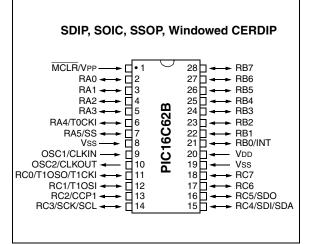


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	22
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 5.5V
Data Converters	A/D 5x8b
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c72a-20-so

Email: info@E-XFL.COM

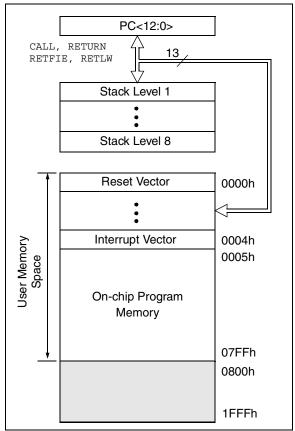
Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams

Key Features PIC [®] Mid-Range Reference Manual (DS33023)	PIC16C62B	PIC16C72A
Operating Frequency	DC - 20 MHz	DC - 20 MHz
Resets (and Delays)	POR, BOR (PWRT, OST)	POR, BOR (PWRT, OST)
Program Memory (14-bit words)	2K	2K
Data Memory (bytes)	128	128
Interrupts	7	8
I/O Ports	Ports A,B,C	Ports A,B,C
Timers	3	3
Capture/Compare/PWM modules	1	1
Serial Communications	SSP	SSP
8-bit Analog-to-Digital Module	—	5 input channels

2.0 MEMORY ORGANIZATION

There are two memory blocks in each of these microcontrollers. Each block (Program Memory and Data Memory) has its own bus, so that concurrent access can occur.


Additional information on device memory may be found in the PICmicro[™] Mid-Range Reference Manual, (DS33023).

2.1 Program Memory Organization

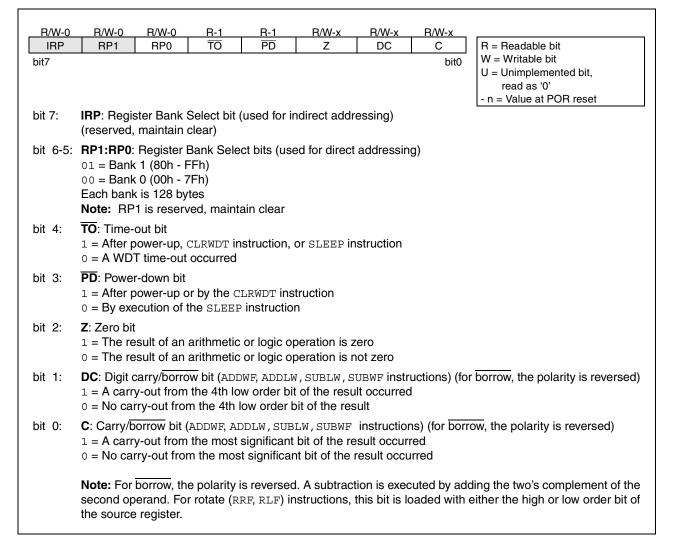
The PIC16C62B/72A devices have a 13-bit program counter capable of addressing an 8K x 14 program memory space. Each device has 2K x 14 words of program memory. Accessing a location above 07FFh will cause a wraparound.

The reset vector is at 0000h and the interrupt vector is at 0004h.

FIGURE 2-1: PROGRAM MEMORY MAP AND STACK

2.2.2.1 STATUS REGISTER

The STATUS register, shown in Register 2-1, contains the arithmetic status of the ALU, the RESET status and the bank select bits for data memory.


The STATUS register can be the destination for any instruction, as with any other register. If the STATUS register is the destination for an instruction that affects the Z, DC or C bits, the write to these three bits is disabled. These bits are set or cleared according to the device logic. The TO and PD bits are not writable. The result of an instruction with the STATUS register as destination may be different than intended.

For example, CLRF STATUS will clear the upper-three bits and set the Z bit. This leaves the STATUS register as 000u uluu (where u = unchanged).

It is recommended, therefore, that only BCF, BSF, SWAPF and MOVWF instructions are used to alter the STATUS register, because these instructions do not affect the Z, C or DC bits from the STATUS register. For other instructions, not affecting any status bits, see the "Instruction Set Summary."

- **Note 1:** The IRP and RP1 bits are reserved. Maintain these bits clear to ensure upward compatibility with future products.
- Note 2: The C and DC bits operate as a borrow and digit borrow bit, respectively, in subtraction. See the SUBLW and SUBWF instructions.

REGISTER 2-1: STATUS REGISTER (ADDRESS 03h, 83h)

6.1 <u>Timer2 Operation</u>

The Timer2 output is also used by the CCP module to generate the PWM "On-Time", and the PWM period with a match with PR2.

The TMR2 register is readable and writable, and is cleared on any device reset.

The input clock (Fosc/4) has a prescale option of 1:1, 1:4 or 1:16, selected by control bits T2CKPS1:T2CKPS0 (T2CON<1:0>).

The match output of TMR2 goes through a 4-bit postscaler (which gives a 1:1 to 1:16 scaling) to generate a TMR2 interrupt (latched in flag bit TMR2IF, (PIR1<1>)).

The prescaler and postscaler counters are cleared when any of the following occurs:

- a write to the TMR2 register
- a write to the T2CON register
- any device reset (Power-on Reset, MCLR reset, Watchdog Timer reset or Brown-out Reset)

TMR2 is not cleared when T2CON is written.

6.2 <u>Timer2 Interrupt</u>

The Timer2 module has an 8-bit period register PR2. Timer2 increments from 00h until it matches PR2 and then resets to 00h on the next increment cycle. PR2 is a readable and writable register. The PR2 register is initialized to FFh upon reset.

6.3 Output of TMR2

The output of TMR2 (before the postscaler) is fed to the Synchronous Serial Port module, which optionally uses it to generate shift clock.

TABLE 6-1 REGISTERS ASSOCIATED WITH TIMER2 AS A TIMER/COUNTER

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other resets
0Bh,8Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	_	ADIF	_	_	SSPIF	CCP1IF	TMR2IF	TMR1IF	-00- 0000	0000 0000
8Ch	PIE1	_	ADIE	_	_	SSPIE	CCP1IE	TMR2IE	TMR1IE	-0 0000	0000 0000
11h	TMR2	Timer2 mod	Timer2 module's register							0000 0000	0000 0000
12h	T2CON	_	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	-000 0000
92h	PR2	Timer2 Peri	imer2 Period Register							1111 1111	1111 1111

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used by the Timer2 module.

TABLE 8-1	REGISTERS ASSOCIATED WITH SPI OPERATION

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value POR BOF	l,	Valu all o res	
0Bh,8Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF	0000 0	00x	0000	000u
0Ch	PIR1	—	ADIF	—	_	SSPIF	CCP1IF	TMR2IF	TMR1IF	-00	000	- 0	0000
8Ch	PIE1	—	ADIE		—	SSPIE	CCP1IE	TMR2IE	TMR1IE	-00	000	- 0	0000
13h	SSPBUF	Synchronou	Synchronous Serial Port Receive Buffer/Transmit Register							xxxx x	xxx	uuuu	uuuu
14h	SSPCON	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000 0	000	0000	0000
94h	SSPSTAT	SMP	CKE	D/Ā	Р	S	R/W	UA	BF	0000 0	000	0000	0000
85h	TRISA	_		PORTA D	Data Dire	ction Regi	ster			11 1	111	11	1111
87h	TRISC	PORTC Data	a Direction	n Register			PORTC Data Direction Register						1111

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used by the SSP in SPI mode.

8.3.1.3 TRANSMISSION

When the R/\overline{W} bit of the incoming address byte is set and an address match occurs, the R/\overline{W} bit of the SSPSTAT register is set. The received address is loaded into the SSPBUF register. The ACK pulse will be sent on the ninth bit and the CKP will be cleared by hardware, holding SCL low. Slave devices cause the master to wait by holding the SCL line low. The transmit data is loaded into the SSPBUF register, which in turn loads the SSPSR register. When bit CKP (SSP-CON<4>) is set, pin RC3/SCK/SCL releases SCL. When the SCL line goes high, the master may resume operating the SCL line and receiving data. The master must monitor the SCL pin prior to asserting another clock pulse. The slave devices may be holding off the master by stretching the clock. The eight data bits are shifted out on the falling edge of the SCL input. This ensures that the SDA signal is valid during the SCL high time (Figure 8-4).

