

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Decalis	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	I ² C, SPI
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	22
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 5.5V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lc62b-04i-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

NOTES:

PIC16C62B/72A

TABLE 1-1 PIC16C62B/PIC16C72A PINOUT DESCRIPTION

Pin Name	DIP Pin#	SOIC Pin#	I/O/P Type	Buffer Type	Description
OSC1/CLKIN	9	9	I	ST/CMOS ⁽³⁾	Oscillator crystal input/external clock source input.
OSC2/CLKOUT	10	10	0	_	Oscillator crystal output. Connects to crystal or resonator in crystal oscillator mode. In RC mode, the OSC2 pin outputs CLKOUT which has 1/4 the frequency of OSC1, and denotes the instruction cycle rate.
MCLR/Vpp	1	1	I/P	ST	Master clear (reset) input or programming voltage input. This pin is an active low reset to the device.
					PORTA is a bi-directional I/O port.
RA0/AN0 ⁽⁴⁾	2	2	I/O	TTL	RA0 can also be analog input 0
RA1/AN1 ⁽⁴⁾	3	3	I/O	TTL	RA1 can also be analog input 1
RA2/AN2 ⁽⁴⁾	4	4	I/O	TTL	RA2 can also be analog input 2
RA3/AN3/VREF ⁽⁴⁾	5	5	I/O	TTL	RA3 can also be analog input 3 or analog reference voltage
RA4/T0CKI	6	6	I/O	ST	RA4 can also be the clock input to the Timer0 module. Output is open drain type.
RA5/SS/AN4 ⁽⁴⁾	7	7	I/O	TTL	RA5 can also be analog input 4 or the slave select for the synchronous serial port.
					PORTB is a bi-directional I/O port. PORTB can be software programmed for internal weak pull-up on all inputs.
RB0/INT	21	21	I/O	TTL/ST ⁽¹⁾	RB0 can also be the external interrupt pin.
RB1	22	22	I/O	TTL	
RB2	23	23	I/O	TTL	
RB3	24	24	I/O	TTL	
RB4	25	25	I/O	TTL	Interrupt on change pin.
RB5	26	26	I/O	TTL	Interrupt on change pin.
RB6	27	27	I/O	TTL/ST ⁽²⁾	Interrupt on change pin. Serial programming clock.
RB7	28	28	I/O	TTL/ST ⁽²⁾	Interrupt on change pin. Serial programming data.
					PORTC is a bi-directional I/O port.
RC0/T1OSO/T1CKI	11	11	I/O	ST	RC0 can also be the Timer1 oscillator output or Timer1 clock input.
RC1/T1OSI	12	12	I/O	ST	RC1 can also be the Timer1 oscillator input.
RC2/CCP1	13	13	I/O	ST	RC2 can also be the Capture1 input/Compare1 output/ PWM1 output.
RC3/SCK/SCL	14	14	I/O	ST	RC3 can also be the synchronous serial clock input/output for both SPI and I ² C modes.
RC4/SDI/SDA	15	15	I/O	ST	RC4 can also be the SPI Data In (SPI mode) or data I/O (I^2C mode).
RC5/SDO	16	16	I/O	ST	RC5 can also be the SPI Data Out (SPI mode).
RC6	17	17	I/O	ST	
RC7	18	18	I/O	ST	
Vss	8, 19	8, 19	Р	_	Ground reference for logic and I/O pins.
Vdd	20	20	Р	—	Positive supply for logic and I/O pins.
Legend: I = input	O = outp — = Not		I/O =	input/output	P = power or program ST = Schmitt Trigger input

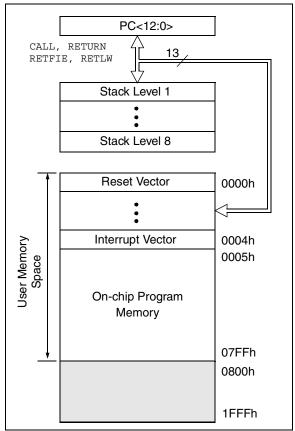
Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.

This buffer is a Schmitt Trigger input when used in serial programming mode.
 This buffer is a Schmitt Trigger input when configured in RC oscillator mode and a CMOS input otherwise.

