

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	I ² C, SPI
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	22
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 5.5V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lc62b-04i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1.0	Device Overview	F
	Memory Organization	
	I/O Ports	
4.0	Timer0 Module	
	Timer1 Module	
6.0	Timer2 Module	31
7.0	Capture/Compare/PWM (CCP) Module	33
	Synchronous Serial Port (SSP) Module	
9.0	Analog-to-Digital Converter (A/D) Module	49
10.0	Special Features of the CPU	55
11.0	Instruction Set Summary	67
12.0	Development Support	75
13.0	Electrical Characteristics	81
14.0	DC and AC Characteristics Graphs and Tables	. 103
15.0	Packaging Information	. 105
Appe	ndix A. Revision History	. 111
	ndix B: Conversion Considerations	
	ndix C: Migration from Base-line to Mid-Range Devices	
	· · · · · · · · · · · · · · · · · · ·	
On-L	ne Support	. 117
	er Response	
	6C62B/72A Product Identification System	

To Our Valued Customers

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number. e.g., DS30000A is version A of document DS30000.

New Customer Notification System

Register on our web site (www.microchip.com/cn) to receive the most current information on our products.

Errata

An errata sheet may exist for current devices, describing minor operational differences (from the data sheet) and recommended workarounds. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- · Your local Microchip sales office (see last page)
- The Microchip Corporate Literature Center; U.S. FAX: (480) 786-7277

When contacting a sales office or the literature center, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Corrections to this Data Sheet

We constantly strive to improve the quality of all our products and documentation. We have spent a great deal of time to ensure that this document is correct. However, we realize that we may have missed a few things. If you find any information that is missing or appears in error, please:

- Fill out and mail in the reader response form in the back of this data sheet.
- E-mail us at webmaster@microchip.com.

We appreciate your assistance in making this a better document.

2.2.2.3 INTCON REGISTER

The INTCON Register is a readable and writable register, which contains various interrupt enable and flag bits for the TMR0 register overflow, RB Port change and External RB0/INT pin interrupts. Note: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the global enable bit, GIE (INTCON<7>). User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

REGISTER 2-3: INTCON REGISTER (ADDRESS 0Bh, 8Bh)

R/W-0 GIE	R/W-0 PEIE	R/W-0 T0IE	R/W-0 INTE	R/W-0 RBIE	R/W-0 T0IF	R/W-0	R/W-x RBIF	R = Readable bit				
bit7	PEIE	TUIE	INTE	RBIE	TUIF	INTE	BIF bit0	R = Readable bit W = Writable bit - n = Value at POR reset				
bit 7:	1 = Enab	GIE: Global Interrupt Enable bit 1 = Enables all un-masked interrupts 0 = Disables all interrupts										
bit 6:	PEIE: Peripheral Interrupt Enable bit 1 = Enables all un-masked peripheral interrupts 0 = Disables all peripheral interrupts											
bit 5:	TOIE : TMR0 Overflow Interrupt Enable bit 1 = Enables the TMR0 interrupt 0 = Disables the TMR0 interrupt											
bit 4:	1 = Enab	B0/INT Ext les the RE bles the RE	80/INT ext	ernal inter	rupt							
bit 3:	1 = Enab	3 Port Cha les the RE bles the RE	port char	nge interru	pt							
bit 2:	1 = TMR(R0 Overflo 0 register l 0 register o	has overflo	owed (soft	ware must	clear bit)						
bit 1:	INTF: RB0/INT External Interrupt Flag bit 1 = The RB0/INT external interrupt occurred (software must clear bit) 0 = The RB0/INT external interrupt did not occur											
bit 0:	RBIF : RB Port Change Interrupt Flag bit 1 = At least one of the RB7:RB4 input pins have changed state (clear by reading PORTB) 0 = None of the RB7:RB4 input pins have changed state											

TABLE 3-5 PORTC FUNCTIONS

Name	Bit#	Buffer Type	Function	TRISC Override
RC0/T1OSO/T1CKI	bit0	ST	Input/output port pin or Timer1 oscillator output/Timer1 clock input	Yes
RC1/T1OSI	bit1	ST	Input/output port pin or Timer1 oscillator input	Yes
RC2/CCP1	bit2	ST	Input/output port pin or Capture1 input/Compare1 output/PWM1 output	No
RC3/SCK/SCL	bit3	ST	RC3 can also be the synchronous serial clock for both SPI and I^2C modes.	No
RC4/SDI/SDA	bit4	ST	RC4 can also be the SPI Data In (SPI mode) or data I/O (I^2C mode).	No
RC5/SDO	bit5	ST	Input/output port pin or Synchronous Serial Port data output	No
RC6	bit6	ST	Input/output port pin	No
RC7	bit7	ST	Input/output port pin	No

Legend: ST = Schmitt Trigger input

TABLE 3-6SUMMARY OF REGISTERS ASSOCIATED WITH PORTC

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other resets
07h	PORTC	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	xxxx xxxx	uuuu uuuu
87h	TRISC	PORTC I	PORTC Data Direction Register 1111 1111 1111								

Legend: x = unknown, u = unchanged.

