

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	22
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 5.5V
Data Converters	A/D 5x8b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16c72a-20i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.2.2 SPECIAL FUNCTION REGISTERS

The Special Function Registers are registers used by the CPU and Peripheral Modules for controlling the desired operation of the device. These registers are implemented as static RAM. A list of these registers is given in Table 2-1. The Special Function Registers can be classified into two sets; core (CPU) and peripheral. Those registers associated with the core functions are described in detail in this section. Those related to the operation of the peripheral features are described in detail in the peripheral feature section.

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets (4)
Bank 0					•						
00h	INDF ⁽¹⁾	Addressing	this locatio	cal register)	0000 0000	0000 0000					
01h	TMR0	Timer0 mo	dule's regist	er						xxxx xxxx	uuuu uuuu
02h	PCL ⁽¹⁾	Program C	ounter's (PC	C) Least Sig	nificant Byte	!				0000 0000	0000 0000
03h	STATUS ⁽¹⁾	IRP ⁽⁵⁾	RP1 ⁽⁵⁾	RP0	TO	PD	Z	DC	С	0001 1xxx	000q quuu
04h	FSR ⁽¹⁾	Indirect dat	a memory a	ddress poir	nter					xxxx xxxx	uuuu uuuu
05h	PORTA ^(6,7)	—	_	PORTA Da	ta Latch whe	en written: P	ORTA pins w	hen read		0x 0000	0u 0000
06h	PORTB ^(6,7)	PORTB Da	ta Latch wh	en written: F	PORTB pins	when read				xxxx xxxx	uuuu uuuu
07h	PORTC ^(6,7)	PORTC Da	ita Latch wh	en written: I	PORTC pins	when read				xxxx xxxx	uuuu uuuu
08h-09h	_	Unimpleme	ented							—	—
0Ah	PCLATH ^(1,2)	—	_	_	Write Buffe	r for the uppe	er 5 bits of th	e Program (Counter	0 0000	0 0000
0Bh	INTCON ⁽¹⁾	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	—	ADIF ⁽³⁾	_	_	SSPIF	CCP1IF	TMR2IF	TMR1IF	-0 0000	-0 0000
0Dh	_	Unimpleme	ented							—	—
0Eh	TMR1L	Holding reg	jister for the	Least Signi	ificant Byte o	of the 16-bit 1	MR1 registe	r		xxxx xxxx	uuuu uuuu
0Fh	TMR1H	Holding reg	jister for the	Most Signif	icant Byte o	f the 16-bit T	MR1 register	r		xxxx xxxx	uuuu uuuu
10h	T1CON	_	—	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR1ON	00 0000	uu uuuu
11h	TMR2	Timer2 mo	dule's regist	er						0000 0000	0000 0000
12h	T2CON	_	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	-000 0000
13h	SSPBUF	Synchrono	us Serial Po	rt Receive E	Buffer/Transr	nit Register				xxxx xxxx	uuuu uuuu
14h	SSPCON	WCOL	SSPOV	SSPEN	СКР	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	0000 0000
15h	CCPR1L	Capture/Co	Capture/Compare/PWM Register1 (LSB)								uuuu uuuu
16h	CCPR1H	Capture/Co	Capture/Compare/PWM Register1 (MSB)								uuuu uuuu
17h	CCP1CON	—	_	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0000	00 0000
18h-1Dh	_	Unimpleme	Unimplemented								—
1Eh	ADRES ⁽³⁾	A/D Result	A/D Result Register								uuuu uuuu
1Fh	ADCON0 ⁽³⁾	ADCS1	ADCS0	CHS2	CHS1	CHS0	GO/DONE	—	ADON	0000 00-0	0000 00-0

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0',

Shaded locations are unimplemented, read as '0'. **Note 1:** These registers can be addressed from either bank.

2: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for PC<12:8> whose contents are transferred to the upper byte of the program counter.

3: A/D not implemented on the PIC16C62B, maintain as '0'.

4: Other (non power-up) resets include: external reset through MCLR and the Watchdog Timer Reset.

5: The IRP and RP1 bits are reserved. Always maintain these bits clear.

6: On any device reset, these pins are configured as inputs.

7: This is the value that will be in the port output latch.

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets (4)
Bank 1											
80h	INDF ⁽¹⁾	Addressing	this locatio	cal register)	0000 0000	0000 0000					
81h	OPTION_REG	RBPU INTEDG TOCS TOSE PSA PS2 PS1 PS0								1111 1111	1111 1111
82h	PCL ⁽¹⁾	Program C	ounter's (PC	C) Least Sig	nificant Byte	1				0000 0000	0000 0000
83h	STATUS ⁽¹⁾	IRP ⁽⁵⁾	RP1 ⁽⁵⁾	RP0	TO	PD	Z	DC	С	0001 1xxx	000q quuu
84h	FSR ⁽¹⁾	Indirect dat	a memory a	ddress poir	nter					xxxx xxxx	uuuu uuuu
85h	TRISA	—	—	PORTA Da	ta Direction	Register				11 1111	11 1111
86h	TRISB	PORTB Da	ta Direction	Register						1111 1111	1111 1111
87h	TRISC	PORTC Da	PORTC Data Direction Register							1111 1111	1111 1111
88h-89h	_	Unimpleme	Unimplemented							_	_
8Ah	PCLATH ^(1,2)	—	_	—	Write Buffe	r for the upp	er 5 bits of th	e Program (Counter	0 0000	0 0000
8Bh	INTCON ⁽¹⁾	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
8Ch	PIE1	—	ADIE ⁽³⁾	_	—	SSPIE	CCP1IE	TMR2IE	TMR1IE	-0 0000	-0 0000
8Dh	_	Unimpleme	ented							_	_
8Eh	PCON	—	_	—	—	_	—	POR	BOR	dd	uu
8Fh-91h	_	Unimpleme	ented					•		_	_
92h	PR2	Timer2 Per	Timer2 Period Register								1111 1111
93h	SSPADD	Synchrono	Synchronous Serial Port (I ² C mode) Address Register								0000 0000
94h	SSPSTAT	SMP CKE D/Ā P S R/W UA BF								0000 0000	0000 0000
95h-9Eh	—	Unimpleme	ented							—	—
9Fh	ADCON1 ⁽³⁾	_	_	_	_	_	PCFG2	PCFG1	PCFG0	000	000

TABLE 2-1 SPECIAL FUNCTION REGISTER SUMMARY (Cont.'d)

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0',

Shaded locations are unimplemented, read as '0'.

Note 1: These registers can be addressed from either bank.

2: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for PC<12:8> whose contents are transferred to the upper byte of the program counter.

3: A/D not implemented on the PIC16C62B, maintain as '0'.

4: Other (non power-up) resets include: external reset through MCLR and the Watchdog Timer Reset.

5: The IRP and RP1 bits are reserved. Always maintain these bits clear.

