	0\$C2			
XT	455 kHz	68 - 100 pF	68 - 100 pF			
	2.0 MHz	15 - 68 pF 🛛 <	15-68 pF			
	4.0 MHz	15 - 68 pF	15 - 68 pF			
HS	8.0 MHz	10 - 68(pF	∕10 - 68 pF			
	16.0 MHz	10,-22,0F	10 - 22 pF			
These values are for design guidance only. See notes at bottom of page.						
Resonators Used:						
455 kHz	Panásonie EFO-A455K04B ± 0.3%					
2.0 MHz	Murata Erie CSA2.00MG ± 0.5%					
4.0 MHz	Murata Erie CSA4.00MG ± 0.5%					
8.0 MATHZ	Murata Erie CSA8.00MT ± 0.5%					
16.0 MHz	Murata Erie	CSA16.00MX	$\pm 0.5\%$			
Resona	ators did not ha	ve built-in capacito	ors.			

TABLE 10-2CAPACITOR SELECTION FOR
CRYSTAL OSCILLATOR

Osc Type	Crystal Freq	Cap. Range C1	Cap. Range C2				
LP	32 kHz	33 pF	33 pF				
	200 kHz	15 pF	15 pF				
XT	200 kHz	47-68 pF	47-68 pF				
	1 MHz	15 pF 🔍	✓ 15 pF				
	4 MHz	15 pF					
HS	4 MHz	15 pt	💛 15 pF				
	8 MHz	15-33 pE>	15-33 pF				
	20 MHz	15-33 pF	15-33 pF				
These values are for design guidance only. See notes at bottom of page.							
Crystals Used							
32 kHz	Epson C-001R32.768K-A ± 20 PPM						
200 KHZ	STO XTL 2	00.000KHz	± 20 PPM				
1 MHz S	ECS ECS-	10-13-1	± 50 PPM				
4 MHz	ECS ECS-4	40-20-1	± 50 PPM				
8 MHz	EPSON CA	-301 8.000M-C	± 30 PPM				

Note 1: Higher capacitance increases the stability of the oscillator, but also increases the start-up time.

EPSON CA-301 20.000M-C

20 MHz

2: Since each resonator/crystal has its own characteristics, the user should consult the resonator/crystal manufacturer for appropriate values of external components.

± 30 PPM

- 3: Rs may be required in HS mode, as well as XT mode, to avoid overdriving crystals with low drive level specification.
- 4: Oscillator performance should be verified when migrating between devices (including PIC16C62A to PIC16C62B and PIC16C72 to PIC16C72A)

10.8 <u>Time-out Sequence</u>

When a POR reset occurs, the PWRT delay starts (if enabled). When PWRT ends, the OST counts 1024 oscillator cycles (LP, XT, HS modes only). When OST completes, the device comes out of reset. The total time-out will vary based on oscillator configuration and the status of the PWRT. For example, in RC mode with the PWRT disabled, there will be no time-out at all.

If MCLR is kept low long enough, the time-outs will expire. Bringing MCLR high will begin execution immediately. This is useful for testing purposes or to synchronize more than one PIC16CXXX device operating in parallel.

Status Register

Table 10-5 shows the reset conditions for the STATUS, PCON and PC registers, while Table 10-6 shows the reset conditions for all the registers.

10.9 <u>Power Control/Status Register</u> (PCON)

The $\overline{\text{BOR}}$ bit is unknown on Power-on Reset. If the Brown-out Reset circuit is used, the $\overline{\text{BOR}}$ bit must be set by the user and checked on subsequent resets to see if it was cleared, indicating a Brown-out has occurred.

POR (Power-on Reset Status bit) is cleared on a Power-on Reset and unaffected otherwise. The user

IRP	RP1	RP0	TO	PD	Z	DC	С	

POR BOR	
---------	--

TABLE 10-3 TIME-OUT IN VARIOUS SITUATIONS

Occillator Configuration	Power	-up	Brown out	Wake-up from
Oscillator Configuration	PWRTE = 0	PWRTE = 1	Brown-out	SLEEP
XT, HS, LP	72 ms + 1024Tosc	1024Tosc	72 ms + 1024Tosc	1024Tosc
RC	72 ms	—	72 ms	—