4.0 TIMER0 MODULE

The Timer0 module timer/counter has the following features:

- 8-bit timer/counter
 - Read and write
 - INT on overflow
- 8-bit software programmable prescaler
- INT or EXT clock select
 - EXT clock edge select

Figure 4-1 is a simplified block diagram of the Timer0 module.

Additional information on timer modules is available in the PIC[®] MCU Mid-Range Reference Manual, (DS33023).

4.1 <u>Timer0 Operation</u>

Timer0 can operate as a timer or as a counter.

Timer mode is selected by clearing bit TOCS (OPTION_REG<5>). In timer mode, the Timer0 module will increment every instruction cycle (without prescaler). If the TMR0 register is written, the increment is inhibited for the following two instruction cycles. The user can work around this by writing an adjusted value to the TMR0 register.

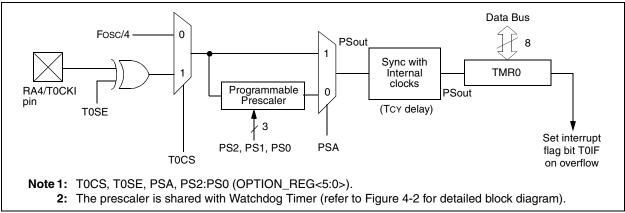
Counter mode is selected by setting bit T0CS (OPTION_REG<5>). In counter mode, Timer0 will increment either on every rising or falling edge of pin RA4/T0CKI. The incrementing edge is determined by the Timer0 Source Edge Select bit T0SE (OPTION_REG<4>). Clearing bit T0SE selects the rising edge. Restrictions on the external clock input are discussed below.

When an external clock input is used for Timer0, it must meet certain requirements. The requirements ensure the external clock can be synchronized with the internal phase clock (Tosc). Also, there is a delay in the actual incrementing of Timer0 after synchronization. Additional information on external clock requirements is available in the Electrical Specifications section of this manual, and in the PIC[®] MCU Mid-Range Reference Manual, (DS33023).

4.2 <u>Prescaler</u>

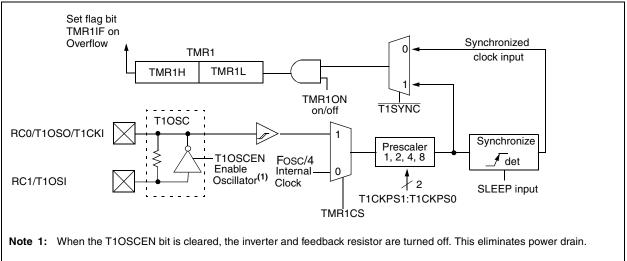
An 8-bit counter is available as a prescaler for the Timer0 module, or as a postscaler for the Watchdog Timer, respectively (Figure 4-2). For simplicity, this counter is being referred to as "prescaler" throughout this data sheet. There is only one prescaler available which is shared between the Timer0 module and the Watchdog Timer. A prescaler assignment for the Timer0 module means that there is no prescaler for the Watchdog Timer, and vice-versa.

The prescaler is not readable or writable.


The PSA and PS2:PS0 bits (OPTION_REG<3:0>) determine the prescaler assignment and prescale ratio.

Clearing bit PSA will assign the prescaler to the Timer0 module. When the prescaler is assigned to the Timer0 module, prescale values of 1:2, 1:4, ..., 1:256 are selectable.

Setting bit PSA will assign the prescaler to the Watchdog Timer (WDT). When the prescaler is assigned to the WDT, prescale values of 1:1, 1:2, ..., 1:128 are selectable.


When assigned to the Timer0 module, all instructions writing to the TMR0 register (e.g. CLRF 1, MOVWF 1, BSF 1, x....etc.) will clear the prescaler. When assigned to WDT, a CLRWDT instruction will clear the prescaler along with the WDT.

Note: Writing to TMR0 when the prescaler is assigned to Timer0 will clear the prescaler count, but will not change the prescaler assignment or ratio.

FIGURE 4-1: TIMER0 BLOCK DIAGRAM

FIGURE 5-1: TIMER1 BLOCK DIAGRAM

TABLE 8-1	REGISTERS ASSOCIATED WITH SPI OPERATION

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value POR BOF	l,	Valu all o res	
0Bh,8Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF	0000 0	00x	0000	000u
0Ch	PIR1	—	ADIF	—	_	SSPIF	CCP1IF	TMR2IF	TMR1IF	-00	000	- 0	0000
8Ch	PIE1	—	ADIE		—	SSPIE	CCP1IE	TMR2IE	TMR1IE	-00	000	- 0	0000
13h	SSPBUF	Synchronou	s Serial P	ort Receiv	e Buffer/	Transmit F	Register			xxxx x	xxx	uuuu	uuuu
14h	SSPCON	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000 0	000	0000	0000
94h	SSPSTAT	SMP	CKE	D/Ā	Р	S	R/W	UA	BF	0000 0	000	0000	0000
85h	TRISA	_		PORTA Data Direction Register						11 1	111	11	1111
87h	TRISC	PORTC Data	Data Direction Register 1111 1111 1111 1111						1111				

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used by the SSP in SPI mode.