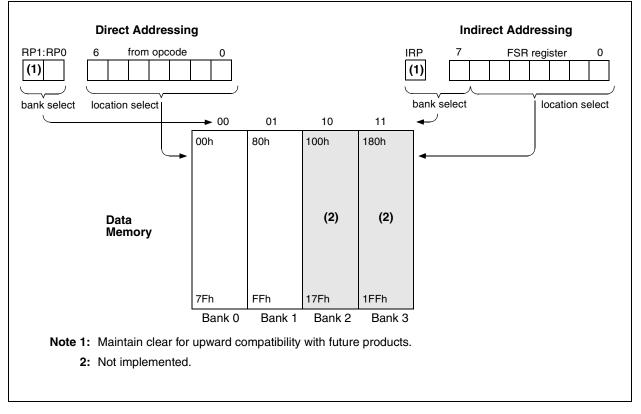
6: On any device reset, these pins are configured as inputs.

7: This is the value that will be in the port output latch.

2.5 Indirect Addressing, INDF and FSR Registers

The INDF register is not a physical register. Addressing INDF actually addresses the register whose address is contained in the FSR register (FSR is a *pointer*).

Reading INDF itself indirectly (FSR = 0) will produce 00h. Writing to the INDF register indirectly results in a no-operation (although STATUS bits may be affected).


A simple program to clear RAM locations 20h-2Fh using indirect addressing is shown in Example 2-1.

EXAMPLE 2-1: HOW TO CLEAR RAM USING INDIRECT ADDRESSING

	movlw movwf		;initialize pointer ; to RAM
NEXT	clrf	INDF	;clear INDF register
	incf	FSR	;inc pointer
	btfss	FSR,4	;all done?
	goto	NEXT	;NO, clear next
CONTINUE			
	:		;YES, continue

An effective 9-bit address is obtained by concatenating the 8-bit FSR register and the IRP bit (STATUS<7>), as shown in Figure 2-3. However, IRP is not used in the PIC16C62B/72A.

FIGURE 2-3: DIRECT/INDIRECT ADDRESSING

TABLE 3-5 PORTC FUNCTIONS

Name	Bit#	Buffer Type	Function	TRISC Override
RC0/T1OSO/T1CKI	bit0	ST	Input/output port pin or Timer1 oscillator output/Timer1 clock input	Yes
RC1/T1OSI	bit1	ST	Input/output port pin or Timer1 oscillator input	Yes
RC2/CCP1	bit2	ST	Input/output port pin or Capture1 input/Compare1 output/PWM1 output	No
RC3/SCK/SCL	bit3	ST	RC3 can also be the synchronous serial clock for both SPI and I^2C modes.	No
RC4/SDI/SDA	bit4	ST	RC4 can also be the SPI Data In (SPI mode) or data I/O (I^2C mode).	No
RC5/SDO	bit5	ST	Input/output port pin or Synchronous Serial Port data output	No
RC6	bit6	ST	Input/output port pin	No
RC7	bit7	ST	Input/output port pin	No

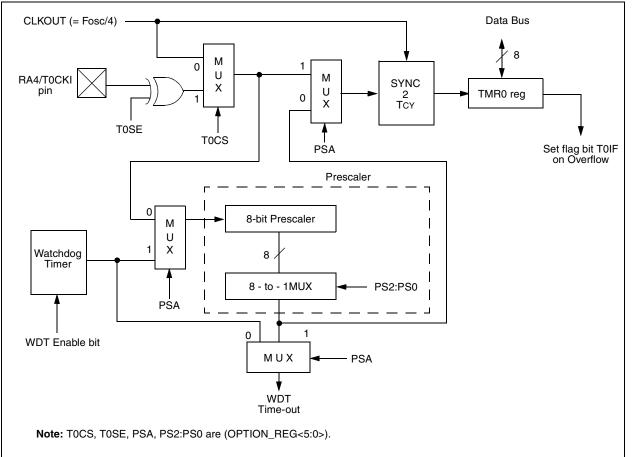
Legend: ST = Schmitt Trigger input

TABLE 3-6SUMMARY OF REGISTERS ASSOCIATED WITH PORTC

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets
07h	PORTC	RC7	RC7 RC6 RC5 RC4 RC3 RC2 RC1 RC0								uuuu uuuu
87h	TRISC	PORTC Data Direction Register								1111 1111	1111 1111

Legend: x = unknown, u = unchanged.

4.2.1 SWITCHING PRESCALER ASSIGNMENT


The prescaler assignment is fully under software control, (i.e., it can be changed "on-the-fly" during program execution).

Note: To avoid an unintended device RESET, a specific instruction sequence (shown in the PIC[®] MCU Mid-Range Reference Manual, DS33023) must be executed when changing the prescaler assignment from Timer0 to the WDT. This sequence must be followed even if the WDT is disabled.

4.3 <u>Timer0 Interrupt</u>

The TMR0 interrupt is generated when the TMR0 register overflows from FFh to 00h. This overflow sets bit T0IF (INTCON<2>). The interrupt can be masked by clearing bit T0IE (INTCON<5>). Bit T0IF must be cleared in software by the Timer0 module interrupt service routine before re-enabling this interrupt. The TMR0 interrupt cannot awaken the processor from SLEEP since the timer is shut off during SLEEP.

FIGURE 4-2: BLOCK DIAGRAM OF THE TIMER0/WDT PRESCALER

TABLE 4-1 REGISTERS ASSOCIATED WITH TIMER0

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets
01h	TMR0	Timer0	imer0 module's register							xxxx xxxx	uuuu uuuu
0Bh,8Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000u
81h	OPTION_REG	RBPU	RBPU INTEDG TOCS TOSE PSA PS2 PS1 PS0							1111 1111	1111 1111
85h	TRISA		_	PORTA Data Direction Register						11 1111	11 1111

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by Timer0.

8.3.1.2 RECEPTION

When the R/\overline{W} bit of the address byte is clear and an address match occurs, the R/\overline{W} bit of the SSPSTAT register is cleared. The received address is loaded into the SSPBUF register.

When the address byte overflow condition exists, then no acknowledge (\overline{ACK}) pulse is given. An overflow condition is defined as either bit BF (SSPSTAT<0>) is set or bit SSPOV (SSPCON<6>) is set.

An SSP interrupt is generated for each data transfer byte. Flag bit SSPIF (PIR1<3>) must be cleared in software. The SSPSTAT register is used to determine the status of the byte.

FIGURE 8-3: I²C WAVEFORMS FOR RECEPTION (7-BIT ADDRESS)

Receiving Address R/W SDA - </th <th>=0Receiving Data _ACK_D7XD6XD5XD4XD3XD2XD1XE </th> <th></th> <th></th>	=0Receiving Data _ACK_D7XD6XD5XD4XD3XD2XD1XE 		
SSPI <u>F (PIR1<3>)</u> BF (<u>SSPSTAT<0>)</u>	 Cleared in software SSPBUF register is read 		Bus Master terminates transfer
SSP <u>OV (SSPCON<6>)</u>	Bit SSPOV is set b	ecause the SSPBUF register is still f	

9.0 ANALOG-TO-DIGITAL CONVERTER (A/D) MODULE

Note: This section applies to the PIC16C72A only.