An SSP interrupt is generated for each data transfer byte. Flag bit SSPIF must be cleared in software, and the SSPSTAT register used to determine the status of the byte. Flag bit SSPIF is set on the falling edge of the ninth clock pulse.

As a slave-transmitter, the \overline{ACK} pulse from the masterreceiver is latched on the rising edge of the ninth SCL input pulse. If the SDA line was high (not \overline{ACK}), then the data transfer is complete. When the \overline{ACK} is latched by the slave, the slave logic is reset (resets SSPSTAT register) and the slave then monitors for another occurrence of the START bit. If the SDA line was low (\overline{ACK}), the transmit data must be loaded into the SSPBUF register, which also loads the SSPSR register. Then pin RC3/SCK/SCL should be enabled by setting bit CKP.

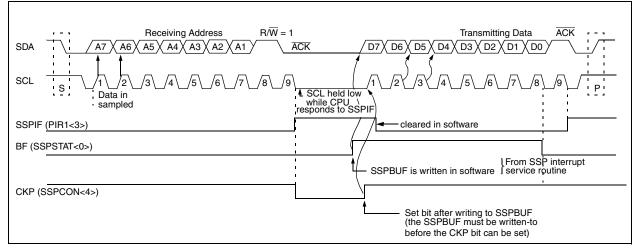


FIGURE 8-4: I²C WAVEFORMS FOR TRANSMISSION (7-BIT ADDRESS)

9.0 ANALOG-TO-DIGITAL CONVERTER (A/D) MODULE

Note: This section applies to the PIC16C72A only.

The analog-to-digital (A/D) converter module has five input channels.

The A/D allows conversion of an analog input signal to a corresponding 8-bit digital number (refer to Application Note AN546 for use of A/D Converter). The output of the sample and hold is the input into the converter, which generates the result via successive approximation. The analog reference voltage is software selectable to either the device's positive supply voltage (VDD) or the voltage level on the RA3/AN3/VREF pin.

The A/D converter has the feature of being able to operate while the device is in SLEEP mode. To operate in sleep, the A/D conversion clock must be derived from the A/D's internal RC oscillator.

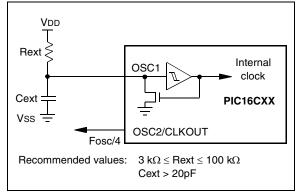
Additional information on the A/D module is available in the PIC[®] MCU Mid-Range Reference Manual, (DS33023).

The A/D module has three registers. These registers are:

- A/D Result Register (ADRES)
- A/D Control Register 0 (ADCON0)
- A/D Control Register 1 (ADCON1)

A device reset forces all registers to their reset state. This forces the A/D module to be turned off, and any conversion is aborted.

The ADCON0 register, shown in Figure 9-1, controls the operation of the A/D module. The ADCON1 register, shown in Figure 9-2, configures the functions of the port pins. The port pins can be configured as analog inputs (RA3 can also be a voltage reference) or as digital I/O.


R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	
ADCS1 bit7	ADCS0	CHS2	CHS1	CHS0	GO/DONE	_	ADON bit0	R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'
bit 7-6:	ADCS1:ADCS0: A/D Conversion Clock Select bits 00 = Fosc/2 01 = Fosc/8 10 = Fosc/32 11 = FRC (clock derived from an internal RC oscillator)							
bit 5-3:	CHS2:CHS0: Analog Channel Select bits 000 = channel 0, (RA0/AN0) 001 = channel 1, (RA1/AN1) 010 = channel 2, (RA2/AN2) 011 = channel 3, (RA3/AN3) 100 = channel 4, (RA5/AN4)							
bit 2:	GO/DON	E: A/D Co	nversion	Status bit				
		onversion onversion	not in pro		this bit starts t s bit is automa			ware when the A/D
bit 1:	Unimpler	nented: F	Read as '0	ı				
bit 0:	ADON : $A_{1} = A/D c$	onverter r			l consumes no		n ourront	

REGISTER 9-1: ADCON0 REGISTER (ADDRESS 1Fh)

10.2.3 RC OSCILLATOR

For timing insensitive applications, the "RC" device option offers additional cost savings. The RC oscillator frequency is a function of the supply voltage, the resistor (REXT) and capacitor (CEXT) values, and the operating temperature. In addition to this, the oscillator frequency will vary from unit to unit due to normal process parameter variation. Furthermore, the difference in lead frame capacitance between package types will also affect the oscillation frequency, especially for low CEXT values. The user also needs to take into account variation due to tolerance of external R and C components used. Figure 10-4 shows how the R/C combination is connected to the PIC16CXXX.

FIGURE 10-4: RC OSCILLATOR MODE

10.3 <u>Reset</u>

The PIC16CXXX differentiates between various kinds of reset:

- Power-on Reset (POR)
- MCLR reset during normal operation
- MCLR reset during SLEEP
- WDT Reset (during normal operation)
- WDT Wake-up (during SLEEP)
- Brown-out Reset (BOR)

Some registers are not affected in any reset condition; their status is unknown on POR and unchanged by any other reset. Most other registers are reset to a "reset state" on Power-on Reset (POR), on the $\overline{\text{MCLR}}$ and WDT Reset, on $\overline{\text{MCLR}}$ reset during SLEEP, and on Brown-out Reset (BOR). They are not affected by a WDT Wake-up from SLEEP, which is viewed as the resumption of normal operation. The $\overline{\text{TO}}$ and $\overline{\text{PD}}$ bits are set or cleared depending on the reset situation, as indicated in Table 10-4. These bits are used in software to determine the nature of the reset. See Table 10-6 for a full description of reset states of all registers.

A simplified block diagram of the on-chip reset circuit is shown in Figure 10-5.

The PIC devices have a $\overline{\text{MCLR}}$ noise filter in the $\overline{\text{MCLR}}$ reset path. The filter will ignore small pulses. However, a valid $\overline{\text{MCLR}}$ pulse must meet the minimum pulse width (TmcL, Specification #30).

No internal reset source (WDT, BOR, POR) will drive the $\overline{\text{MCLR}}$ pin low.

10.8 <u>Time-out Sequence</u>

When a POR reset occurs, the PWRT delay starts (if enabled). When PWRT ends, the OST counts 1024 oscillator cycles (LP, XT, HS modes only). When OST completes, the device comes out of reset. The total time-out will vary based on oscillator configuration and the status of the PWRT. For example, in RC mode with the PWRT disabled, there will be no time-out at all.

If MCLR is kept low long enough, the time-outs will expire. Bringing MCLR high will begin execution immediately. This is useful for testing purposes or to synchronize more than one PIC16CXXX device operating in parallel.

Status Register

Table 10-5 shows the reset conditions for the STATUS, PCON and PC registers, while Table 10-6 shows the reset conditions for all the registers.

10.9 <u>Power Control/Status Register</u> (PCON)

The $\overline{\text{BOR}}$ bit is unknown on Power-on Reset. If the Brown-out Reset circuit is used, the $\overline{\text{BOR}}$ bit must be set by the user and checked on subsequent resets to see if it was cleared, indicating a Brown-out has occurred.