8.3.1.3 TRANSMISSION

When the R/\overline{W} bit of the incoming address byte is set and an address match occurs, the R/\overline{W} bit of the SSPSTAT register is set. The received address is loaded into the SSPBUF register. The ACK pulse will be sent on the ninth bit and the CKP will be cleared by hardware, holding SCL low. Slave devices cause the master to wait by holding the SCL line low. The transmit data is loaded into the SSPBUF register, which in turn loads the SSPSR register. When bit CKP (SSP-CON<4>) is set, pin RC3/SCK/SCL releases SCL. When the SCL line goes high, the master may resume operating the SCL line and receiving data. The master must monitor the SCL pin prior to asserting another clock pulse. The slave devices may be holding off the master by stretching the clock. The eight data bits are shifted out on the falling edge of the SCL input. This ensures that the SDA signal is valid during the SCL high time (Figure 8-4).

An SSP interrupt is generated for each data transfer byte. Flag bit SSPIF must be cleared in software, and the SSPSTAT register used to determine the status of the byte. Flag bit SSPIF is set on the falling edge of the ninth clock pulse.

As a slave-transmitter, the \overline{ACK} pulse from the masterreceiver is latched on the rising edge of the ninth SCL input pulse. If the SDA line was high (not \overline{ACK}), then the data transfer is complete. When the \overline{ACK} is latched by the slave, the slave logic is reset (resets SSPSTAT register) and the slave then monitors for another occurrence of the START bit. If the SDA line was low (\overline{ACK}), the transmit data must be loaded into the SSPBUF register, which also loads the SSPSR register. Then pin RC3/SCK/SCL should be enabled by setting bit CKP.

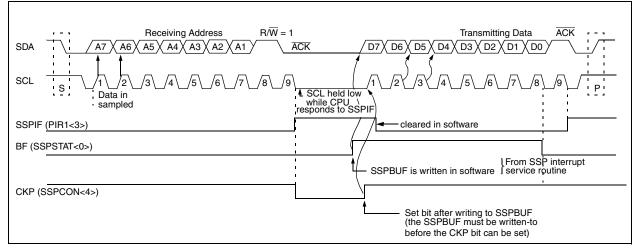


FIGURE 8-4: I²C WAVEFORMS FOR TRANSMISSION (7-BIT ADDRESS)

8.3.2 MASTER OPERATION

Master operation is supported in firmware using interrupt generation on the detection of the START and STOP conditions. The STOP (P) and START (S) bits are cleared by a reset or when the SSP module is disabled. The STOP (P) and START (S) bits will toggle based on the START and STOP conditions. Control of the I^2C bus may be taken when the P bit is set, or the bus is idle and both the S and P bits are clear.

In master operation, the SCL and SDA lines are manipulated in software by clearing the corresponding TRISC<4:3> bit(s). The output level is always low, irrespective of the value(s) in PORTC<4:3>. So when transmitting data, a '1' data bit must have the TRISC<4> bit set (input) and a '0' data bit must have the TRISC<4> bit cleared (output). The same scenario is true for the SCL line with the TRISC<3> bit.

The following events will cause SSP Interrupt Flag bit, SSPIF, to be set (SSP Interrupt if enabled):

- START condition
- STOP condition
- Byte transfer completed

Master operation can be done with either the slave mode idle (SSPM3:SSPM0 = 1011) or with the slave active. When both master operation and slave modes are used, the software needs to differentiate the source(s) of the interrupt.

For more information on master operation, see AN554 - Software Implementation of I^2C Bus Master.

8.3.3 MULTI-MASTER OPERATION

In multi-master operation, the interrupt generation on the detection of the START and STOP conditions allows the determination of when the bus is free. The STOP (P) and START (S) bits are cleared from a reset or when the SSP module is disabled. The STOP (P) and START (S) bits will toggle based on the START and STOP conditions. Control of the I^2C bus may be taken when bit P (SSPSTAT<4>) is set, or the bus is idle and both the S and P bits clear. When the bus is busy, enabling the SSP Interrupt will generate the interrupt when the STOP condition occurs.

In multi-master operation, the SDA line must be monitored to see if the signal level is the expected output level. This check only needs to be done when a high level is output. If a high level is expected and a low level is present, the device needs to release the SDA and SCL lines (set TRISC<4:3>). There are two stages where this arbitration can be lost, these are:

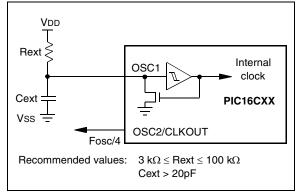
- Address Transfer
- Data Transfer

When the slave logic is enabled, the slave continues to receive. If arbitration was lost during the address transfer stage, communication to the device may be in progress. If addressed, an ACK pulse will be generated. If arbitration was lost during the data transfer stage, the device will need to re-transfer the data at a later time.