The analog-to-digital (A/D) converter module has five input channels.

The A/D allows conversion of an analog input signal to a corresponding 8-bit digital number (refer to Application Note AN546 for use of A/D Converter). The output of the sample and hold is the input into the converter, which generates the result via successive approximation. The analog reference voltage is software selectable to either the device's positive supply voltage (VDD) or the voltage level on the RA3/AN3/VREF pin.

The A/D converter has the feature of being able to operate while the device is in SLEEP mode. To operate in sleep, the A/D conversion clock must be derived from the A/D's internal RC oscillator.

Additional information on the A/D module is available in the PIC[®] MCU Mid-Range Reference Manual, (DS33023).

The A/D module has three registers. These registers are:

- A/D Result Register (ADRES)
- A/D Control Register 0 (ADCON0)
- A/D Control Register 1 (ADCON1)

A device reset forces all registers to their reset state. This forces the A/D module to be turned off, and any conversion is aborted.

The ADCON0 register, shown in Figure 9-1, controls the operation of the A/D module. The ADCON1 register, shown in Figure 9-2, configures the functions of the port pins. The port pins can be configured as analog inputs (RA3 can also be a voltage reference) or as digital I/O.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0						
ADCS1 bit7	ADCS0	CHS2	CHS1	CHS0	GO/DONE	_	ADON bit0	R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'					
bit 7-6:	00 = Foso 01 = Foso 10 = Foso	ADCS1:ADCS0: A/D Conversion Clock Select bits 00 = Fosc/2 01 = Fosc/8 10 = Fosc/32 11 = FRC (clock derived from an internal RC oscillator)											
bit 5-3:	CHS2:CHS0: Analog Channel Select bits 000 = channel 0, (RA0/AN0) 001 = channel 1, (RA1/AN1) 010 = channel 2, (RA2/AN2) 011 = channel 3, (RA3/AN3) 100 = channel 4, (RA5/AN4)												
bit 2:	GO/DON	E: A/D Co	nversion	Status bit									
		onversion onversion	not in pro		this bit starts t s bit is automa			ware when the A/D					
bit 1:	Unimpler	nented: F	Read as '0	ı									
bit 0:	ADON : $A_{1} = A/D c$	onverter r			l consumes no		n ourront						

REGISTER 9-1: ADCON0 REGISTER (ADDRESS 1Fh)

10.0 SPECIAL FEATURES OF THE CPU

The PIC16C62B/72A devices have a host of features intended to maximize system reliability, minimize cost through elimination of external components, provide power saving operating modes and offer code protection. These are:

- Oscillator Mode Selection
- Reset
 - Power-on Reset (POR)
 - Power-up Timer (PWRT)
 - Oscillator Start-up Timer (OST)
 - Brown-out Reset (BOR)
- Interrupts
- Watchdog Timer (WDT)
- SLEEP
- Code protection
- ID locations
- In-circuit serial programming[™] (ICSP)

These devices have a Watchdog Timer, which can be shut off only through configuration bits. It runs off its own RC oscillator for added reliability. There are two timers that offer necessary delays on power-up. One is the Oscillator Start-up Timer (OST), intended to keep the chip in reset until the crystal oscillator is stable. The

FIGURE 10-1: CONFIGURATION WORD

other is the Power-up Timer (PWRT), which provides a fixed delay on power-up only and is designed to keep the part in reset while the power supply stabilizes. With these two timers on-chip, most applications need no external reset circuitry.

SLEEP mode is designed to offer a very low current power-down mode. The user can wake-up from SLEEP through external reset, Watchdog Timer Wake-up, or through an interrupt. Several oscillator options are also made available to allow the part to fit the application. The RC oscillator option saves system cost while the LP crystal option saves power. A set of configuration bits are used to select various options.

Additional information on special features is available in the PIC[®] MCU Mid-Range Reference Manual, (DS33023).

10.1 Configuration Bits

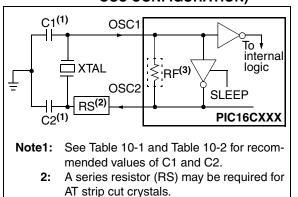
The configuration bits can be programmed (read as '0') or left unprogrammed (read as '1') to select various device configurations. These bits are mapped in program memory location 2007h.

The user will note that address 2007h is beyond the user program memory space. In fact, it belongs to the special test/configuration memory space (2000h - 3FFFh), which can be accessed only during programming.

CP1	CP0	CP1	CP0	CP1	CP0	_	BODEN	CP1	CP0	PWRTE	WDTE	FOSC1	FOSC0	Register:	CONFIG
bit13													bit0	Address:	2007h
	<pre>bit 13-8 CP1:CP0: Code Protection bits ⁽²⁾ 5-4: 11 = Code protection off 10 = Upper half of program memory code protected 01 = Upper 3/4th of program memory code protected</pre>														
		00 = AII													
bit 7:	I	Jnimpl	emen	ted: R	ead as	s '1'									
bit 6:		BODEN: Brown-out Reset Enable bit ⁽¹⁾ 1 = BOR enabled 0 = BOR disabled													
bit 3:		PWRTE : Power-up Timer Enable bit ⁽¹⁾ 1 = PWRT disabled 0 = PWRT enabled													
bit 2:	:	WDTE: Watchdog Timer Enable bit 1 = WDT enabled 0 = WDT disabled													
bit 1-		FOSC1 11 = RC 10 = HS 01 = X1 00 = LF	C oscil S oscil T oscil	lator lator lator	cillator	[·] Selec	ction bits								
Note													dless of the tion schem	e value of bit ne listed.	PWRTE.

10.2 Oscillator Configurations

10.2.1 OSCILLATOR TYPES


The PIC16CXXX can be operated in four different oscillator modes. The user can program two configuration bits (FOSC1 and FOSC0) to select one of these four modes:

- LP Low Power Crystal
- XT Crystal/Resonator
- HS High Speed Crystal/Resonator
- RC Resistor/Capacitor

10.2.2 CRYSTAL OSCILLATOR/CERAMIC RESONATORS

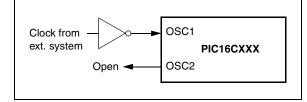

In XT, LP or HS modes, a crystal or ceramic resonator is connected to the OSC1/CLKIN and OSC2/CLKOUT pins to establish oscillation (Figure 10-2). The PIC16CXXX oscillator design requires the use of a parallel cut crystal. Use of a series cut crystal may give a frequency out of the crystal manufacturers specifications. When in XT, LP or HS modes, the device can use an external clock source to drive the OSC1/CLKIN pin (Figure 10-3).