TABLE 10-4 STATUS BITS AND THEIR SIGNIFICANCE

POR	BOR	ТО	PD	
0	x	1	1	Power-on Reset
0	x	0	x	Illegal, TO is set on POR
0	x	x	0	Illegal, PD is set on POR
1	0	1	1	Brown-out Reset
1	1	0	1	WDT Reset
1	1	0	0	WDT Wake-up
1	1	u	u	MCLR Reset during normal operation
1	1	1	0	MCLR Reset during SLEEP or interrupt wake-up from SLEEP

TABLE 10-5 RESET CONDITION FOR SPECIAL REGISTERS

Condition	Program Counter	STATUS Register	PCON Register
Power-on Reset	000h	0001 1xxx	0x
MCLR Reset during normal operation	000h	000u uuuu	uu
MCLR Reset during SLEEP	000h	0001 Ouuu	uu
WDT Reset	000h	0000 luuu	uu
WDT Wake-up	PC + 1	uuu0 0uuu	uu
Brown-out Reset	000h	0001 luuu	u0
Interrupt wake-up from SLEEP	PC + 1 ⁽¹⁾	uuul 0uuu	uu

Legend: u = unchanged, x = unknown, - = unimplemented bit read as '0'.

Note 1: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

COMF	Complement f
Syntax:	[label] COMF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	$(\overline{f}) \rightarrow$ (destination)
Status Affected:	Z
Description:	The contents of register 'f' are comple- mented. If 'd' is 0, the result is stored in W. If 'd' is 1, the result is stored back in register 'f'.

GOTO	Unconditional Branch		
Syntax:	[<i>label</i>] GOTO k		
Operands:	$0 \le k \le 2047$		
Operation:	$k \rightarrow PC<10:0>$ PCLATH<4:3> \rightarrow PC<12:11>		
Status Affected:	None		
Description:	GOTO is an unconditional branch. The eleven bit immediate value is loaded into PC bits <10:0>. The upper bits of PC are loaded from PCLATH<4:3>. GOTO is a two cycle instruction.		

DECF	Decrement f
Syntax:	[<i>label</i>] DECF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(f) - 1 \rightarrow (destination)
Status Affected:	Z
Description:	Decrement register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'.

INCF	Increment f
Syntax:	[label] INCF f,d
Operands:	$\begin{array}{l} 0\leq f\leq 127\\ d\in [0,1] \end{array}$
Operation:	(f) + 1 \rightarrow (destination)
Status Affected:	Z
Description:	The contents of register 'f' are incre- mented. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in register 'f'.

DECFSZ	Decrement f, Skip if 0	INCFSZ	Increment f, Skip if 0
Syntax:	[label] DECFSZ f,d	Syntax:	[label] INCFSZ f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$	Operands:	$\begin{array}{l} 0\leq f\leq 127\\ d\in[0,1] \end{array}$
Operation:	(f) - 1 \rightarrow (destination); skip if result = 0	Operation:	(f) + 1 \rightarrow (destination), skip if result = 0
Status Affected:	None	Status Affected:	None
Description:	The contents of register 'f' are decre- mented. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in register 'f'. If the result is 1, the next instruction, is executed. If the result is 0, then a NOP is executed instead making it a 2TCY instruction.	Description:	The contents of register 'f' are incre- mented. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in register 'f'. If the result is 1, the next instruction is executed. If the result is 0, a NOP is executed instead making it a 2TCY instruction.

IORLW	Inclusive OR Literal with W		
Syntax:	[<i>label</i>] IORLW k		
Operands:	$0 \leq k \leq 255$		
Operation:	(W) .OR. $k \rightarrow$ (W)		
Status Affected:	Z		
Description:	The contents of the W register is OR'ed with the eight bit literal 'k'. The result is placed in the W register.		

MOVLW	Move Literal to W		
Syntax:	[<i>label</i>] MOVLW k		
Operands:	$0 \le k \le 255$		
Operation:	$k \rightarrow (W)$		
Status Affected:	None		
Description:	The eight bit literal 'k' is loaded into W register. The don't cares will assemble as 0's.		

IORWF	Inclusive OR W with f		
Syntax:	[label] IORWF f,d		
Operands:	$\begin{array}{l} 0\leq f\leq 127\\ d\in [0,1] \end{array}$		
Operation:	(W) .OR. (f) \rightarrow (destination)		
Status Affected:	Z		
Description:	Inclusive OR the W register with regis- ter 'f'. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in register 'f'.		