For more information on master operation, see AN578 - Use of the SSP Module in the of l^2C Multi-Master Environment.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	PC	e on DR, DR	all o	e on ther ets
0Bh, 8Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF	0000	000x	0000	000u
0Ch	PIR1	_	ADIF	_		SSPIF	CCP1IF	TMR2IF	TMR1IF	- 0	0000	- 0	0000
8Ch	PIE1	_	ADIE	_	—	SSPIE	CCP1IE	TMR2IE	TMR1IE	- 0	0000	- 0	0000
13h	SSPBUF	Synchronou	is Serial F	Port Recei	ve Buffer	/Transmit	Register	•	•	xxxx	xxxx	uuuu	uuuu
93h	SSPADD	Synchronou	is Serial F	Port (I ² C n	node) Ad	dress Reg	jister			0000	0000	0000	0000
14h	SSPCON	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000	0000	0000	0000
94h	SSPSTAT	SMP ⁽¹⁾	CKE ⁽¹⁾	D/A	Р	S	R/W	UA	BF	0000	0000	0000	0000
87h	TRISC	PORTC Data Direction register							•	1111	1111	1111	1111

TABLE 8-3REGISTERS ASSOCIATED WITH I²C OPERATION


Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by SSP module in SPI mode.

Note 1: Maintain these bits clear in I^2C mode.

10.2.3 RC OSCILLATOR

For timing insensitive applications, the "RC" device option offers additional cost savings. The RC oscillator frequency is a function of the supply voltage, the resistor (REXT) and capacitor (CEXT) values, and the operating temperature. In addition to this, the oscillator frequency will vary from unit to unit due to normal process parameter variation. Furthermore, the difference in lead frame capacitance between package types will also affect the oscillation frequency, especially for low CEXT values. The user also needs to take into account variation due to tolerance of external R and C components used. Figure 10-4 shows how the R/C combination is connected to the PIC16CXXX.

FIGURE 10-4: RC OSCILLATOR MODE

10.3 <u>Reset</u>

The PIC16CXXX differentiates between various kinds of reset:

- Power-on Reset (POR)
- MCLR reset during normal operation
- MCLR reset during SLEEP
- WDT Reset (during normal operation)
- WDT Wake-up (during SLEEP)
- Brown-out Reset (BOR)

Some registers are not affected in any reset condition; their status is unknown on POR and unchanged by any other reset. Most other registers are reset to a "reset state" on Power-on Reset (POR), on the $\overline{\text{MCLR}}$ and WDT Reset, on $\overline{\text{MCLR}}$ reset during SLEEP, and on Brown-out Reset (BOR). They are not affected by a WDT Wake-up from SLEEP, which is viewed as the resumption of normal operation. The $\overline{\text{TO}}$ and $\overline{\text{PD}}$ bits are set or cleared depending on the reset situation, as indicated in Table 10-4. These bits are used in software to determine the nature of the reset. See Table 10-6 for a full description of reset states of all registers.

A simplified block diagram of the on-chip reset circuit is shown in Figure 10-5.

The PIC devices have a $\overline{\text{MCLR}}$ noise filter in the $\overline{\text{MCLR}}$ reset path. The filter will ignore small pulses. However, a valid $\overline{\text{MCLR}}$ pulse must meet the minimum pulse width (TmcL, Specification #30).

No internal reset source (WDT, BOR, POR) will drive the $\overline{\text{MCLR}}$ pin low.