FIGURE 10-2: CRYSTAL/CERAMIC RESONATOR OPERATION (HS, XT OR LP OSC CONFIGURATION)

3: RF varies with the crystal chosen.

FIGURE 10-3: EXTERNAL CLOCK INPUT OPERATION (HS, XT OR LP OSC CONFIGURATION)

TABLE 10-1 CERAMIC RESONATORS

Ranges Tested:

Ranges Tested:											
Mode	Freq	OSC1	0\$C2								
XT	455 kHz	68 - 100 pF	68 - 100 pF								
	2.0 MHz 15 - 68 pF										
	4.0 MHz 15 - 68 pF										
HS	8.0 MHz	8.0 MHz 10 - 68 pF									
	16.0 MHz	10,-22,0F	10 - 22 pF								
These values are for design guidance only. See notes at bottom of gage.											
Resonator	rs Used: 🔨	Par -									
455 kHz	Panasonie E	FO-A455K04B	± 0.3%								
2.0 MHz	Murata Érie (CSA2.00MG	$\pm 0.5\%$								
4.0 MHz	MHz Murata Erie CSA4.00MG ± 0.5%										
8.0 MAHZ	Murata Erie CSA8.00MT ± 0.5%										
16.0 MHz	6.0 MHz Murata Erie CSA16.00MX ± 0.5%										
Resona	ators did not hav	ve built-in capacito	ors.								

TABLE 10-2CAPACITOR SELECTION FOR
CRYSTAL OSCILLATOR

Osc Type	Crystal Freq	Cap. Range C1	Cap. Range C2			
LP	32 kHz	33 pF				
	200 kHz	15 pF	15 pF			
XT	200 kHz 47-68 pF		47-68 pF			
	1 MHz	15 pF 🔍	↓15.pF 15.pF			
	4 MHz	15 pF 🕟	√15 pF			
HS	4 MHz	✓ 15 pF				
	8 MHz	15-33 pE>	15-33 pF			
	20 MHz	15-33 pF	15-33 pF			
	values are	for design guida r page.	n ce only. See			
	Crys	tals Used				
32 kHz	Epson C-00	Epson C-001R32.768K-A ±				
200 kt/2	STO XTL 2	± 20 PPM				
1 MHz	ECS ECS-	± 50 PPM				
4 MHz	ECS ECS-4	40-20-1	± 50 PPM			
8 MHz	EPSON CA	-301 8.000M-C	± 30 PPM			

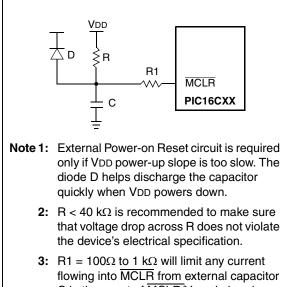
Note 1: Higher capacitance increases the stability of the oscillator, but also increases the start-up time.

EPSON CA-301 20.000M-C

20 MHz

2: Since each resonator/crystal has its own characteristics, the user should consult the resonator/crystal manufacturer for appropriate values of external components.

± 30 PPM


- **3:** Rs may be required in HS mode, as well as XT mode, to avoid overdriving crystals with low drive level specification.
- 4: Oscillator performance should be verified when migrating between devices (including PIC16C62A to PIC16C62B and PIC16C72 to PIC16C72A)

10.4 Power-On Reset (POR)

A Power-on Reset pulse is generated on-chip when VDD rise is detected (in the range of 1.5V - 2.1V). To take advantage of the POR, just tie the $\overline{\text{MCLR}}$ pin directly (or through a resistor) to VDD. This will eliminate external RC components usually needed to create a Power-on Reset. A maximum rise time for VDD is specified (SVDD, parameter D004). For a slow rise time, see Figure 10-6.

When the device starts normal operation (exits the reset condition), device operating parameters (voltage, frequency, temperature,...) must be met to ensure operation. If these conditions are not met, the device must be held in reset until the operating conditions are met. Brown-out Reset may be used to meet the start-up conditions.

FIGURE 10-6: EXTERNAL POWER-ON RESET CIRCUIT (FOR SLOW VDD POWER-UP)

R1 = 100Ω to 1 kΩ will limit any current flowing into \overline{MCLR} from external capacitor C in the event of \overline{MCLR}/VPP pin breakdown due to Electrostatic Discharge (ESD) or Electrical Overstress (EOS).

10.5 Power-up Timer (PWRT)

The Power-up Timer provides a fixed nominal time-out (TPWRT, parameter #33) from the POR. The Power-up Timer operates on an internal RC oscillator. The chip is kept in reset as long as the PWRT is active. The PWRT's time delay allows VDD to rise to an acceptable level. A configuration bit is provided to enable/disable the PWRT.

The power-up time delay will vary from chip-to-chip due to VDD, temperature and process variation. See DC parameters for details.

10.6 Oscillator Start-up Timer (OST)

The Oscillator Start-up Timer (OST) provides a delay of 1024 oscillator cycles (from OSC1 input) after the PWRT delay is over (TOST, parameter #32). This ensures that the crystal oscillator or resonator has started and stabilized.

The OST time-out is invoked only for XT, LP and HS modes and only on Power-on Reset or wake-up from SLEEP.

Note: The OST delay may not occur when the device wakes from SLEEP.

10.7 Brown-Out Reset (BOR)

The configuration bit, BODEN, can enable or disable the Brown-Out Reset circuit. If VPP falls below Vbor (parameter #35, about 100μ S), the brown-out situation will reset the device. If VDD falls below VBOR for less than TBOR, a reset may not occur.

Once the brown-out occurs, the device will remain in brown-out reset until VDD rises above VBOR. The power-up timer then keeps the device in reset for TPWRT (parameter #33, about 72mS). If VDD should fall below VBOR during TPWRT, the brown-out reset process will restart when VDD rises above VBOR with the power-up timer reset. The power-up timer is always enabled when the brown-out reset circuit is enabled, regardless of the state of the PWRT configuration bit.

10.10 Interrupts

The interrupt control register (INTCON) records individual interrupt requests in flag bits. It also has individual and global interrupt enable bits.

Note:	Individual interrupt flag bits are set regard-
	less of the status of their corresponding
	mask bit or the GIE bit.

A global interrupt enable bit, GIE (INTCON<7>) enables or disables all interrupts. When bit GIE is enabled, and an interrupt's flag bit and mask bit are set, the interrupt will vector immediately. Individual interrupts can be disabled through their corresponding enable bits in various registers. Individual interrupt flag bits are set regardless of the status of the GIE bit. The GIE bit is cleared on reset.

The "return from interrupt" instruction, RETFIE, exits the interrupt routine and sets the GIE bit, which reenables interrupts.

The RB0/INT pin interrupt, the RB port change interrupt and the TMR0 overflow interrupt flags are contained in the INTCON register. The peripheral interrupt flags are contained in the special function registers PIR1 and PIR2. The corresponding interrupt enable bits are contained in special function registers PIE1 and PIE2, and the peripheral interrupt enable bit is contained in special function register INTCON.