4: The A/D module is not available on the PIC16C62B.

2.0 MEMORY ORGANIZATION

There are two memory blocks in each of these microcontrollers. Each block (Program Memory and Data Memory) has its own bus, so that concurrent access can occur.


Additional information on device memory may be found in the PICmicro[™] Mid-Range Reference Manual, (DS33023).

2.1 Program Memory Organization

The PIC16C62B/72A devices have a 13-bit program counter capable of addressing an 8K x 14 program memory space. Each device has 2K x 14 words of program memory. Accessing a location above 07FFh will cause a wraparound.

The reset vector is at 0000h and the interrupt vector is at 0004h.

FIGURE 2-1: PROGRAM MEMORY MAP AND STACK

NOTES:

NOTES:

9.0 ANALOG-TO-DIGITAL CONVERTER (A/D) MODULE

Note: This section applies to the PIC16C72A only.

The analog-to-digital (A/D) converter module has five input channels.

The A/D allows conversion of an analog input signal to a corresponding 8-bit digital number (refer to Application Note AN546 for use of A/D Converter). The output of the sample and hold is the input into the converter, which generates the result via successive approximation. The analog reference voltage is software selectable to either the device's positive supply voltage (VDD) or the voltage level on the RA3/AN3/VREF pin.

The A/D converter has the feature of being able to operate while the device is in SLEEP mode. To operate in sleep, the A/D conversion clock must be derived from the A/D's internal RC oscillator.

Additional information on the A/D module is available in the PIC[®] MCU Mid-Range Reference Manual, (DS33023).

The A/D module has three registers. These registers are:

- A/D Result Register (ADRES)
- A/D Control Register 0 (ADCON0)
- A/D Control Register 1 (ADCON1)

A device reset forces all registers to their reset state. This forces the A/D module to be turned off, and any conversion is aborted.

The ADCON0 register, shown in Figure 9-1, controls the operation of the A/D module. The ADCON1 register, shown in Figure 9-2, configures the functions of the port pins. The port pins can be configured as analog inputs (RA3 can also be a voltage reference) or as digital I/O.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0				
ADCS1 bit7	ADCS0	CHS2	CHS1	CHS0	GO/DONE	_	ADON bit0	R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'			
bit 7-6:	ADCS1:ADCS0: A/D Conversion Clock Select bits 00 = Fosc/2 01 = Fosc/8 10 = Fosc/32 11 = FRC (clock derived from an internal RC oscillator)										
bit 5-3:	CHS2:CH 000 = cha 001 = cha 010 = cha 011 = cha 100 = cha	annel 0, (F annel 1, (F annel 2, (F annel 3, (F	RÃO/ANO) RA1/AN1) RA2/AN2) RA3/AN3)	el Select bi	ts						
bit 2:	GO/DON	E: A/D Co	nversion	Status bit							
		onversion onversion	not in pro		this bit starts t s bit is automa			ware when the A/D			
bit 1:	Unimpler	nented: F	Read as '0	ı							
bit 0:	ADON : $A_{1} = A/D c$	onverter r			l consumes no		n ourront				

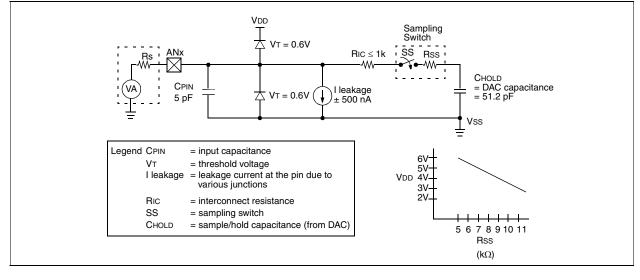
REGISTER 9-1: ADCON0 REGISTER (ADDRESS 1Fh)

9.1 A/D Acquisition Requirements

For the A/D converter to meet its specified accuracy, the charge holding capacitor (CHOLD) must be allowed to fully charge to the input channel voltage level. The analog input model is shown in Figure 9-2. The source impedance (Rs) and the internal sampling switch (Rss) impedance directly affect the time required to charge the capacitor CHOLD. The sampling switch (Rss) impedance varies over the device voltage (VDD). The source impedance affects the offset voltage at the analog input (due to pin leakage current). The maximum recommended impedance for analog sources is 10 k Ω . After the analog input channel is selected (changed), this acquisition must pass before the conversion can be started.