TABLE 10-6 INITIALIZATION CONDITIONS FOR ALL REGISTERS								
Register		cable ices	Power-on Reset, Brown-out Reset	MCLR Resets WDT Reset	Wake-up via WDT or Interrupt			
W	62B	72A	XXXX XXXX	uuuu uuuu	սսսս սսսս			
INDF	62B	72A	N/A	N/A	N/A			
TMR0	62B	72A	xxxx xxxx	uuuu uuuu	uuuu uuuu			
PCL	62B	72A	0000h	0000h	PC + 1 ⁽²⁾			
STATUS	62B	72A	0001 1xxx	000q quuu (3)	uuuq quuu (3)			
FSR	62B	72A	XXXX XXXX	uuuu uuuu	uuuu uuuu			
PORTA ⁽⁴⁾	62B	72A	0x 0000	0u 0000	uu uuuu			
PORTB ⁽⁵⁾	62B	72A	xxxx xxxx	սսսս սսսս	սսսս սսսս			
PORTC ⁽⁵⁾	62B	72A	xxxx xxxx	սսսս սսսս	uuuu uuuu			
PCLATH	62B	72A	0 0000	0 0000	u uuuu			
INTCON	62B	72A	0000 000x	0000 000u	uuuu uuuu (1)			
	62B	72A	0000	0000	uuuu (1)			
PIR1	62B	72A	-0 0000	-0 0000	-u uuuu (1)			
TMR1L	62B	72A	xxxx xxxx	uuuu uuuu	uuuu uuuu			
TMR1H	62B	72A	xxxx xxxx	uuuu uuuu	uuuu uuuu			
T1CON	62B	72A	00 0000	uu uuuu	uu uuuu			
TMR2	62B	72A	0000 0000	0000 0000	uuuu uuuu			
T2CON	62B	72A	-000 0000	-000 0000	-uuu uuuu			
SSPBUF	62B	72A	XXXX XXXX	uuuu uuuu	uuuu uuuu			
SSPCON	62B	72A	0000 0000	0000 0000	uuuu uuuu			
CCPR1L	62B	72A	XXXX XXXX	uuuu uuuu	uuuu uuuu			
CCPR1H	62B	72A	xxxx xxxx	uuuu uuuu	uuuu uuuu			
CCP1CON	62B	72A	00 0000	00 0000	uu uuuu			
ADRES	62B	72A	XXXX XXXX	uuuu uuuu	uuuu uuuu			
ADCON0	62B	72A	0000 00-0	0000 00-0	uuuu uu-u			
OPTION_REG	62B	72A	1111 1111	1111 1111	uuuu uuuu			
TRISA	62B	72A	11 1111	11 1111	uu uuuu			
TRISB	62B	72A	1111 1111	1111 1111	uuuu uuuu			
TRISC	62B	72A	1111 1111	1111 1111	uuuu uuuu			
PIE1	62B	72A	0000	0000	uuuu			
	62B	72A	-0 0000	-0 0000	-u uuuu			
PCON	62B	72A	0q	uq	uq			
PR2	62B	72A	1111 1111	1111 1111	1111 1111			
SSPADD	62B	72A	0000 0000	0000 0000	uuuu uuuu			
SSPSTAT	62B	72A	0000 0000	0000 0000	սսսս սսսս			
ADCON1	62B	72A	000	000	uuu			

TABLE 10-6	INITIALIZATION CONDITIONS FOR ALL REGISTERS

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', <math>q = value depends on condition

Note 1: One or more bits in INTCON and/or PIR1 will be affected (to cause wake-up).

2: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

3: See Table 10-5 for reset value for specific condition.

4: On any device reset, these pins are configured as inputs.

5: This is the value that will be in the port output latch.

PIC16C62B/72A

BTFSS	Bit Test f, Skip if Set
Syntax:	[<i>label</i>] BTFSS f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b < 7 \end{array}$
Operation:	skip if (f) = 1
Status Affected:	None
Description:	If bit 'b' in register 'f' is '0', then the next instruction is executed. If bit 'b' is '1', then the next instruction is discarded and a NOP is executed instead, making this a 2TCY instruction.

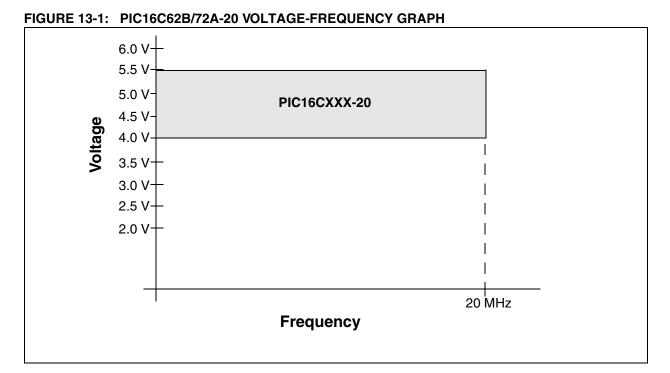
CLRF	Clear f
Syntax:	[<i>label</i>] CLRF f
Operands:	$0 \le f \le 127$
Operation:	$\begin{array}{l} 00h \rightarrow (f) \\ 1 \rightarrow Z \end{array}$
Status Affected:	Z
Description:	The contents of register 'f' are cleared and the Z bit is set.

BTFSC	Bit Test, Skip if Clear
Syntax:	[<i>label</i>] BTFSC f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	skip if (f) = 0
Status Affected:	None
Description:	If bit 'b' in register 'f' is '1', then the next instruction is executed. If bit 'b' in register 'f' is '0', then the next instruction is discarded, and a NOP is executed instead, making this a 2TCY instruction.

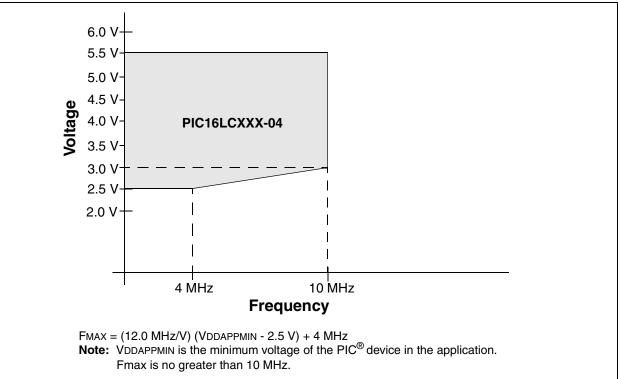
CLRW	Clear W
Syntax:	[label] CLRW
Operands:	None
Operation:	$\begin{array}{l} 00h \rightarrow (W) \\ 1 \rightarrow Z \end{array}$
Status Affected:	Z
Description:	W register is cleared. Zero bit (Z) is set.