When an interrupt is responded to, the GIE bit is cleared to disable any further interrupts, the return address is pushed onto the stack and the PC is loaded with 0004h. Once in the interrupt service routine, the source of the interrupt can be determined by polling the interrupt flag bits. The interrupt flag bit must be cleared in software before re-enabling interrupts to avoid recursive interrupts.

For external interrupt events, such as the INT pin or PORTB change interrupt, the interrupt latency will be three or four instruction cycles, depending on when the interrupt event occurs. The latency is the same for one or two cycle instructions. Individual interrupt flag bits are set regardless of the status of their corresponding mask bit or the GIE bit

FIGURE 10-7: INTERRUPT LOGIC

10.13 Power-down Mode (SLEEP)

Power-down mode is entered by executing a $\ensuremath{\mathtt{SLEEP}}$ instruction.

If enabled, the Watchdog Timer will be cleared but keeps running, the \overline{PD} bit (STATUS<3>) is cleared, the \overline{TO} (STATUS<4>) bit is set, and the oscillator driver is turned off. The I/O ports maintain the status they had, before the SLEEP instruction was executed (driving high, low or hi-impedance).

For lowest current consumption in this mode, place all I/O pins at either VDD or VSS, ensure no external circuitry is drawing current from the I/O pin, power-down the A/D and disable external clocks. Pull all I/O pins that are hi-impedance inputs, high or low externally, to avoid switching currents caused by floating inputs. The TOCKI input should also be at VDD or VSS for lowest current consumption. The contribution from on-chip pull-ups on PORTB should be considered.

The MCLR pin must be at a logic high level (VIHMC, parameter D042).

10.13.1 WAKE-UP FROM SLEEP

The device can wake up from SLEEP through one of the following events:

- 1. External reset input on $\overline{\text{MCLR}}$ pin.
- 2. Watchdog Timer Wake-up (if WDT was enabled).
- 3. Interrupt from INT pin, RB port change, or some Peripheral Interrupts.

External $\overline{\text{MCLR}}$ Reset will cause a device reset. All other events are considered a continuation of program execution and cause a "wake-up". The $\overline{\text{TO}}$ and $\overline{\text{PD}}$ bits in the STATUS register can be used to determine the cause of device reset. The $\overline{\text{PD}}$ bit, which is set on power-up, is cleared when SLEEP is invoked. The $\overline{\text{TO}}$ bit is cleared if a WDT time-out occurred (and caused wake-up).

The following peripheral interrupts can wake the device from SLEEP:

- 1. TMR1 interrupt. Timer1 must be operating as an asynchronous counter.
- 2. CCP capture mode interrupt.
- 3. Special event trigger (Timer1 in asynchronous mode using an external clock. CCP1 is in compare mode).
- 4. SSP (Start/Stop) bit detect interrupt.
- 5. SSP transmit or receive in slave mode (SPI/I²C).
- 6. USART RX or TX (synchronous slave mode).

Other peripherals cannot generate interrupts since during SLEEP, no on-chip clocks are present.

When the SLEEP instruction is being executed, the next instruction (PC + 1) is pre-fetched. For the device to wake-up through an interrupt event, the corresponding interrupt enable bit must be set (enabled). Wake-up is

regardless of the state of the GIE bit. If the GIE bit is clear (disabled), the device resumes execution at the instruction after the SLEEP instruction. If the GIE bit is set (enabled), the device executes the instruction after the SLEEP instruction and then branches to the interrupt address (0004h). In cases where the execution of the instruction following SLEEP is not desirable, a NOP should follow the SLEEP instruction.

10.13.2 WAKE-UP USING INTERRUPTS

When global interrupts are disabled (GIE cleared) and any interrupt source has both its interrupt enable bit and interrupt flag bit set, one of the following will occur:

- If the interrupt occurs **before** the execution of a SLEEP instruction, the SLEEP instruction will complete as a NOP. Therefore, the WDT and WDT postscaler will not be cleared, the TO bit will not be set and PD bits will not be cleared.
- If the interrupt occurs during or after the execution of a SLEEP instruction, the device will immediately wake up from sleep. The SLEEP instruction will be completely executed before the wake-up. Therefore, the WDT and WDT postscaler will be cleared, the TO bit will be set and the PD bit will be cleared.

Even if the flag bits were checked before executing a SLEEP instruction, it may be possible for flag bits to become set before the SLEEP instruction completes. To determine whether a SLEEP instruction executed, test the \overline{PD} bit. If the \overline{PD} bit is set, the SLEEP instruction was executed as a NOP.

To ensure that the WDT is cleared, a CLRWDT instruction should be executed before a SLEEP instruction.

^{© 1998-2013} Microchip Technology Inc.

11.0 INSTRUCTION SET SUMMARY

Each PIC16CXXX instruction is a 14-bit word divided into an OPCODE which specifies the instruction type and one or more operands which further specify the operation of the instruction. The PIC16CXX instruction set summary in Table 11-2 lists **byte-oriented**, **bit-oriented**, and **literal and control** operations. Table 11-1 shows the opcode field descriptions.

For **byte-oriented** instructions, 'f' represents a file register designator and 'd' represents a destination designator. The file register designator specifies which file register is to be used by the instruction.

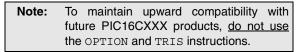
The destination designator specifies where the result of the operation is to be placed. If 'd' is zero, the result is placed in the W register. If 'd' is one, the result is placed in the file register specified in the instruction.

For **bit-oriented** instructions, 'b' represents a bit field designator which selects the number of the bit affected by the operation, while 'f' represents the number of the file in which the bit is located.

For **literal and control** operations, 'k' represents an eight or eleven bit constant or literal value.

TABLE 11-1 OPCODE FIELD DESCRIPTIONS

Field	Description
f	Register file address (0x00 to 0x7F)
W	Working register (accumulator)
b	Bit address within an 8-bit file register
k	Literal field, constant data or label
x	Don't care location (= 0 or 1) The assembler will generate code with $x = 0$. It is the recommended form of use for compatibility with all Microchip software tools.
d	Destination select; d = 0: store result in W, d = 1: store result in file register f. Default is d = 1
PC	Program Counter
TO	Time-out bit
PD	Power-down bit
Z	Zero bit
DC	Digit Carry bit
С	Carry bit

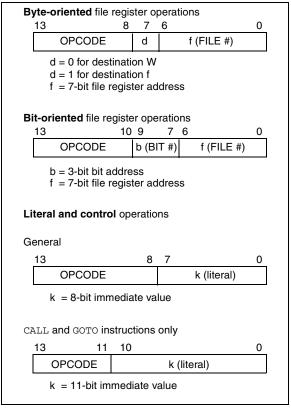

The instruction set is highly orthogonal and is grouped into three basic categories:

- Byte-oriented operations
- Bit-oriented operations
- Literal and control operations

All instructions are executed within one single instruction cycle, unless a conditional test is true or the program counter is changed as a result of an instruction. In this case, the execution takes two instruction cycles with the second cycle executed as a NOP. One instruction cycle consists of four oscillator periods. Thus, for an oscillator frequency of 4 MHz, the normal instruction execution time is 1 μ s. If a conditional test is true or the program counter is changed as a result of an instruction, the instruction execution time is 2 μ s.