POR (Power-on Reset Status bit) is cleared on a Power-on Reset and unaffected otherwise. The user

IRP	RP1	RP0	TO	PD	Z	DC	С
DOON Berlieter							

POR BOF

TABLE 10-3 TIME-OUT IN VARIOUS SITUATIONS

Oppillator Configuration	Power	-up	Brown out	Wake-up from	
Oscillator Configuration	PWRTE = 0	PWRTE = 1	Brown-out	SLEEP	
XT, HS, LP	72 ms + 1024Tosc	1024Tosc	72 ms + 1024Tosc	1024Tosc	
RC	72 ms		72 ms	—	

TABLE 10-4 STATUS BITS AND THEIR SIGNIFICANCE

POR	BOR	ТО	PD	
0	x	1	1	Power-on Reset
0	x	0	x	Illegal, TO is set on POR
0	x	x	0	Illegal, PD is set on POR
1	0	1	1	Brown-out Reset
1	1	0	1	WDT Reset
1	1	0	0	WDT Wake-up
1	1	u	u	MCLR Reset during normal operation
1	1	1	0	MCLR Reset during SLEEP or interrupt wake-up from SLEEP

TABLE 10-5 RESET CONDITION FOR SPECIAL REGISTERS

Condition	Program Counter	STATUS Register	PCON Register
Power-on Reset	000h	0001 1xxx	0x
MCLR Reset during normal operation	000h	000u uuuu	uu
MCLR Reset during SLEEP	000h	0001 0uuu	uu
WDT Reset	000h	0000 luuu	uu
WDT Wake-up	PC + 1	uuu0 0uuu	uu
Brown-out Reset	000h	0001 luuu	u0
Interrupt wake-up from SLEEP	PC + 1 ⁽¹⁾	uuul 0uuu	uu

Legend: u = unchanged, x = unknown, - = unimplemented bit read as '0'.

Note 1: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

10.10.1 INT INTERRUPT

The external interrupt on RB0/INT pin is edge triggered: either rising, if bit INTEDG (OPTION_REG<6>) is set, or falling, if the INTEDG bit is clear. When a valid edge appears on the RB0/INT pin, flag bit INTF (INTCON<1>) is set. This interrupt can be disabled by clearing enable bit INTE (INTCON<4>). Flag bit INTF must be cleared in software in the interrupt service routine before re-enabling this interrupt. The INT interrupt can wake-up the processor from SLEEP, if bit INTE was set prior to going into SLEEP. The status of global interrupt enable bit GIE decides whether or not the processor branches to the interrupt vector following wake-up. See Section 10.13 for details on SLEEP mode.

10.10.2 TMR0 INTERRUPT

An overflow (FFh \rightarrow 00h) in the TMR0 register will set flag bit T0IF (INTCON<2>). The interrupt can be enabled/disabled by setting/clearing enable bit T0IE (INTCON<5>). (Section 4.0)

10.10.3 PORTB INTCON CHANGE

An input change on PORTB<7:4> sets flag bit RBIF (INTCON<0>). The interrupt can be enabled/disabled by setting/clearing enable bit RBIE (INTCON<4>). (Section 3.2)

10.11 Context Saving During Interrupts

During an interrupt, only the return PC value is saved on the stack. Typically, users may wish to save key registers during an interrupt, (i.e., W register and STATUS register). This will have to be implemented in software.

Example 10-1 stores and restores the W and STATUS registers. The register, W_TEMP, must be defined in each bank and must be defined at the same offset from the bank base address (i.e., if W_TEMP is defined at 0x20 in bank 0, it must also be defined at 0xA0 in bank 1).

The example:

- a) Stores the W register.
- b) Stores the STATUS register in bank 0.
- c) Stores the PCLATH register.
- d) Executes the interrupt service routine code (User-generated).
- e) Restores the STATUS register (and bank select bit).
- f) Restores the W and PCLATH registers.

EXAMPLE 10-1: SAVING STATUS, W, AND PCLATH REGISTERS IN RAM

MOVWF	W_TEMP	;Copy W to TEMP register, could be bank one or zero
SWAPF	STATUS,W	;Swap status to be saved into W
CLRF	STATUS	;bank 0, regardless of current bank, Clears IRP,RP1,RP0
MOVWF	STATUS_TEMP	;Save status to bank zero STATUS_TEMP register
:		
:(ISR)		
:		
SWAPF	STATUS_TEMP,W	;Swap STATUS_TEMP register into W
		;(sets bank to original state)
MOVWF	STATUS	;Move W into STATUS register
SWAPF	W_TEMP,F	;Swap W_TEMP
SWAPF	W_TEMP,W	;Swap W_TEMP into W