MOVWF	Move W to f		
Syntax:	[label] MOVWF f		
Operands:	$0 \leq f \leq 127$		
Operation:	$(W) \rightarrow (f)$		
Status Affected:	None		
Description:	Move data from W register to register		

MOVF	Move f
Syntax:	[label] MOVF f,d
Operands:	$\begin{array}{l} 0\leq f\leq 127\\ d\in [0,1] \end{array}$
Operation:	(f) \rightarrow (destination)
Status Affected:	Z
Description:	The contents of register f is moved to a destination dependant upon the sta- tus of d. If $d = 0$, destination is W reg- ister. If $d = 1$, the destination is file register f itself. $d = 1$ is useful to test a file register since status flag Z is affected.

NOP	No Operation
Syntax:	[label] NOP
Operands:	None
Operation:	No operation
Status Affected:	None
Description:	No operation.

RETFIE	Return from Interrupt	RLF	Rotate Left f through Carry
Syntax:	[label] RETFIE	Syntax:	[<i>label</i>] RLF f,d
Operands: Operation:	None $TOS \rightarrow PC$.	Operands:	$0 \le f \le 127$ d $\in [0,1]$
oporation	$1 \rightarrow \text{GIE}$	Operation:	See description below
Status Affected:	None	Status Affected:	С
		Description:	The contents of register 'f' are rotated one bit to the left through the Carry Flag. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is stored back in register 'f'.

	_
Register f	-
ricgisteri	_

RETLW	Return with Literal in W	RRF	Rotate Right f through Carry		
Syntax:	[<i>label</i>] RETLW k	Syntax:	[<i>label</i>] RRF f,d		
Operands:	$0 \leq k \leq 255$	Operands:	$0 \le f \le 127$		
Operation:	$k \rightarrow (W);$		d ∈ [0,1]		
·	$TOS \rightarrow PC$	Operation:	See description below		
Status Affected:	None	Status Affected:	С		
Description: The W register is loaded with the eight bit literal 'k'. The program counter is loaded from the top of the stack (the return address). This is a two cycle instruction.		Description:	The contents of register 'f' are rotated one bit to the right through the Carry Flag. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in register 'f'.		
			C Register f		

RETURN	Return from Subroutine				
Syntax:	[label] RETURN				
Operands:	None				
Operation:	$TOS\toPC$				
Status Affected:	None				
Description:	Return from subroutine. The stack is POPed and the top of the stack (TOS) is loaded into the program counter. This is a two cycle instruction.				

SLEEP				
Syntax:	[label] SLEEP			
Operands:	None			
Operation:	$\begin{array}{l} 00h \rightarrow WDT, \\ 0 \rightarrow WDT \text{ prescaler,} \\ 1 \rightarrow \overline{TO}, \\ 0 \rightarrow \overline{PD} \end{array}$			
Status Affected:	TO, PD			
Description:	The power-down status bit, \overline{PD} is cleared. Time-out status bit, \overline{TO} is set. Watchdog Timer and its pres- caler are cleared. The processor is put into SLEEP mode with the oscillator stopped. See Section 10.13 for more details.			

© 1998-2013 Microchip Technology Inc.

13.1 DC Characteristics: PIC16C62B/72A-04 (Commercial, Industrial, Extended) PIC16C62B/72A-20 (Commercial, Industrial, Extended)