Table 11-2 lists the instructions recognized by the MPASM assembler.

Figure 11-1 shows the general formats that the instructions can have.



All examples use the following format to represent a hexadecimal number:

0xhh

where h signifies a hexadecimal digit.

FIGURE 11-1: GENERAL FORMAT FOR INSTRUCTIONS

A description of each instruction is available in the PIC[®] MCU Mid-Range Reference Manual, (DS33023).

PIC16C62B/72A

RETFIE	Return from Interrupt	RLF	Rotate Left f through Carry
Syntax:	[label] RETFIE	Syntax:	[<i>label</i>] RLF f,d
Operands: Operation:	None $TOS \rightarrow PC$,	Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
-	$1 \rightarrow \text{GIE}$	Operation:	See description below
Status Affected:	None	Status Affected:	С
		Description:	The contents of register 'f' are rotated one bit to the left through the Carry Flag. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is stored back in register 'f'.

-	C 🚽	Register f]	

RETLW	Return with Literal in W	RRF	Rotate Right f through Carry
Syntax:	[<i>label</i>] RETLW k	Syntax:	[label] RRF f,d
Operands:	$0 \le k \le 255$	Operands:	$0 \leq f \leq 127$
Operation:	$k \rightarrow (W);$		d ∈ [0,1]
	$TOS \rightarrow PC$	Operation:	See description below
Status Affected:	None	Status Affected:	С
Description:	The W register is loaded with the eight bit literal 'k'. The program counter is loaded from the top of the stack (the return address). This is a two cycle instruction.	Description:	The contents of register 'f' are rotated one bit to the right through the Carry Flag. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in register 'f'.
			C Register f

RETURN	Return from Subroutine					
Syntax:	[label] RETURN					
Operands:	None					
Operation:	$TOS \rightarrow PC$					
Status Affected:	None					
Description:	Return from subroutine. The stack is POPed and the top of the stack (TOS) is loaded into the program counter. This is a two cycle instruction.					

SLEEP	
Syntax:	[label] SLEEP
Operands:	None
Operation:	$\begin{array}{l} 00h \rightarrow WDT, \\ 0 \rightarrow WDT \ \text{prescaler}, \\ 1 \rightarrow \overline{TO}, \\ 0 \rightarrow \overline{PD} \end{array}$
Status Affected:	TO, PD
Description:	The power-down status bit, $\overline{\text{PD}}$ is cleared. Time-out status bit, $\overline{\text{TO}}$ is set. Watchdog Timer and its pres- caler are cleared. The processor is put into SLEEP mode with the oscillator stopped. See Section 10.13 for more details.

© 1998-2013 Microchip Technology Inc.

12.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers are supported with a full range of hardware and software development tools:

- Integrated Development Environment
 - MPLAB™ IDE Software
- Assemblers/Compilers/Linkers
 - MPASM Assembler
 - MPLAB-C17 and MPLAB-C18 C Compilers
 - MPLINK/MPLIB Linker/Librarian
- Simulators
 - MPLAB-SIM Software Simulator
- Emulators
 - MPLAB-ICE Real-Time In-Circuit Emulator
 - PICMASTER[®]/PICMASTER-CE In-Circuit Emulator
 - ICEPIC™
- In-Circuit Debugger
 - MPLAB-ICD for PIC16F877
- Device Programmers
 - PRO MATE[®] II Universal Programmer
 - PICSTART[®] Plus Entry-Level Prototype Programmer
- Low-Cost Demonstration Boards
 - SIMICE
 - PICDEM-1
 - PICDEM-2
 - PICDEM-3
 - PICDEM-17
 - SEEVAL®
 - KEELOQ[®]

12.1 <u>MPLAB Integrated Development</u> <u>Environment Software</u>

- The MPLAB IDE software brings an ease of software development previously unseen in the 8-bit microcontroller market. MPLAB is a Windows[®]-based application which contains:
- Multiple functionality
 - editor
 - simulator
 - programmer (sold separately)
 - emulator (sold separately)
- A full featured editor
- A project manager
- · Customizable tool bar and key mapping
- · A status bar
- On-line help

MPLAB allows you to:

- Edit your source files (either assembly or 'C')
- One touch assemble (or compile) and download to PIC MCU tools (automatically updates all project information)
- Debug using:
 - source files
 - absolute listing file
 - object code

The ability to use MPLAB with Microchip's simulator, MPLAB-SIM, allows a consistent platform and the ability to easily switch from the cost-effective simulator to the full featured emulator with minimal retraining.

12.2 MPASM Assembler

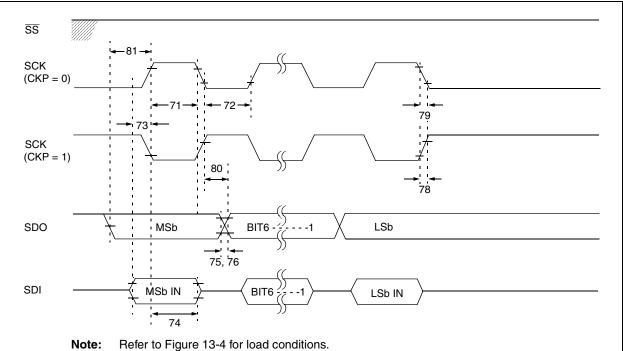
MPASM is a full featured universal macro assembler for all PIC MCUs. It can produce absolute code directly in the form of HEX files for device programmers, or it can generate relocatable objects for MPLINK.

MPASM has a command line interface and a Windows shell and can be used as a standalone application on a Windows 3.x or greater system. MPASM generates relocatable object files, Intel standard HEX files, MAP files to detail memory usage and symbol reference, an absolute LST file which contains source lines and generated machine code, and a COD file for MPLAB debugging.

MPASM features include:

- MPASM and MPLINK are integrated into MPLAB projects.
- MPASM allows user defined macros to be created for streamlined assembly.
- MPASM allows conditional assembly for multi purpose source files.
- MPASM directives allow complete control over the assembly process.

12.3 <u>MPLAB-C17 and MPLAB-C18</u> <u>C Compilers</u>


The MPLAB-C17 and MPLAB-C18 Code Development Systems are complete ANSI 'C' compilers and integrated development environments for Microchip's PIC17CXXX and PIC18CXXX family of microcontrollers, respectively. These compilers provide powerful integration capabilities and ease of use not found with other compilers.