TABLE 11-2 PIC16CXXX INSTRUCTION SET

BYTE-ORIENTED FILE REGISTER OPERATIONS ADDWF f, d Add W and f 1 0 0 0111 dfff ffff Z,DC,Z ADDWF f, d Add W and f 1 0 0 0111 dfff ffff Z,DC,Z ADDWF f, d Add W and f 1 0 0 0011 dfff ffff Z CLRF f Clearf 1 0 0001 0000 0011 dfff fff Z CLRW - Clear W 1 0 0001 0000 0011 dfff fff Z DECFS f, d Decrement f, Skip if 0 1(2) 0 1111 dfff Z INCFS f, d Increment f, Skip if 0 1(2) 0 1111 dfff Z INCFF f, d Move f 1 00 0000 0xxx0 0000 INCF f, d Rotate Left fthrough Carry 1 0	Mnemonic, Operands		Description		14-Bit Opcode				Status	Notes
ADDWF f, d Add W and f 1 00 0111 dfff ffff C,DC,Z ANDWF f, d AND W with f 1 00 0101 dfff ffff Z CLRF f Clear W 1 00 0001 lfff ffff Z COMF f, d Complement f 1 00 0011 dfff ffff Z COMF f, d Decrement f 1 00 1011 dfff ffff Z DECFS f, d Increment f 1 00 1010 dfff fff Z INCF5 f, d Increment f skip if 0 1(2) 00 1101 dfff fff Z INCF52 f, d Move f 1 00 0000 diff fff Z MOVF f, d Move f 1 00 0100 dfff fff Z MOVF f, d Rotate Leift through Carry <th>MSb</th> <th></th> <th></th> <th>LSb</th> <th>Affected</th> <th></th>					MSb			LSb	Affected	
ANDWF f, d AND W with f 1 00 0101 dfff ffff Z CLRF f Clear W 1 00 0001 1fff ffff Z COMF f, d Complement f 1 00 0011 dfff ffff Z COMF f, d Decrement f, Skip if 0 1(2) 00 1011 dfff ffff Z DECFSZ f, d Increment f, Skip if 0 1(2) 00 111 dfff ffff Z MOVF f, d Move f 1 00 000 dffff Z MOVF f d Move f 1 00 000 000 000 000 000 000 RF f, d Rotate Left fhrough Carry 1 00 100 dfff ffff Z SUBWF f, d Swap nibbles in f 1 00 010 dfff ffff Z SUBWF f, b </th <th>BYTE-ORIE</th> <th>NTED</th> <th>FILE REGISTER OPERATIONS</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	BYTE-ORIE	NTED	FILE REGISTER OPERATIONS							
CLRF f Clear f Clear f 1 00 0001 lfff ffff Z COMF f, d Complement f 1 00 0001 dff ffff Z DECF f, d Decrement f 1 00 1001 dff ffff Z DECF f, d Decrement f, Skip if 0 1(2) 00 1010 dff ffff Z INCFSZ f, d Increment f, Skip if 0 1(2) 00 1010 dfff fff Z INCFSZ f, d Increment f, Skip if 0 1(2) 00 111 dfff Z INCFSZ f, d Increment f, Skip if C 1 00 000 dfff Z INCFSZ f, d Increment f, Skip if C 1 00 100 dfff Z MOVF f, d Move W to f 1 00 100 000 000 000 R GR GR GR GR	ADDWF	f, d	Add W and f	1	00	0111	dfff	ffff	C,DC,Z	1,2
CLRW - Clear W 1 00 0001 0000 0011 Z COMF f, d Cormplement f 1 00 0011 dff ffff Z DECF f, d Decrement f, Skip if 0 1(2) 00 0011 dff ffff Z INCF f, d Increment f, Skip if 0 1(2) 00 1010 dff ffff Z INCF f, d Increment f, Skip if 0 1(2) 00 1010 dff ffff Z INCF f, d Increment f, Skip if 0 1(2) 00 1011 dff ffff Z INCF f, d Increment f, Skip if 0 1 00 0000 dff ffff Z MOVF f, d Move f 1 00 0000 dff ffff Z SUBWF f, d Rotate Left ftmough Carry 1 00 0010 dff ffff C,DC,Z SUBWF f, d Subtract W from f 1 00 1010 dfff fffff Z Z SUBWF	ANDWF	f, d	AND W with f	1	00	0101	dfff	ffff	Z	1,2
COMF f, d Complement f 1 00 1001 dfff ffff Z DECFSZ f, d Decrement f, Skip if 0 1(2) 00 1011 dfff ffff Z INCF f, d Increment f 1 00 1010 dfff fffff Z INCFSZ f, d Increment f, Skip if 0 1(2) 00 1111 dfff fffff Z IORWF f, d Increment f, Skip if 0 1(2) 00 1111 dfff fffff Z MOVF f Move f 1 00 0000 dfff fffff Z MOVF f Move V to f 1 00 0000 dfff fffff Z SUBWF f, d Subtract W from f 1 00 100 dfff fffff C,DC,Z SWAPF f, d Subtract W from f 1 00 0101 dfff fffff Z BIT-ORIENTED FILE Ecolusive OR W w	CLRF	f	Clear f	1	00	0001	lfff	ffff	Z	2
DECF f, d Decrement f 1 00 0011 dfff fff Z DECFSZ f, d Increment f 1 00 1010 dfff fff Z INCF f, d Increment f 1 00 1010 dfff ffff Z INCFSZ f, d Increment f, Skip if 0 1(2) 00 1111 dfff fff Z INCFSZ f, d Inclusive OR W with f 1 00 0100 dfff fff Z MOVF f, d Move f 1 00 1000 dfff ffff Z MOVWF f, d Rotate Left fthrough Carry 1 00 1101 dfff fff C C Z SUBWF f, d Rotate Left fthrough Carry 1 00 1100 dfff fff C C C C C C C C C C C C C C	CLRW	-	Clear W	1	00	0001	0000	0011		
DECFSZ f, d Decrement f, Skip if 0 1(2) 0 1011 dfff ffff INCF f, d Increment f 1 0 1010 dfff ffff Z INCFSZ f, d Increment f, Skip if 0 1(2) 0 1111 dfff ffff Z INCFSZ f, d Inclusive CR W with f 1 0 0.000 dfff ffff Z MOVF f, d Move f 1 0 0.000 dfff ffff Z MOVWF f Move W to f 1 0 0.0000 0.000 C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.	COMF	f, d	Complement f		00	1001	dfff	ffff	Z	1,2
INCF f, d Increment f 1 00 1010 dfff fff Z INCFSZ f, d Increment f, Skip if 0 1(2) 00 1111 dfff fff Z IORWF f, d Move OR W with f 1 00 0100 dfff fff Z MOVF f, d Move W to f 1 00 0000 lfff fff Z MOVF f Move W to f 1 00 0000 lfff Gff Z MOVF f Rotate Left fthrough Carry 1 00 1100 dfff Gff C C SUBWF f, d Rotate Left fthrough Carry 1 00 1100 dfff fff C C,DC,Z SUBWF f, d Subtract W from f 1 00 1010 dfff ffff C C,DC,Z SUBWF f, d Subtract W from f 1 01 010 bb bfff fffff	DECF	f, d	Decrement f	1	00	0011	dfff	ffff	Z	1,2
INCFSZ f, d Increment f, Skip if 0 1(2) 00 1111 dff ffff Z MOVF f, d Inclusive OR W with f 1 00 0100 dfff ffff Z MOVF f, d Move f 1 00 0000 dfff ffff Z MOVF f, d Move f 1 00 0000 dfff ffff Z MOVF f, d Move f 1 00 0000 dfff ffff NOP No Operation 1 00 100 dfff ffff C SUBWF f, d Rotate Left fthrough Carry 1 00 1100 dfff ffff C C,DC,Z SWAPF f, d Swap nibbles in f 1 00 110 dfff ffff Z BIT-ORIENTED FILE REGISTER OPERATIONS 1 1 01 0bb bfff fffff Z BTFSS f, b Bit Test f, Skip if Set 1 1 1	DECFSZ	f, d	Decrement f, Skip if 0	1(2)	00	1011	dfff	ffff		1,2,3
IORWF f, d Inclusive OR W with f 1 00 0100 dfff ffff Z MOVF f, d Move f 1 00 0100 dfff ffff Z MOVWF f Move W to f 1 00 0000 lfff ffff Z MOVWF f Move W to f 1 00 0000 lfff ffff Z NOP No Operation 1 00 1000 dfff ffff C RRF f, d Rotate Left fthrough Carry 1 00 1100 dfff ffff C,DC,Z SWAPF f, d Subtract W from f 1 00 110 dfff ffff C,DC,Z SWAPF f, d Exclusive OR W with f 1 01 00bb bfff ffff Z BIT-ORIENTED FILE REGISTER OPERATIONS 1 11 01 01bb bfff ffff BTFSS f, b Bit Test f, S	INCF	f, d	Increment f		00	1010	dfff	ffff	Z	1,2
MOVF f, d Move f Move f 1 00 1000 dfff ffff Z MOVWF f Move W to f 1 00 0000 0kx0 0000 Rff ffff C NOP - No Operation 1 00 0000 0kx0 0000 Rk ffff C C RFF f, d Rotate Left fthrough Carry 1 00 1100 dfff ffff C	INCFSZ			1(2)	00	1111	dfff	ffff		1,2,3
MOVWF f Move W to f 1 00 00000 lfff ffff NOP - No Operation 1 00 0000 0xx0 0000 RLF f, d Rotate Left fthrough Carry 1 00 1101 dfff ffff C SUBWF f, d Subtract W from f 1 00 1100 dfff ffff C D C,DC,Z D C,DC,Z D D D 1100 dfff ffff C D<		,		-		0100			—	1,2
NOP - No Operation 1 00 0000 0xxx 0000 RLF f, d Rotate Left f through Carry 1 00 1101 dfff ffff C SUBWF f, d Subtract W from f 1 00 0100 dfff ffff C SWAPF f, d Swap nibbles in f 1 00 0110 dfff ffff C C,DC,Z SWAPF f, d Swap nibbles in f 1 00 0110 dfff ffff C C,DC,Z XORWF f, d Exclusive OR W with f 1 00 0110 dfff ffff Z BIT-ORIENTED FILE REGISTER OPERATIONS Bit Clear f 1 01 010bb bfff fffff Z BFFSC f, b Bit Test f, Skip if Clear 1 1 11 11bb bfff ffff LITERAL AND CONTROL OPERATIONS Interal with W 1 11 111 111k kkkk kkkk Z ADDLW k Add literal and W 1	MOVF	f, d	Move f	-	00	1000	dfff	ffff	Z	1,2
RLF f, d Rotate Leff through Carry 1 00 1101 dff ffff C RRF f, d State Right f through Carry 1 00 1101 dff ffff C SUBWF f, d Subtract W from f 1 00 1100 dff ffff C C,DC,Z SWAPF f, d Swap nibbles in f 1 00 1101 dff ffff C,DC,Z SWAPF f, d Swap nibbles in f 1 00 1101 dff ffff C,DC,Z SWAPF f, d Swap nibbles in f 1 00 1101 dff ffff Z BIT-ORIENTED FILE REGISTER OPERATIONS I 1 01 00bb bfff ffff BTFSS f, b Bit Test f, Skip if Clear 1 1 11 111b bfff ffff LITERAL AND CONTROL OPERATIONS I 11 111 1111 111k kkkk kkkk Z CALL k Calls subroutine 2 10 <td></td> <td>f</td> <td></td> <td>-</td> <td>00</td> <td>0000</td> <td>lfff</td> <td>ffff</td> <td></td> <td></td>		f		-	00	0000	lfff	ffff		
RRFf, dRotate Right f through Carry1001100dfffffffCSUBWFf, dSubtract W from f1000010dfffffffC,DC,ZSWAPFf, dSwap nibbles in f1001110dfffffffC,DC,ZSWAPFf, dExclusive OR W with f1000110dfffffffZBIT-ORIENTED FILEREGISTER OPERATIONSBCFf, bBit Clear f10100bbbfffffffBSFf, bBit Set f10110bbbfffffffBTFSSf, bBit Test f, Skip if Clear1 (2)0111bbbfffffffBTFSSf, bBit Test f, Skip if Set1 (2)0111bbbfffffffLITERAL AND CONTROL OPERATIONSADDLWkAdd literal and W111111kkkkkkkkZADDLWkAdd literal and W111111kkkk kkkkZClaulkCall subroutine2100kkk kkkkkTO,PDGOTOkGo to address2101kkk kkkkkZIORLWkInclusive OR literal with W1111000kkkk kkkkRETURReturn from interrupt20000000100IO,PDRETURNReturn from Subroutine200000000001000SLEEPGo into standby mode100 <td< td=""><td>NOP</td><td>-</td><td>No Operation</td><td>-</td><td>00</td><td>0000</td><td>0xx0</td><td>0000</td><td></td><td></td></td<>	NOP	-	No Operation	-	00	0000	0xx0	0000		