			Standar	d Oper	atina C	ondition	e (unless otherwise stated)
			Operatio	na temr	erature		$< T_{A} < \pm 70^{\circ}C$ for commercial
DC CHA	RACTE	RISTICS	Operation	ig temp	erature	, 000 _40°C	$1 \leq 1A \leq +700$ for industrial
						-40 C	$<$ \leq TA \leq +05 C for extended
_						-+0 0	
Param No.	Sym	Characteristic	Min	Typ†	Мах	Units	Conditions
D001	Vdd	Supply Voltage	4.0	-	5.5	V	XT, RC and LP osc mode
D001A			4.5	-	5.5	V	HS osc mode
			VBOR*	-	5.5	V	BOR enabled (Note 7)
D002*	Vdr	RAM Data Retention Voltage (Note 1)	-	1.5	-	V	
D003	VPOR	VDD Start Voltage to ensure internal Power-on Reset signal	-	Vss	-	V	See section on Power-on Reset for details
D004*	SVDD	VDD Rise Rate to	0.05	-	-	V/ms	PWRT enabled (PWRTE bit clear)
D004A*		ensure internal	TBD	-	-		PWRT disabled (PWRTE bit set)
		Power-on Reset signal					See section on Power-on Reset for details
D005	VBOR	Brown-out Reset voltage trip point	3.65	-	4.35	V	BODEN bit set
D010	IDD	Supply Current	-	2.7	5	mA	XT, RC osc modes
		(Note 2, 5)					FOSC = 4 MHz, $VDD = 5.5V$ (Note 4)
D013			_	10	20	mΑ	HS osc mode
2010					20	1100	Fosc = 20 MHz, VDD = 5.5 V
D020	IPD	Power-down Current	-	10.5	42	uА	$V_{DD} = 4.0V$, WDT enabled40°C to +85°C
		(Note 3, 5)	-	1.5	16	μA	$V_{DD} = 4.0V$, WDT disabled, 0°C to +70°C
D021		(, - ,	-	1.5	19	μA	$V_{DD} = 4.0V$, WDT disabled40°C to +85°C
D021B			-	2.5	19	μΑ	VDD = 4.0V, WDT disabled, -40°C to +125°C
		Module Differential					
		Current (Note 6)					
D022*	$\Delta IWDT$	Watchdog Timer	-	6.0	20	μA	WDTE BIT SET, VDD = 4.0V
D022A*	Δ IBOR	Brown-out Reset	-	TBD	200	μA	BODEN bit set, VDD = 5.0V

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD,

 $\overline{MCLR} = VDD$; WDT enabled/disabled as specified.

- **3:** The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and Vss.
- 4: For RC osc mode, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.
- 5: Timer1 oscillator (when enabled) adds approximately 20 μA to the specification. This value is from characterization and is for design guidance only. This is not tested.
- 6: The ∆ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.
- 7: This is the voltage where the device enters the Brown-out Reset. When BOR is enabled, the device will perform a brown-out reset when VDD falls below VBOR.

13.4 AC (Timing) Characteristics

13.4.1 TIMING PARAMETER SYMBOLOGY

The timing parameter symbols have been created following one of the following formats:

1. TppS2p	pS	3. TCC:ST	(I ² C specifications only)
2. TppS		4. Ts	(I ² C specifications only)
Т			
F	Frequency	Т	Time
Lowercase	e letters (pp) and their meanings:		
рр			
сс	CCP1	OSC	OSC1
ck	CLKOUT	rd	RD
CS	CS	rw	RD or WR
di	SDI	SC	SCK
do	SDO	SS	SS
dt	Data in	tO	TOCKI
io	I/O port	t1	T1CKI
mc	MCLR	wr	WR
Uppercase	e letters and their meanings:		
S			
F	Fall	Р	Period
н	High	R	Rise
I	Invalid (Hi-impedance)	V	Valid
L	Low	Z	Hi-impedance
I ² C only			
AA	output access	High	High
BUF	Bus free	Low	Low
TCC:ST (I ²	C specifications only)		
CC			
HD	Hold	SU	Setup
ST			
DAT	DATA input hold	STO	STOP condition
STA	START condition		

FIGURE 13-13: EXAMPLE SPI SLAVE MODE TIMING (CKE = 0)

TABLE 13-9: EXAMPLE SPI MODE REQUIREMENTS (SLAVE MODE TIMING (CKE = 0)

Param. No.	Symbol	Characteristic		Min	Тур†	Max	Units	Conditions
70	TssL2scH, TssL2scL	$\overline{SS}\downarrow$ to SCK \downarrow or SCK \uparrow input		Тсү	—		ns	
71	TscH	SCK input high time	Continuous	1.25Tcy + 30	—		ns	
71A		(slave mode)	Single Byte	40	—	_	ns	Note 1
72	TscL	SCK input low time	Continuous	1.25Tcy + 30	_	_	ns	
72A		(slave mode)	Single Byte	40	—		ns	Note 1
73	TdiV2scH, TdiV2scL	Setup time of SDI data inp	ut to SCK edge	100	-	—	ns	
73A	Тв2в	Last clock edge of Byte1 to the 1st clock edge of Byte2		1.5Tcy + 40	-	—	ns	Note 1
74	TscH2diL, TscL2diL	Hold time of SDI data inpu	Hold time of SDI data input to SCK edge		-	—	ns	
75	TdoR	SDO data output rise time	PIC16CXX	—	10	25	ns	
			PIC16LCXX		20	45	ns	
76	TdoF	SDO data output fall time		—	10	25	ns	
77	TssH2doZ	SS↑ to SDO output hi-imp	edance	10	—	50	ns	
78	TscR	SCK output rise time	PIC16CXX	—	10	25	ns	
		(master mode)	PIC16LCXX		20	45	ns	
79	TscF	SCK output fall time (master mode)		_	10	25	ns	
80	TscH2doV,	SDO data output valid	PIC16CXX	—	—	50	ns	
	TscL2doV	after SCK edge	PIC16LCXX			100	ns	
83	TscH2ssH, TscL2ssH	SS ↑ after SCK edge		1.5Tcy + 40		_	ns	