CALL	Call Subroutine	CLRWDT	Clear Watchdog Timer
Syntax:	[<i>label</i>] CALL k	Syntax:	[label] CLRWDT
Operands:	$0 \le k \le 2047$	Operands:	None
Operation:	(PC)+ 1 \rightarrow TOS, k \rightarrow PC<10:0>, (PCLATH<4:3>) \rightarrow PC<12:11>	Operation:	$00h \rightarrow WDT$ 0 $\rightarrow WDT$ prescaler, 1 $\rightarrow \overline{TO}$
Status Affected:	None		$1 \rightarrow \overline{PD}$
Description:	Call Subroutine. First, return address	Status Affected:	TO, PD
	(PC+1) is pushed onto the stack. The eleven bit immediate address is loaded into PC bits <10:0>. The upper bits of the PC are loaded from PCLATH. CALL is a two cycle instruction.	Description:	CLRWDT instruction resets the Watch- dog Timer. It also resets the prescaler of the WDT. Status bits TO and PD are set.

PIC16C62B/72A

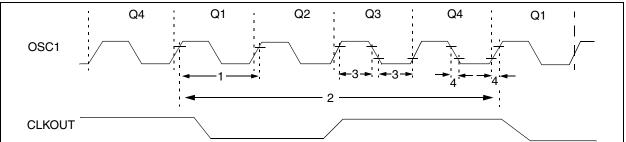

SUBLW	Subtract W from Literal					
Syntax:	[label] SUBLW k					
Operands:	$0 \leq k \leq 255$					
Operation:	$k - (W) \rightarrow (W)$					
Status Affected:	C, DC, Z					
Description:	The W register is subtracted (2's com- plement method) from the eight bit lit- eral 'k'. The result is placed in the W register.					

XORLW	Exclusive OR Literal with W					
Syntax:	[<i>label</i>] XORLW k					
Operands:	$0 \leq k \leq 255$					
Operation:	(W) .XOR. $k \rightarrow (W)$					
Status Affected:	Z					
Description:	The contents of the W register are XOR'ed with the eight bit literal 'k'. The result is placed in the W regis- ter.					


SUBWF	Subtract W from f	XORWF
Syntax:	[label] SUBWF f,d	Syntax:
Operands:	$0 \le f \le 127$ $d \in [0,1]$	Operan
Operation:	(f) - (W) \rightarrow (destination)	Operatio
Status	C, DC, Z	Status A
Affected:		Descrip
Description:	Subtract (2's complement method) W register from register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'.	

XORWF	Exclusive OR W with f					
Syntax:	[<i>label</i>] XORWF f,d					
Operands:	$\begin{array}{l} 0\leq f\leq 127\\ d\in [0,1] \end{array}$					
Operation:	(W) .XOR. (f) \rightarrow (destination)					
Status Affected:	Z					
Description:	Exclusive OR the contents of the W register with register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in regis- ter 'f'.					

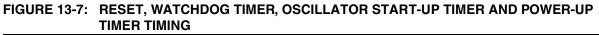
SWAPF	Swap Nibbles in f
Syntax:	[<i>label</i>] SWAPF f,d
Operands:	$\begin{array}{l} 0\leq f\leq 127\\ d\in [0,1] \end{array}$
Operation:	$(f<3:0>) \rightarrow (destination<7:4>), (f<7:4>) \rightarrow (destination<3:0>)$
Status Affected:	None
Description:	The upper and lower nibbles of regis- ter 'f' are exchanged. If 'd' is 0, the result is placed in W register. If 'd' is 1, the result is placed in register 'f'.