SUBWFf, dSubtract W from f1000010dfffffffC,DC,ZSWAPFf, dSwap nibbles in f1001110dfffffffZBIT-ORIENTED FILE REGISTER OPERATIONSBCFf, bBit Clear f10100bbbfffffffBSFf, bBit Clear f10101bbbfffffffBTFSCf, bBit Test f, Skip if Clear1 (2)0110bbbfffffffBTFSSf, bBit Test f, Skip if Set1 (2)0111bbbfffffffLITERAL AND CONTROL OPERATIONSADDLWkAdd literal and W111111111xkkkkkkkkZCALLkCall subroutine2100kkkkkkkZCALLkGo to address2101kkkkkkkZGOTOkGo to address210111100xkkkkZMOVLWkInclusive OR literal with W1111100xkkkkZMOVLWkReturn from interrupt20000001001TO,PDRETFIE-Return from interrupt21101xxkkkkkkkkRETURN-Return from Subroutine21101xxkkkkkkkkRETURN-Go into standby mode10000000101TO,PD	RLF	,	o ,	-	00	1101	dfff	ffff	С	1,2
SWAPFf, dSwap nibbles in f1001110dfffffffZBIT-ORIENTED FILE REGISTER OPERATIONSBCFf, bBit Clear f10100bbbfffffffZBSFf, bBit Clear f10101bbbfffffffZBTFSCf, bBit Test f, Skip if Clear110101bbbfffffffBTFSSf, bBit Test f, Skip if Set1120111bbbfffFfffLITERAL AND COVTROL OPERATIONSADDLWkAdd literal and W111111101kkkkkkkkZCALLkCall subroutine2100kkkkkkkKkkZCALLkCall subroutine2101kkkkkkkZGo to address2101kkkkkkkZOVUW1111000kkkkKkkZMOVLW1110000000001001Return from interrupt200000000001001Return from subroutine21101xxkkkkkkkRETURN -Return from Subroutine20000001001Go into standby mode10000000101 <td>RRF</td> <td>,</td> <td></td> <td></td> <td>00</td> <td>1100</td> <td>dfff</td> <td>ffff</td> <td>-</td> <td>1,2</td>	RRF	,			00	1100	dfff	ffff	-	1,2
XORWFf, dExclusive OR W with f1000110dfffffffZBIT-ORIENTED FILE REGISTER OPERATIONSBCFf, bBit Clear f10100bbbffffffffBSFf, bBit Set f10101bbbffffffffBTFSCf, bBit Test f, Skip if Clear1 (2)0110bbbffffffffBTFSSf, bBit Test f, Skip if Set1 (2)0111bbbfffffffLITERAL AND CONTROL OPERATIONSADDLWkAdd literal and W111111111xkkkkkkkkZCALLkCall subroutine2100kkkkkkkZTO,PDGOTOkGo to address2101kkkkkkkKkkkZMOVLWkInclusive OR literal with W11100xkkkkKkkkZMOVLWkReturn from interrupt20000000001TO,PDRETFIE-Return from Subroutine21101xxkkkkKkkkFO,PDRETURN-Return from Subroutine20000000001TO,PDRETURN-Go into standby mode10000001001TO,PD	SUBWF	f, d	Subtract W from f	-	00	0010	dfff	ffff	C,DC,Z	1,2
Bit Clear fBSFf, bBit Clear f10100bbbfffffffBFFSCf, bBit Test f, Skip if Clear1 (2)0110bbbfffffffBTFSCf, bBit Test f, Skip if Clear1 (2)0110bbbfffffffBTFSSf, bBit Test f, Skip if Set1 (2)0110bbbfffffffLITERAL AND CONTROL OPERATIONSADDLWkAdd literal and W111111111.kkkkkkkkZCALLkAdd literal and W1111001kkkkkkkkZCALLkCall subroutine2100kkkkkkkkkkkZCALLkCall subroutine2100kkkkkkkkkkkZCALLkGo to address210111000kkkkkkkkZGOTOkGo to address210111000kkkkZMOVLWkInclusive OR literal with W1111000kkkkZMOVLWkReturn from interrupt20000001001TO,PDGo into standby mode101000000001001TO,PD	SWAPF	f, d	Swap nibbles in f		00	1110	dfff	ffff		1,2
BCFf, bBit Clear f10100bbbfffffffBSFf, bBit Set f10101bbbfffffffBTFSCf, bBit Test f, Skip if Clear110101bbbfffffffBTFSSf, bBit Test f, Skip if Set11111bbbfffffffLITERAL AND CONTROL OPERATIONSADDLWkAdd literal and W111111 xkkkkkkkZADDLWkAdd literal with W1111001 kkkkkkkkC,DC,ZCALLkCall subroutine2100000001101000GOTOkGo to address2101kkkkkkkkkkkZIORLWkInclusive OR literal with W1111000 kkkkkkkkZMOVLWkReturn from interrupt200000000001001RETFIE-Return with literal in W21101xxkkkkkkkkKRETURN-Return from Subroutine200000000001000SLEEP-Go into standby mode10000000110TO,PD	-			1	00	0110	dfff	ffff	Z	1,2
BSFf, bBit Set f10101bbbfffffffBTFSCf, bBit Test f, Skip if Clear110110bbbfffffffBTFSSf, bBit Test f, Skip if Set110110bbbfffffffLITERAL AND CONTROL OPERATIONSADDLWkAdd literal and W111111kkkkkkkC,DC,ZADDLWkAdd literal with W1111001kkkkkkkkZCALLkCall subroutine210000001100100TO,PDGOTOkGo to address21011kkkkkkkkkkkkZIORLWkInclusive OR literal with W1111000kkkkKkkkZMOVLWkReturn from interrupt200000000011001TO,PDRETLWkReturn with literal in W21101xxkkkkkkkkKkkkRETURN-Return from Subroutine200000000001001TO,PDSLEEP-Go into standby mode100000001100101TO,PD	-									
BTFSC BTFSSf, b bBit Test f, Skip if Clear Bit Test f, Skip if Set1 (2) 		,			01	00bb				1,2
BTFSSf, bBit Test f, Skip if Set1 (2)0111bbbfffffffLITERAL AND COVERATIONSADDLWkAdd literal and W111111 x kkkkkkkkC,DC,ZANDLWkAND literal with W111111 x kkkkkkkkC,DC,ZCALLkCall subroutine2100kkkkkkkkkkkZCALLkCall subroutine2100kkkkkkkkkkkZGOTOkGo to address2101kkkkkkkkkkkZIORLWkInclusive OR literal with W1111000kkkkKkkkZMOVLWkMove literal to W1111000kkkkkkkkZRETFIE-Return from interrupt200000000011001RETLWkReturn from Subroutine200000000001000SLEEP-Go into standby mode10000000110TO,PD	-			-	01	01bb	bfff	ffff		1,2
LITERAL AND CONTROL OPERATIONSADDLWkAdd literal and W111111 111xkkkkkkkkC,DC,ZANDLWkAND literal with W1111001kkkkkkkkC,DC,ZCALLkCall subroutine2100kkkkkkkkkkkkkkkZCALLkCall subroutine2100kkkkkkkkkkkZCALLkCall subroutine21000000011001000GOTOkGo to address2101kkkkkkkkkkkZIORLWkInclusive OR literal with W1111000kkkkkkkkZMOVLWkMove literal to W1110000000001001Return from interrupt200000000010011RETLIPReturn from interrupt20000000000100010001000SLEEP-Go into standby mode100000001101001TO,PD					01	10bb	bfff	ffff		3
ADDLWkAdd literal and W111111 x kkkkkkkkC,DC,ZANDLWkAND literal with W1111001 kkkkkkkkZCALLkCall subroutine2100kkkkkkkkkkkZCLRWDT-Clear Watchdog Timer100000001100100TO,PDGOTOkGo to address2101kkkkkkkkkkkZIORLWkInclusive OR literal with W1111000kkkkkkkkZMOVLWkMove literal to W1110000000001001RETFIE-Return from interrupt200000000001001RETURN-Return with literal in W21101xxkkkkkkkkRETURN-Return from Subroutine200000000001000TO,PDSLEEP-Go into standby mode10000000110011TO,PD				1 (2)	01	11bb	bfff	ffff		3
ANDLWkAND literal with W1111001kkkkkkkkZCALLkCall subroutine2100kkkkkkkkkkkKkkkZCLRWDT-Clear Watchdog Timer100000001100100TO,PDGOTOkGo to address2101kkkkkkkkkkkKkkkZIORLWkInclusive OR literal with W1111000kkkkkkkkZMOVLWkMove literal to W111000000001001RETFIE-Return from interrupt200000000001001RETLWReturn with literal in W21101xxkkkkkkkkRETURN-Return from Subroutine200000000001000TO,PDSLEEP-Go into standby mode100000001100011TO,PD		ND CO								•
CALL k Call subroutine 2 10 0kkk kkkk kkkkk kkkk kkkk kkkkk kkkk kkkkk kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk				-	11					
CLRWDT - Clear Watchdog Timer 1 00 0000 0110 100 GOTO k Go to address 2 10 1kkk kkkk kkkk IORLW k Inclusive OR literal with W 1 11 1000 kkkk kkkk Z MOVLW k Move literal to W 1 11 1000 kkkk kkkk Z RETFIE - Return from interrupt 2 00 0000 0000 1001 RETLW k Return with literal in W 2 11 01xx kkkk kkkk RETURN - Return from Subroutine 2 00 0000 0000 1000 SLEEP - Go into standby mode 1 00 0000 0110 TO,PD					11	1001	kkkk	kkkk	Z	
GOTO k Go to address 2 10 1kkk kkkk kkkk IORLW k Inclusive OR literal with W 1 11 1000 kkkk kkkk Z MOVLW k Move literal to W 1 11 1000 kkkk kkkk Z RETFIE - Return from interrupt 2 00 0000 1001 RETLW k Return with literal in W 2 11 01xx kkkk kkkk RETURN - Return from Subroutine 2 00 0000 1000 SLEEP - Go into standby mode 1 00 0000 011 TO, PD	-				10	0kkk	kkkk			
IORLW k Inclusive OR literal with W 1 11 1000 kkkk kkkk Z MOVLW k Move literal to W 1 11 1000 kkkk kkkk Z MOVLW k Move literal to W 1 11 1000 kkkk kkkk kkkk RETFIE - Return from interrupt 2 00 0000 0000 1001 RETLW k Return with literal in W 2 11 01xx kkkk kkkk RETURN - Return from Subroutine 2 00 0000 0000 1000 SLEEP - Go into standby mode 1 00 0000 011 TO,PD			5	-	00				TO,PD	
MOVLW k Move literal to W 1 11 00xx kkkk kkkk RETFIE - Return from interrupt 2 00 0000 0000 1001 RETLW k Return with literal in W 2 11 01xx kkkk kkkk RETURN - Return from Subroutine 2 00 0000 0000 1000 SLEEP - Go into standby mode 1 00 0000 011 TO,PD					10	1kkk				
RETFIE - Return from interrupt 2 00 0000 0000 1001 RETLW k Return with literal in W 2 11 01xx kkkk kkkk RETURN - Return from Subroutine 2 00 0000 0000 1000 SLEEP - Go into standby mode 1 00 0000 011 TO,PD	-				11				Z	
RETLW k Return with literal in W 2 11 01xx kkkk kkkk RETURN - Return from Subroutine 2 00 0000 0000 1000 SLEEP - Go into standby mode 1 00 0000 011 TO,PD	-	k		-	11	00xx	kkkk	kkkk		
RETURN - Return from Subroutine 2 00 0000 1000 SLEEP - Go into standby mode 1 00 0000 0110 TO,PD		-	•		00	0000				
SLEEP - Go into standby mode 1 00 0000 0110 TO, PD		k			11	01xx	kkkk	kkkk		
	RETURN	-			00	0000	0000	1000		
SUBLW k Subtract W from literal 1 11 11 0 w kikiki kikiki CDC 7	SLEEP	-	Go into standby mode	1	00	0000	0110	0011	TO,PD	
	SUBLW	k	Subtract W from literal	1	11	110x	kkkk	kkkk	C,DC,Z	
XORLW k Exclusive OR literal with W 1 11 1010 kkkk Kkkk Z	XORLW	k	Exclusive OR literal with W	1	11	1010	kkkk	kkkk	Z	