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Specification 73A is only required if specifications 71A and 72A are used.

FIGURE 13-14: EXAMPLE SPI SLAVE MODE TIMING (CKE = 1)

TABLE 13-10: EXAMPLE SPI SLAVE MODE REQUIREMENTS (CKE = 1)

Param. No.	Symbol	Characteristic		Min	Тур†	Мах	Units	Conditions
70	TssL2scH, TssL2scL	$\overline{SS}\downarrow$ to SCK \downarrow or SCK \uparrow input		Тсү	—	—	ns	
71	TscH	SCK input high time	Continuous	1.25Tcy + 30	_		ns	
71A		(slave mode)	Single Byte	40	_	_	ns	Note 1
72	TscL	SCK input low time	Continuous	1.25Tcy + 30	_		ns	
72A		(slave mode)	Single Byte	40	_		ns	Note 1
73A	Тв2в	Last clock edge of Byte1 edge of Byte2	to the 1st clock	1.5Tcy + 40	_	_	ns	Note 1
74	TscH2diL, TscL2diL	Hold time of SDI data input to SCK edge		100	-	—	ns	
75	TdoR	SDO data output rise	SDO data output rise PIC16CXX		10	25	ns	
		time	PIC16LCXX		20	45	ns	
76	TdoF	SDO data output fall time	9	_	10	25	ns	
77	TssH2doZ	SS [↑] to SDO output hi-im	pedance	10	_	50	ns	
78	TscR	SCK output rise time	PIC16CXX	_	10	25	ns	
		(master mode)	PIC16LCXX	_	20	45	ns	
79	TscF	SCK output fall time (ma	ster mode)	—	10	25	ns	
80	TscH2doV,	SDO data output valid	PIC16CXX	_	_	50	ns	
	TscL2doV	after SCK edge	PIC16LCXX	_	_	100	ns	
82	TssL2doV	SDO data output valid	PIC16CXX	_	_	50	ns	
		after SS↓ edge	PIC16LCXX	—	—	100	ns	
83	TscH2ssH, TscL2ssH	SS ↑ after SCK edge		1.5TCY + 40	-	—	ns	

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Specification 73A is only required if specifications 71A and 72A are used.

TABLE 13-13:A/D CONVERTER CHARACTERISTICS:
PIC16C72A-04 (COMMERCIAL, INDUSTRIAL, EXTENDED)
PIC16C72A-20 (COMMERCIAL, INDUSTRIAL, EXTENDED)
PIC16LC72A-04 (COMMERCIAL, INDUSTRIAL)