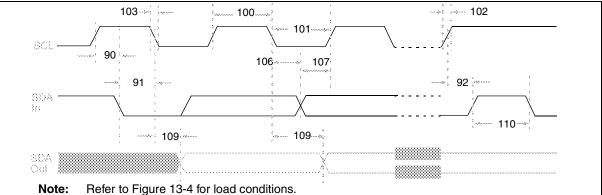
For easier source level debugging, the compilers provide symbol information that is compatible with the MPLAB IDE memory display.

12.4 MPLINK/MPLIB Linker/Librarian

MPLINK is a relocatable linker for MPASM and MPLAB-C17 and MPLAB-C18. It can link relocatable objects from assembly or C source files along with precompiled libraries using directives from a linker script.

FIGURE 13-12: EXAMPLE SPI MASTER MODE TIMING (CKE = 1)

TABLE 13-8: EXAMPLE SPI MODE REQUIREMENTS (MASTER MODE, CKE = 1)


Param. No.	Symbol	Characteristic		Min	Тур†	Мах	Units	Conditions
71	TscH	SCK input high time	Continuous	1.25Tcy + 30	-		ns	
71A		(slave mode)	Single Byte	40	—		ns	Note 1
72	TscL	SCK input low time	Continuous	1.25Tcy + 30	—		ns	
72A		(slave mode)	Single Byte	40	—		ns	Note 1
73	TdiV2scH, TdiV2scL	Setup time of SDI data input to SCK edge		100	—	_	ns	
73A	Тв2в	Last clock edge of Byte1 to the 1st clock edge of Byte2		1.5Tcy + 40	_	_	ns	Note 1
74	TscH2diL, TscL2diL	Hold time of SDI data input to SCK edge		100	—	_	ns	
75	TdoR	SDO data output rise PIC16CXX			10	25	ns	
		time	PIC16LCXX		20	45	ns	
76	TdoF	SDO data output fall time		—	10	25	ns	
78	TscR	SCK output rise time	PIC16CXX	—	10	25	ns	
		(master mode)	PIC16LCXX		20	45	ns	
79	TscF	SCK output fall time (mas	SCK output fall time (master mode)		10	25	ns	
80	TscH2doV,	SDO data output valid	PIC16CXX	—	—	50	ns	
	TscL2doV	after SCK edge	PIC16LCXX		—	100	ns	
81	TdoV2scH, TdoV2scL	SDO data output setup to	SCK edge	Тсү			ns	

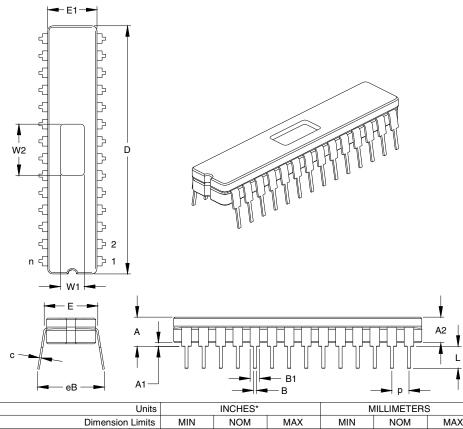
† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Specification 73A is only required if specifications 71A and 72A are used.

PIC16C62B/72A

FIGURE 13-16: I²C BUS DATA TIMING

TABLE 13-12: I²C BUS DATA REQUIREMENTS

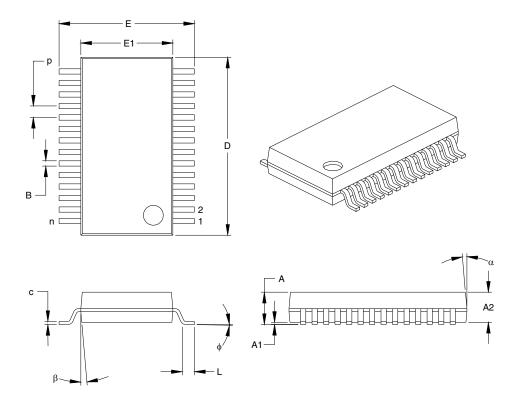

Param. No.	Sym	Characte	eristic	Min	Max	Units	Conditions
100*	Thigh	Clock high time	100 kHz mode	4.0	—	μS	Device must operate at a min- imum of 1.5 MHz
			400 kHz mode	0.6	_	μS	Device must operate at a min- imum of 10 MHz
			SSP Module	1.5TCY	—		
101*	TLOW	Clock low time	100 kHz mode	4.7	-	μS	Device must operate at a min- imum of 1.5 MHz
			400 kHz mode	1.3	—	μs	Device must operate at a min- imum of 10 MHz
			SSP Module	1.5TCY	—		
102*	TR	SDA and SCL rise	100 kHz mode	—	1000	ns	
		time	400 kHz mode	20 + 0.1Cb	300	ns	Cb is specified to be from 10-400 pF
103*	TF	SDA and SCL fall	100 kHz mode	—	300	ns	
		time	400 kHz mode	20 + 0.1Cb	300	ns	Cb is specified to be from 10-400 pF
90*	TSU:STA	START condition	100 kHz mode	4.7	—	μs	Only relevant for repeated
		setup time	400 kHz mode	0.6	—	μs	START condition
91*	THD:STA	START condition hold	100 kHz mode	4.0	—	μs	After this period the first clock
		time	400 kHz mode	0.6	—	μS	pulse is generated
106*	THD:DAT	Data input hold time	100 kHz mode	0	—	ns	
			400 kHz mode	0	0.9	μs	
107*	TSU:DAT	Data input setup time	100 kHz mode	250	—	ns	Note 2
			400 kHz mode	100	—	ns	
92*	TSU:STO	STOP condition setup	100 kHz mode	4.7	—	μs	
		time	400 kHz mode	0.6	_	μS	
109*	ΤΑΑ	Output valid from	100 kHz mode	—	3500	ns	Note 1
		clock	400 kHz mode	—	—	ns	
110*	TBUF	Bus free time	100 kHz mode	4.7	_	μS	Time the bus must be free
			400 kHz mode	1.3	—	μs	before a new transmission can start
	Cb	Bus capacitive loading		—	400	pF	

* These parameters are characterized but not tested.

Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of the falling edge of SCL to avoid unintended generation of START or STOP conditions.

2: A fast-mode (400 kHz) I²C-bus device can be used in a standard-mode (100 kHz) I²C-bus system, but the requirement Tsu:DAT ≥ 250 ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line TR max.+tsu;DAT = 1000 + 250 = 1250 ns (according to the standard-mode I²C bus specification) before the SCL line is released.