Note 1: When an I/O register is modified as a function of itself (e.g., MOVF PORTB, 1), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if assigned to the Timer0 Module.

3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

PIC16C62B/72A

BTFSS	Bit Test f, Skip if Set
Syntax:	[<i>label</i>] BTFSS f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b < 7 \end{array}$
Operation:	skip if (f) = 1
Status Affected:	None
Description:	If bit 'b' in register 'f' is '0', then the next instruction is executed. If bit 'b' is '1', then the next instruction is discarded and a NOP is executed instead, making this a 2TCY instruction.

CLRF	Clear f
Syntax:	[<i>label</i>] CLRF f
Operands:	$0 \le f \le 127$
Operation:	$\begin{array}{l} 00h \rightarrow (f) \\ 1 \rightarrow Z \end{array}$
Status Affected:	Z
Description:	The contents of register 'f' are cleared and the Z bit is set.

BTFSC	Bit Test, Skip if Clear
Syntax:	[<i>label</i>] BTFSC f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	skip if (f) = 0
Status Affected:	None
Description:	If bit 'b' in register 'f' is '1', then the next instruction is executed. If bit 'b' in register 'f' is '0', then the next instruction is discarded, and a NOP is executed instead, making this a 2TCY instruction.

CLRW	Clear W
Syntax:	[label] CLRW
Operands:	None
Operation:	$\begin{array}{l} 00h \rightarrow (W) \\ 1 \rightarrow Z \end{array}$
Status Affected:	Z
Description:	W register is cleared. Zero bit (Z) is set.

CALL	Call Subroutine	CLRWDT	Clear Watchdog Timer
Syntax:	[<i>label</i>] CALL k	Syntax:	[label] CLRWDT
Operands:	$0 \le k \le 2047$	Operands:	None
Operation:	(PC)+ 1 \rightarrow TOS, k \rightarrow PC<10:0>, (PCLATH<4:3>) \rightarrow PC<12:11>	Operation:	$00h \rightarrow WDT$ 0 $\rightarrow WDT$ prescaler, 1 $\rightarrow \overline{TO}$
Status Affected:	None		$1 \rightarrow \overline{PD}$
Description:	Call Subroutine. First, return address	Status Affected:	TO, PD
	(PC+1) is pushed onto the stack. The eleven bit immediate address is loaded into PC bits <10:0>. The upper bits of the PC are loaded from PCLATH. CALL is a two cycle instruction.	Description:	CLRWDT instruction resets the Watch- dog Timer. It also resets the prescaler of the WDT. Status bits TO and PD are set.