Param No.	Sym	Characte	ristic	Min	Тур†	Max	Units	Conditions
A01	NR	Resolution		—	_	8-bits	bit	$\begin{array}{l} \text{VREF} = \text{VDD} = 5.12\text{V},\\ \text{VSS} \leq \text{VAIN} \leq \text{VREF} \end{array}$
A02	Eabs	Total Absolute error		—	_	< ± 1	LSB	$\begin{array}{l} \text{VREF} = \text{VDD} = 5.12\text{V},\\ \text{VSS} \leq \text{VAIN} \leq \text{VREF} \end{array}$
A03	EIL	Integral linearity error		—		< ± 1	LSB	$\begin{array}{l} \text{VREF} = \text{VDD} = 5.12\text{V},\\ \text{VSS} \leq \text{VAIN} \leq \text{VREF} \end{array}$
A04	Edl	Differential linearity e	ror	—		< ± 1	LSB	$\begin{array}{l} \text{VREF} = \text{VDD} = 5.12\text{V},\\ \text{VSS} \leq \text{VAIN} \leq \text{VREF} \end{array}$
A05	Efs	Full scale error				< ± 1	LSB	$\begin{array}{l} \text{VREF} = \text{VDD} = 5.12\text{V},\\ \text{VSS} \leq \text{VAIN} \leq \text{VREF} \end{array}$
A06	Eoff	Offset error		—		< ± 1	LSB	$\begin{array}{l} \text{VREF} = \text{VDD} = 5.12\text{V},\\ \text{VSS} \leq \text{VAIN} \leq \text{VREF} \end{array}$
A10	—	Monotonicity		_	guaranteed (Note 3)		—	$VSS \leq VAIN \leq VREF$
A20	VREF	Reference voltage		2.5V		VDD + 0.3	V	
A25	VAIN	Analog input voltage		Vss - 0.3	_	VREF + 0.3	V	
A30	ZAIN	Recommended imped analog voltage source	dance of	—		10.0	kΩ	
A40	IAD	A/D conversion	PIC16CXX	_	180		μA	Average current con-
		current (VDD)	PIC16LCXX	—	90		μA	sumption when A/D is on. (Note 1)
A50	IREF	REF VREF input current (Note 2)		10	_	1000	μΑ	During VAIN acquisi- tion. Based on differ- ential of VHOLD to VAIN to charge CHOLD, see Section 9.1. During A/D conver- cion cycle

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: When A/D is off, it will not consume any current other than minor leakage current.

The power-down current spec includes any such leakage from the A/D module.

2: VREF current is from RA3 pin or VDD pin, whichever is selected as reference input.

3: The A/D conversion result never decreases with an increase in the Input Voltage and has no missing codes.

()

PIC16C72A/JW

1317CAT

15.0 PACKAGING INFORMATION

15.1 Package Marking Information

Legend:	MMM	Microchip part number information
	AA BB	Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01')
	C	Facility code of the plant at which wafer is manufactured O = Outside Vendor C = 5" Line S = 6" Line H = 8" Line
	D	Mask revision number
	E	Assembly code of the plant or country of origin in which part was assembled
Note: In b fo	n the ever be carried or custom	It the full Microchip part number cannot be marked on one line, it will over to the next line thus limiting the number of available characters er specific information.

Standard OTP marking consists of Microchip part number, year code, week code, facility code, mask rev#, and assembly code. For OTP marking beyond this, certain price adders apply. Please check with your Microchip Sales Office. For QTP devices, any special marking adders are included in QTP price.

© 1998-2013 Microchip Technology Inc.

APPENDIX A: REVISION HISTORY

Version	Date	Revision Description
A	7/98	This is a new data sheet. However, the devices described in this data sheet are the upgrades to the devices found in the <i>PIC16C6X Data Sheet</i> , DS30234, and the <i>PIC16C7X Data Sheet</i> , DS30390.

APPENDIX B: CONVERSION CONSIDERATIONS

Considerations for converting from previous versions of devices to the ones listed in this data sheet are listed in Table B-1.

TABLE B-1: CONVERSION CONSIDERATIONS

Difference	PIC16C62A/72	PIC16C62B/72A
Voltage Range	2.5V - 6.0V	2.5V - 5.5V
SSP module	Basic SSP (2 mode SPI)	SSP (4 mode SPI)
CCP module	CCP does not reset TMR1 when in special event trigger mode.	N/A
Timer1 module	Writing to TMR1L register can cause over- flow in TMR1H register.	N/A

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

Santa Clara Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445

Toronto Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431 Australia - Sydney Tel: 61-2-9868-6733

Fax: 61-2-9868-6755 China - Beijing

Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Hangzhou Tel: 86-571-2819-3187 Fax: 86-571-2819-3189

China - Hong Kong SAR Tel: 852-2943-5100 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8864-2200 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-2566-1512 Fax: 91-20-2566-1513

Japan - Osaka Tel: 81-6-6152-7160 Fax: 81-6-6152-9310

Japan - Tokyo Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-213-7828 Fax: 886-7-330-9305

Taiwan - Taipei Tel: 886-2-2508-8600 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Fax: 45-4485-2829

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

UK - Wokingham Tel: 44-118-921-5869 Fax: 44-118-921-5820

11/29/12