15.3 <u>28-Lead Ceramic Dual In-line with Window (JW) – 300 mil (CERDIP)</u>



	Units	INCILS						
Dimensio	Dimension Limits		NOM	MAX	MIN	NOM	MAX	
Number of Pins	n		28			28		
Pitch	р		.100			2.54		
Top to Seating Plane	Α	.170	.183	.195	4.32	4.64	4.95	
Ceramic Package Height	A2	.155	.160	.165	3.94	4.06	4.19	
Standoff	A1	.015	.023	.030	0.38	0.57	0.76	
Shoulder to Shoulder Width	E	.300	.313	.325	7.62	7.94	8.26	
Ceramic Pkg. Width	E1	.285	.290	.295	7.24	7.37	7.49	
Overall Length	D	1.430	1.458	1.485	36.32	37.02	37.72	
Tip to Seating Plane	L	.135	.140	.145	3.43	3.56	3.68	
Lead Thickness	С	.008	.010	.012	0.20	0.25	0.30	
Upper Lead Width	B1	.050	.058	.065	1.27	1.46	1.65	
Lower Lead Width	В	.016	.019	.021	0.41	0.47	0.53	
Overall Row Spacing	eB	.345	.385	.425	8.76	9.78	10.80	
Window Width	W1	.130	.140	.150	3.30	3.56	3.81	
Window Length	W2	.290	.300	.310	7.37	7.62	7.87	
*0 · · · ·								

*Controlling Parameter JEDEC Equivalent: MO-058 Drawing No. C04-080

© 1998-2013 Microchip Technology Inc.

28-Lead Plastic Shrink Small Outline (SS) - 209 mil, 5.30 mm (SSOP) 15.5

Units			INCHES			MILLIMETERS*			
Dimension Limits			MAX	MIN	NOM	MAX			
n		28			28				
р		.026			0.66				
A	.068	.073	.078	1.73	1.85	1.98			
A2	.064	.068	.072	1.63	1.73	1.83			
A1	.002	.006	.010	0.05	0.15	0.25			
E	.299	.309	.319	7.59	7.85	8.10			
E1	.201	.207	.212	5.11	5.25	5.38			
D	.396	.402	.407	10.06	10.20	10.34			
L	.022	.030	.037	0.56	0.75	0.94			
С	.004	.007	.010	0.10	0.18	0.25			
¢	0	4	8	0.00	101.60	203.20			
В	.010	.013	.015	0.25	0.32	0.38			
α	0	5	10	0	5	10			
β	0	5	10	0	5	10			
	n p A A2 A1 E D L c φ B α	n p A .068 A2 .064 A1 .002 E .299 E1 .201 D .396 L .022 c .004 φ 0 B .010 α 0	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $			

*Controlling Parameter

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MS-150

Drawing No. C04-073

PIC16C62B/72A

INDEX

Α

A/D			. 49
	A/D Converter Enable (ADIE Bit)		. 14
	A/D Converter Flag (ADIF Bit)		
	A/D Converter Interrupt, Configuring		
	ADCON0 Register	9.	, 49
	ADCON1 Register10		
	ADRES Register		
	Analog Port Pins		6
	Analog Port Pins, Configuring		
	Block Diagram		
	Block Diagram, Analog Input Model		
	Channel Select (CHS2:CHS0 Bits)		
	Clock Select (ADCS1:ADCS0 Bits)		
	Configuring the Module		
	Conversion Clock (TAD)		
	Conversion Status (GO/DONE Bit)		
	Conversions		
	Converter Characteristics		
	Module On/Off (ADON Bit)		
	Port Configuration Control (PCFG2:PCFG0 Bits	s)	. 50
	Sampling Requirements		
	Special Event Trigger (CCP)	35.	54
	Timing Diagram		102
Abso	blute Maximum Ratings		
	ON0 Register		
	ADCS1:ADCS0 Bits		
	ADON Bit		. 49
	CHS2:CHS0 Bits		. 49
	GO/DONE Bit	49.	, 51
ADC	ON1 Register10		
	PCFG2:PCFG0 Bits		
ADR	ES Register		
	itecture	· · ·	
	PIC16C62B/PIC16C72A Block Diagram		5
Asse	embler		
	MPASM Assembler		.75
D			
В			

		١.
	1	

Banking, Data Memory	
Brown-out Reset (BOR)	
BOR Enable (BODEN Bit)	
BOR Status (BOR Bit)	

С

Capture (CCP Module)	
Block Diagram	
CCP Pin Configuration	
CCPR1H:CCPR1L Registers	
Changing Between Capture Prescalers	
Software Interrupt	
Timer1 Mode Selection	
Capture/Compare/PWM	
Interaction of Two CCP Modules	
Capture/Compare/PWM (CCP)	
CCP1CON Register	
CCPR1H Register	
CCPR1L Register	
Enable (CCP1IE Bit)	14
Flag (CCP1IF Bit)	
RC2/CCP1 Pin	6
Timer Resources	
Timing Diagram	94

CCP1CON Register	
CCP1M3:CCP1M0 Bits 33	
CCP1X:CCP1Y Bits	
Code Protection55, 66	
CP1:CP0 Bits 55	
Compare (CCP Module)	
Block Diagram	
CCP Pin Configuration	
CCPR1H:CCPR1L Registers	
Software Interrupt	
Special Event Trigger	
Timer1 Mode Selection	
Configuration Bits	
Conversion Considerations	
D	
Data Memory8	
Bank Select (RP1:RP0 Bits)8, 11	
General Purpose Registers	
Register File Map	
Special Function Registers	
DC Characteristics	
Development Support	
Direct Addressing	
E	
Electrical Characteristics	
Errata	
External Power-on Reset Circuit	
F	
Firmware Instructions67	
I/O Ports	
² C (SSP Module)	
ACK Pulse	
Addressing	
Block Diagram	
Buffer Full Status (BF Bit)	
Clock Polarity Select (CKP Bit)	
Data/Address (D/Ā Bit)	
Master Mode	
Master Mode	
Multi-Master Mode	
Read/Write Bit Information (R/W Bit) 42, 43, 44, 46	
Receive Overflow Indicator (SSPOV Bit) 47	
Reception	
Reception	
Reception	
Reception	
Reception43Reception Timing Diagram43Slave Mode41	
Reception43Reception Timing Diagram43Slave Mode41Start (S Bit)45, 46	
Reception43Reception Timing Diagram43Slave Mode41Start (S Bit)45, 46Stop (P Bit)45, 46Synchronous Serial Port Enable (SSPEN Bit)47	
Reception43Reception Timing Diagram43Slave Mode41Start (S Bit)45, 46Stop (P Bit)45, 46Synchronous Serial Port Enable (SSPEN Bit)47Timing Diagram, Data100	
Reception43Reception Timing Diagram43Slave Mode41Start (S Bit)45, 46Stop (P Bit)45, 46Synchronous Serial Port Enable (SSPEN Bit)47Timing Diagram, Data100Timing Diagram, Start/Stop Bits99	
Reception43Reception Timing Diagram43Slave Mode41Start (S Bit)45, 46Stop (P Bit)45, 46Synchronous Serial Port Enable (SSPEN Bit)47Timing Diagram, Data100	