13.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings (†)

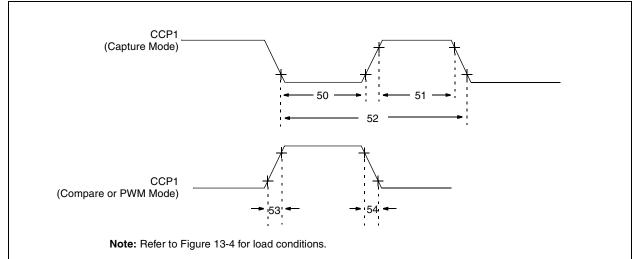
Ambient temperature under bias	55°C to +125°C
Storage temperature	
Voltage on any pin with respect to Vss (except VDD, MCLR, and RA4)	
Voltage on VDD with respect to VSS	
Voltage on MCLR with respect to Vss (Note 2)	
Voltage on RA4 with respect to Vss	
Total power dissipation (Note 1)	
Maximum current out of Vss pin	
Maximum current into VDD pin	
Input clamp current, Iк (VI < 0 or VI > VDD)	±20 mA
Output clamp current, loк (Vo < 0 or Vo > VDD)	
Maximum output current sunk by any I/O pin	25 mA
Maximum output current sourced by any I/O pin	25 mA
Maximum current sunk by PORTA and PORTB (combined)	200 mA
Maximum current sourced by PORTA and PORTB (combined)	200 mA
Maximum current sunk by PORTC	200 mA
Maximum current sourced by PORTC	200 mA
Note 1: Power dissipation is calculated as follows: Pdis = VDD x {IDD - \sum IOH} + \sum {(VDD-V	ЮН) x IOH} + ∑(VOI x IOL)

2: Voltage spikes below Vss at the MCLR/VPP pin, inducing currents greater than 80 mA, may cause latch-up. Thus, a series resistor of 50-100Ω should be used when applying a "low" level to the MCLR/VPP pin, rather than pulling this pin directly to Vss.

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

DC CHA	ARACTE	RISTICS	$\begin{array}{llllllllllllllllllllllllllllllllllll$						
Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions		
			-	-	0.6	V	IOL = 7.0 mA, VDD = 4.5V, -40°C to +125°C		
D083		OSC2/CLKOUT (RC osc mode)	-	-	0.6	V	IOL = 1.6 mA, VDD = 4.5V, -40°C to +85°C		
			-	-	0.6	V	IOL = 1.2 mA, VDD = 4.5V, -40°C to +125°C		
		Output High Voltage							
D090	Vон	I/O ports (Note 3)	VDD-0.7	-	-	V	IOH = -3.0 mA, VDD = 4.5V, -40°C to +85°C		
			VDD-0.7	-	-	V	IOH = -2.5 mA, VDD = 4.5V, -40°С to +125°С		
D092		OSC2/CLKOUT (RC osc mode)	Vdd-0.7	-	-	V	IOH = -1.3 mA, VDD = 4.5V, -40°С to +85°С		
			Vdd-0.7	-	-	V	IOH = -1.0 mA, VDD = 4.5V, -40°C to +125°C		
D150*	Vod	Open-Drain High Voltage	-	-	8.5	V	RA4 pin		
		Capacitive Loading Specs on Output Pins							
D100	Cosc2	OSC2 pin	-	-	15	pF	In XT, HS and LP modes when external clock is used to drive OSC1.		
D101	Cio	All I/O pins and OSC2 (in RC mode)	-	-	50	pF			
D102	Cb	SCL, SDA in I ² C mode	-	-	400	pF			

* These parameters are characterized but not tested.


† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

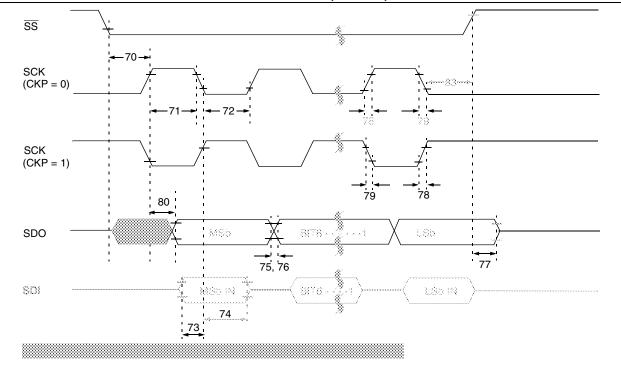
Note 1: In RC oscillator mode, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the device be driven with external clock in RC mode.

2: The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.

FIGURE 13-10: CAPTURE/COMPARE/PWM TIMINGS

TABLE 13-6: CAPTURE/COMPARE/PWM REQUIREMENTS


Param No.	Sym		Characteristic		Min	Тур†	Max	Units	Conditions
50*	TccL	CCP1 input low	No Prescaler		0.5Tcy + 20	—	—	ns	
		time	With Prescaler	PIC16CXX	10	_	_	ns	
				PIC16LCXX	20	_	_	ns	
51*	TccH	CCP1 input high time	No Prescaler		0.5TCY + 20	_	_	ns	
			With Prescaler	PIC16CXX	10	-	—	ns	
				PIC16LCXX	20	_	_	ns	
52*	TccP	CCP1 input perior	d		<u>3Tcy + 40</u> N	-	—	ns	N = prescale value (1,4, or 16)
53*	TccR			PIC16CXX	—	10	25	ns	
				PIC16LCXX	—	25	45	ns	
54*	TccF	CCP1 output fall time		PIC16CXX	—	10	25	ns	
				PIC16LCXX	—	25	45	ns	

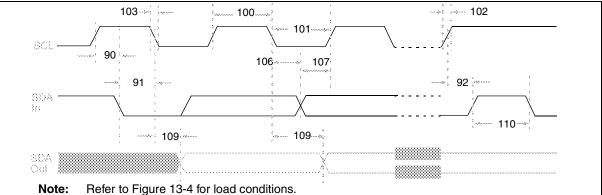
* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

PIC16C62B/72A

FIGURE 13-13: EXAMPLE SPI SLAVE MODE TIMING (CKE = 0)

TABLE 13-9: EXAMPLE SPI MODE REQUIREMENTS (SLAVE MODE TIMING (CKE = 0)


Param. No.	Symbol	Characteristic		Min	Тур†	Max	Units	Conditions
70	TssL2scH, TssL2scL	$\overline{SS}\downarrow$ to SCK \downarrow or SCK \uparrow input		Тсү			ns	
71	TscH	SCK input high time	Continuous	1.25Tcy + 30	—		ns	
71A		(slave mode)	Single Byte	40	—	_	ns	Note 1
72	TscL	SCK input low time	Continuous	1.25Tcy + 30	—		ns	
72A		(slave mode)	Single Byte	40	—		ns	Note 1
73	TdiV2scH, TdiV2scL	Setup time of SDI data inp	ut to SCK edge	100	—	—	ns	
73A	Тв2в	Last clock edge of Byte1 to the 1st clock edge of Byte2		1.5Tcy + 40	—	—	ns	Note 1
74	TscH2diL, TscL2diL	Hold time of SDI data input to SCK edge		100	—	—	ns	
75	TdoR	SDO data output rise time	PIC16CXX	—	10	25	ns	
			PIC16LCXX		20	45	ns	
76	TdoF	SDO data output fall time		—	10	25	ns	
77	TssH2doZ	SS↑ to SDO output hi-imp	edance	10	—	50	ns	
78	TscR	SCK output rise time	PIC16CXX	—	10	25	ns	
		(master mode)	PIC16LCXX		20	45	ns	
79	TscF	SCK output fall time (master mode)		—	10	25	ns	
80	TscH2doV,	SDO data output valid	PIC16CXX	—	—	50	ns	
	TscL2doV	after SCK edge	PIC16LCXX		—	100	ns	
83	TscH2ssH, TscL2ssH	\overline{SS} \uparrow after SCK edge	•	1.5Tcy + 40		_	ns	

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Specification 73A is only required if specifications 71A and 72A are used.