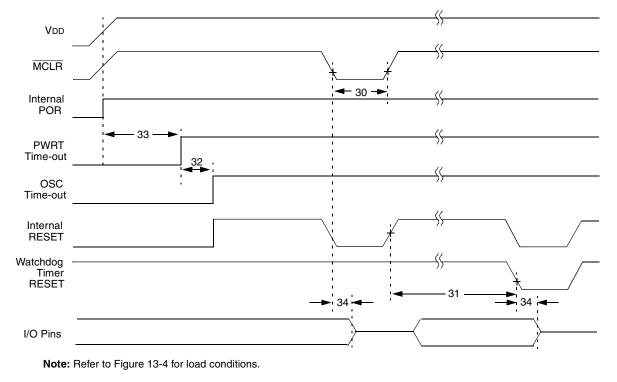


13.4.3 TIMING DIAGRAMS AND SPECIFICATIONS

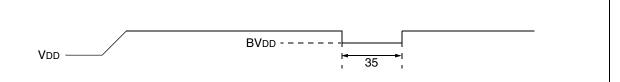
FIGURE 13-5: EXTERNAL CLOCK TIMING

Param No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
1A	Fosc	External CLKIN Frequency	DC		4	MHz	RC and XT osc modes
		(Note 1)	DC	—	4	MHz	HS osc mode (-04)
			DC	—	20	MHz	HS osc mode (-20)
			DC	_	200	kHz	LP osc mode
		Oscillator Frequency	DC		4	MHz	RC osc mode
		(Note 1)	0.1	—	4	MHz	XT osc mode
			4	—	20	MHz	HS osc mode
			5	_	200	kHz	LP osc mode
1	Tosc	External CLKIN Period	250	—	—	ns	RC and XT osc modes
		(Note 1)	250	—	—	ns	HS osc mode (-04)
			50	—	—	ns	HS osc mode (-20)
			5	_	—	μS	LP osc mode
		Oscillator Period	250	—	—	ns	RC osc mode
		(Note 1)	250	—	10,000	ns	XT osc mode
			250	—	250	ns	HS osc mode (-04)
			50	—	250	ns	HS osc mode (-20)
			5	_	_	μS	LP osc mode
2	Тсү	Instruction Cycle Time (Note 1)	200	_	DC	ns	Tcy = 4/Fosc
3*	TosL,	External Clock in (OSC1) High	100	—	—	ns	XT oscillator
	TosH	or Low Time	2.5	—	—	μS	LP oscillator
			15	_	—	ns	HS oscillator
4*	TosR,	External Clock in (OSC1) Rise	—		25	ns	XT oscillator
	TosF	or Fall Time	—	—	50	ns	LP oscillator
			—	—	15	ns	HS oscillator


TABLE 13-2: EXTERNAL CLOCK TIMING REQUIREMENTS

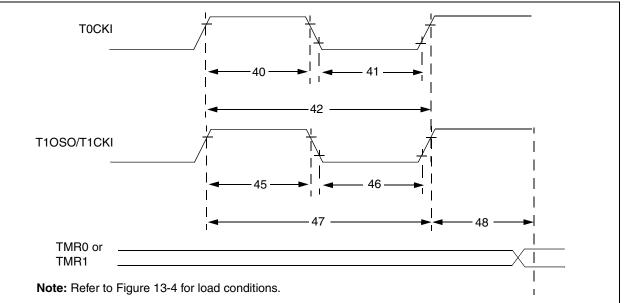

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.


Note 1: Instruction cycle period (TCY) equals four times the input oscillator time-base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKIN pin.

When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices.

FIGURE 13-8: BROWN-OUT RESET TIMING


TABLE 13-4:RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER
AND BROWN-OUT RESET REQUIREMENTS

Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
30	TmcL	MCLR Pulse Width (low)	2		_	μs	VDD = 5V, -40°C to +125°C
31*	Twdt	Watchdog Timer Time-out Period (No Prescaler)	7	18	33	ms	VDD = 5V, -40°C to +125°C
32	Tost	Oscillator Start-up Timer Period		1024 Tosc	—	—	Tosc = OSC1 period
33*	Tpwrt	Power-up Timer Period	28	72	132	ms	$VDD = 5V, -40^{\circ}C \text{ to } +125^{\circ}C$
34	Tıoz	I/O Hi-impedance from MCLR Low or WDT reset	_	_	2.1	μS	
35	TBOR	Brown-out Reset Pulse Width	100	_	_	μS	$VDD \le BVDD$ (D005)

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 13-9: TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS

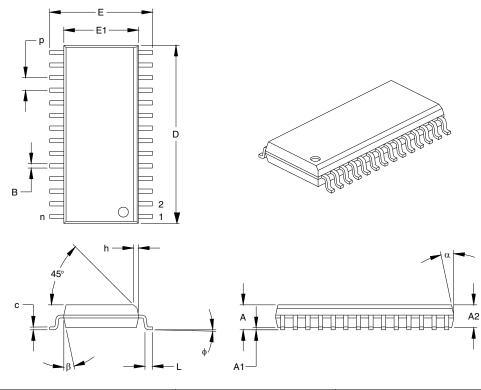


TABLE 13-5:	TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS
IADEE IV V.	