PIC16C62B/72A

FIGURE 13-16: I²C BUS DATA TIMING

TABLE 13-12: I²C BUS DATA REQUIREMENTS

Param. No.	Sym	Characte	eristic	Min	Max	Units	Conditions
100*	Thigh	Clock high time	100 kHz mode	4.0	—	μS	Device must operate at a min- imum of 1.5 MHz
			400 kHz mode	0.6	_	μS	Device must operate at a min- imum of 10 MHz
			SSP Module	1.5TCY	—		
101*	TLOW	Clock low time	100 kHz mode	4.7	-	μS	Device must operate at a min- imum of 1.5 MHz
			400 kHz mode	1.3	—	μs	Device must operate at a min- imum of 10 MHz
			SSP Module	1.5TCY	—		
102*	TR	SDA and SCL rise	100 kHz mode	—	1000	ns	
		time	400 kHz mode	20 + 0.1Cb	300	ns	Cb is specified to be from 10-400 pF
103*	TF	SDA and SCL fall	100 kHz mode	—	300	ns	
		time	400 kHz mode	20 + 0.1Cb	300	ns	Cb is specified to be from 10-400 pF
90*	TSU:STA	START condition	100 kHz mode	4.7	—	μs	Only relevant for repeated
		setup time	400 kHz mode	0.6	—	μs	START condition
91*	THD:STA	START condition hold	100 kHz mode	4.0	—	μs	After this period the first clock
		time	400 kHz mode	0.6	—	μS	pulse is generated
106*	THD:DAT	Data input hold time	100 kHz mode	0	—	ns	
			400 kHz mode	0	0.9	μs	
107*	TSU:DAT	Data input setup time	100 kHz mode	250	—	ns	Note 2
			400 kHz mode	100	—	ns	
92*	TSU:STO	STOP condition setup	100 kHz mode	4.7	—	μs	
		time	400 kHz mode	0.6	_	μS	
109*	ΤΑΑ	Output valid from	100 kHz mode	—	3500	ns	Note 1
		clock	400 kHz mode	—	—	ns	
110*	TBUF	Bus free time	100 kHz mode	4.7	_	μS	Time the bus must be free
			400 kHz mode	1.3	_	μs	before a new transmission can start
	Cb	Bus capacitive loading		—	400	pF	

* These parameters are characterized but not tested.

Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of the falling edge of SCL to avoid unintended generation of START or STOP conditions.

2: A fast-mode (400 kHz) I²C-bus device can be used in a standard-mode (100 kHz) I²C-bus system, but the requirement Tsu:DAT ≥ 250 ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line TR max.+tsu;DAT = 1000 + 250 = 1250 ns (according to the standard-mode I²C bus specification) before the SCL line is released.

TABLE 13-13:A/D CONVERTER CHARACTERISTICS:
PIC16C72A-04 (COMMERCIAL, INDUSTRIAL, EXTENDED)
PIC16C72A-20 (COMMERCIAL, INDUSTRIAL, EXTENDED)
PIC16LC72A-04 (COMMERCIAL, INDUSTRIAL)

Param No.	Sym	Characte	ristic	Min	Тур†	Мах	Units	Conditions
A01	NR	Resolution	—	—	8-bits	bit	$\begin{array}{l} VREF=VDD=5.12V,\\ VSS\leqVAIN\leqVREF \end{array}$	
A02	Eabs	Total Absolute error		—	_	< ± 1	LSB	$\begin{array}{l} VREF=VDD=5.12V,\\ VSS\leqVAIN\leqVREF \end{array}$
A03	EIL	Integral linearity error		_	—	< ± 1	LSB	$\begin{array}{l} \text{VREF} = \text{VDD} = 5.12\text{V},\\ \text{VSS} \leq \text{VAIN} \leq \text{VREF} \end{array}$
A04	Edl	Differential linearity er	ror		—	< ± 1	LSB	$\begin{array}{l} \text{VREF} = \text{VDD} = 5.12\text{V},\\ \text{VSS} \leq \text{VAIN} \leq \text{VREF} \end{array}$
A05	Efs	Full scale error			_	< ± 1	LSB	$\begin{array}{l} \text{VREF} = \text{VDD} = 5.12\text{V},\\ \text{VSS} \leq \text{VAIN} \leq \text{VREF} \end{array}$
A06	EOFF	Offset error		_	—	< ± 1	LSB	$\begin{array}{l} \text{VREF} = \text{VDD} = 5.12\text{V},\\ \text{VSS} \leq \text{VAIN} \leq \text{VREF} \end{array}$
A10	—	Monotonicity		_	guaranteed (Note 3)	—		$VSS \leq VAIN \leq VREF$
A20	VREF	Reference voltage		2.5V	—	VDD + 0.3	V	
A25	VAIN	Analog input voltage		Vss - 0.3	_	VREF + 0.3	V	
A30	ZAIN	Recommended imped analog voltage source		_	—	10.0	kΩ	
A40	IAD	A/D conversion	PIC16CXX	—	180	—	μA	Average current con-
		current (VDD)	PIC16LCXX	—	90	—	μA	sumption when A/D is on. (Note 1)
A50	IREF	VREF input current (N	ote 2)	10		1000	μΑ μΑ	During VAIN acquisi- tion. Based on differ- ential of VHOLD to VAIN to charge CHOLD, see Section 9.1. During A/D conver-
								sion cycle

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: When A/D is off, it will not consume any current other than minor leakage current.

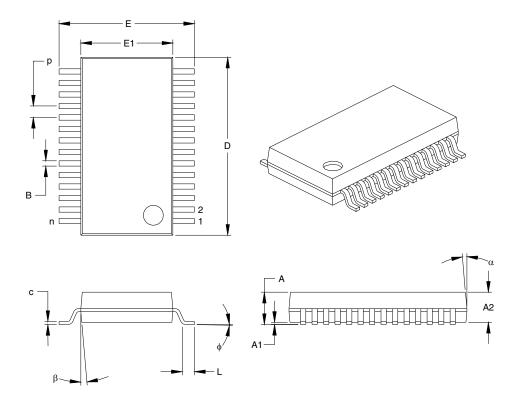
The power-down current spec includes any such leakage from the A/D module.

2: VREF current is from RA3 pin or VDD pin, whichever is selected as reference input.

3: The A/D conversion result never decreases with an increase in the Input Voltage and has no missing codes.

14.0 DC AND AC CHARACTERISTICS GRAPHS AND TABLES

The graphs and tables provided in this section are for **design guidance** and are **not tested**.


In some graphs or tables, the data presented are **outside specified operating range** (i.e., outside specified VDD range). This is for **information only** and devices are guaranteed to operate properly only within the specified range.

The data presented in this section is a **statistical summary** of data collected on units from different lots over a period of time and matrix samples. 'Typical' represents the mean of the distribution at 25°C. 'Max' or 'min' represents (mean + 3σ) or (mean - 3σ) respectively, where σ is standard deviation, over the whole temperature range.

Graphs and Tables not available at this time.

Data is not available at this time but you may reference the *PIC16C72 Series Data Sheet* (DS39016,) DC and AC characteristic section, which contains data similar to what is expected.

28-Lead Plastic Shrink Small Outline (SS) - 209 mil, 5.30 mm (SSOP) 15.5

	nits INCHES			MILLIMETERS*		
n Limits	MIN	NOM	MAX	MIN	NOM	MAX
n		28			28	
р		.026			0.66	
Α	.068	.073	.078	1.73	1.85	1.98
A2	.064	.068	.072	1.63	1.73	1.83
A1	.002	.006	.010	0.05	0.15	0.25
E	.299	.309	.319	7.59	7.85	8.10
E1	.201	.207	.212	5.11	5.25	5.38
D	.396	.402	.407	10.06	10.20	10.34
L	.022	.030	.037	0.56	0.75	0.94
С	.004	.007	.010	0.10	0.18	0.25
¢	0	4	8	0.00	101.60	203.20
В	.010	.013	.015	0.25	0.32	0.38
α	0	5	10	0	5	10
β	0	5	10	0	5	10
	p A A2 A1 E D L c φ B α	n p A .068 A2 .064 A1 .002 E .299 E1 .201 D .396 L .022 c .004 φ 0 B .010 α 0	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

*Controlling Parameter

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MS-150

Drawing No. C04-073