Param No.	Sym		Characteristic		Min	Тур†	Max	Units	Conditions	
40*	Tt0H	0H T0CKI High Pulse Width		No Prescaler	0.5Tcy + 20	-	-	ns	Must also meet	
				With Prescaler	10	-		ns	parameter 42	
41*	Tt0L	T0CKI Low Pulse W	T0CKI Low Pulse Width		0.5TCY + 20	-		ns	Must also meet	
		N N		With Prescaler	10	-		ns	parameter 42	
42*	Tt0P T0CKI Period			No Prescaler	Tcy + 40	—	-	ns		
				With Prescaler	Greater of: 20 or <u>Tcy + 40</u> N	-	-	ns	N = prescale value (2, 4,, 256)	
45*	Tt1H	T1CKI High Time	Synchronous, P	rescaler = 1	0.5Tcy + 20	—	-	ns	Must also meet	
			Synchronous,	PIC16CXX	15	-		ns	parameter 47	
			Prescaler = 2,4,8	PIC16LCXX	25	—	_	ns	-	
			Asynchronous	PIC16CXX	30		_	ns		
				PIC16LCXX	50		_	ns		
46*	Tt1L	1L T1CKI Low Time	Synchronous, Prescaler = 1		0.5TCY + 20	-		ns	Must also meet	
			Synchronous, Prescaler = 2,4,8	PIC16CXX	15	—	-	ns	parameter 47	
				PIC16LCXX	25	—		ns		
			Asynchronous	PIC16CXX	30	-		ns		
				PIC16LCXX	50	-		ns		
47*	Tt1P	T1CKI input period	Synchronous	PIC16CXX	GREATER OF: 30 OR <u>TCY + 40</u> N	_	_	ns	N = prescale value (1, 2, 4, 8)	
				PIC16LCXX	GREATER OF: 50 OR <u>TCY + 40</u> N				N = prescale value (1, 2, 4, 8)	
			Asynchronous	PIC16CXX	60	-		ns		
				PIC16LCXX	100	—	—	ns		
	Ft1	Timer1 oscillator inp (oscillator enabled by			DC	-	200	kHz		
48	TCKEZtmr1	Delay from external	Delay from external clock edge to timer increment				7Tosc	-		

* These parameters are characterized but not tested.
† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

28-Lead Plastic Small Outline (SO) - Wide, 300 mil (SOIC) 15.4

	Units	INCHES*		MILLIMETERS			
Dimension	Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		28			28	
Pitch	р		.050			1.27	
Overall Height	Α	.093	.099	.104	2.36	2.50	2.64
Molded Package Thickness	A2	.088	.091	.094	2.24	2.31	2.39
Standoff	A1	.004	.008	.012	0.10	0.20	0.30
Overall Width	E	.394	.407	.420	10.01	10.34	10.67
Molded Package Width	E1	.288	.295	.299	7.32	7.49	7.59
Overall Length	D	.695	.704	.712	17.65	17.87	18.08
Chamfer Distance	h	.010	.020	.029	0.25	0.50	0.74
Foot Length	L	.016	.033	.050	0.41	0.84	1.27
Foot Angle Top	φ	0	4	8	0	4	8
Lead Thickness	С	.009	.011	.013	0.23	0.28	0.33
Lead Width	В	.014	.017	.020	0.36	0.42	0.51
Mold Draft Angle Top	α	0	12	15	0	12	15
Mold Draft Angle Bottom	β	0	12	15	0	12	15

*Controlling Parameter

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side.

JEDEC Equivalent: MS-013 Drawing No. C04-052

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

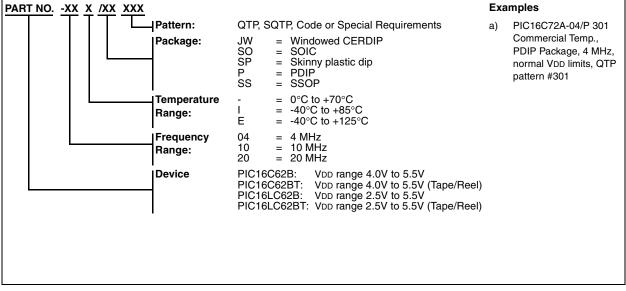
Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://microchip.com/support

READER RESPONSE


It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this document.

TO: RE:	Technical Publications Manager Reader Response	Total Pages Sent					
Fror	n: Name						
	Company						
	Address						
	City / State / ZIP / Country						
	Telephone: ()	FAX: ()					
Арр	lication (optional):						
Wou	Ild you like a reply?YN						
Dev	ice: 24xx010	Literature Number: DS35008C					
Que	stions:						
1.	What are the best features of this document?						
2.	How does this document meet your hardware and softw	are development needs?					
3.	3. Do you find the organization of this document easy to follow? If not, why?						
4.	What additions to the document do you think would enh	ance the structure and subject?					
5.	What deletions from the document could be made without affecting the overall usefulness?						
6.	Is there any incorrect or misleading information (what ar	nd where)?					
7.	How would you improve this document?						

PIC16C62B/72A PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery refer to the factory or the listed sales office.

* JW Devices are UV erasable and can be programmed to any device configuration. JW Devices meet the electrical requirement of each oscillator type (including LC devices).

Sales and Support

Data Sheets

Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:

1. Your local Microchip sales office

- 2. The Microchip Corporate Literature Center U.S. FAX: (480) 786-7277
- 3. The Microchip Worldwide Site (www.microchip.com)

Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using.

New Customer Notification System

Register on our web site (www.microchip.com/cn) to receive the most current information on our products.