To calculate the minimum acquisition time, TACQ, see Equation 9-1. This equation calculates the acquisition time to within 1/2 LSb error (512 steps for the A/D). The 1/2 LSb error is the maximum error allowed for the A/D to meet its specified accuracy.

Note:	When the conversion is started, the hold-
	ing capacitor is disconnected from the input pin.
	input pin.


In general;

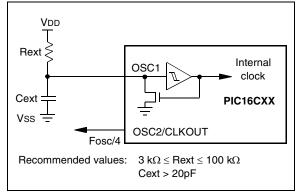
Assuming Rs = $10k\Omega$

Vdd =
$$3.0V$$
 (Rss = $10k\Omega$)

TACQ $\approx~13.0~\mu Sec$

By increasing VDD and reducing Rs and Temp., TACQ can be substantially reduced.

FIGURE 9-2: ANALOG INPUT MODEL


EQUATION 9-1: ACQUISITION TIME

- TACQ = Amplifier Settling Time + Hold Capacitor Charging Time + Temperature Coefficient
 - = TAMP + TC + TCOFF TAMP = $5\mu S$ TC = - $(51.2pF)(1k\Omega + Rss + Rs) In(1/511)$ TCOFF = (Temp - $25^{\circ}C)(0.05\mu S/^{\circ}C)$

10.2.3 RC OSCILLATOR

For timing insensitive applications, the "RC" device option offers additional cost savings. The RC oscillator frequency is a function of the supply voltage, the resistor (REXT) and capacitor (CEXT) values, and the operating temperature. In addition to this, the oscillator frequency will vary from unit to unit due to normal process parameter variation. Furthermore, the difference in lead frame capacitance between package types will also affect the oscillation frequency, especially for low CEXT values. The user also needs to take into account variation due to tolerance of external R and C components used. Figure 10-4 shows how the R/C combination is connected to the PIC16CXXX.

FIGURE 10-4: RC OSCILLATOR MODE

10.3 <u>Reset</u>

The PIC16CXXX differentiates between various kinds of reset:

- Power-on Reset (POR)
- MCLR reset during normal operation
- MCLR reset during SLEEP
- WDT Reset (during normal operation)
- WDT Wake-up (during SLEEP)
- Brown-out Reset (BOR)

Some registers are not affected in any reset condition; their status is unknown on POR and unchanged by any other reset. Most other registers are reset to a "reset state" on Power-on Reset (POR), on the \overline{MCLR} and WDT Reset, on \overline{MCLR} reset during SLEEP, and on Brown-out Reset (BOR). They are not affected by a WDT Wake-up from SLEEP, which is viewed as the resumption of normal operation. The \overline{TO} and \overline{PD} bits are set or cleared depending on the reset situation, as indicated in Table 10-4. These bits are used in software to determine the nature of the reset. See Table 10-6 for a full description of reset states of all registers.

A simplified block diagram of the on-chip reset circuit is shown in Figure 10-5.

The PIC devices have a $\overline{\text{MCLR}}$ noise filter in the $\overline{\text{MCLR}}$ reset path. The filter will ignore small pulses. However, a valid $\overline{\text{MCLR}}$ pulse must meet the minimum pulse width (TmcL, Specification #30).

No internal reset source (WDT, BOR, POR) will drive the $\overline{\text{MCLR}}$ pin low.

FIGURE 10-10: WAKE-UP FROM SLEEP THROUGH INTERRUPT

; a1 a2 a3 a4 ; (osc1 /~//	21 Q2 Q3 Q4 ; \/		01 02 03 04	a1 a2 a3 a4	a1 a2 a3 a4	01 02 03 04
CLKOUT(4)		Tost(2)	/	/	//	
INTF flag (INTCON<1>)				Interrupt Latency (Note 2)	- 	
GIE bit (INTCON<7>)	 + 	Processor in SLEEP			1 1 1 1	
INSTRUCTION FLOW	1					· · · ·
PC <u>X PC X</u>	PC+1	PC+2	PC+2	X PC + 2	X 0004h	X 0005h
Instruction { fetched { Inst(PC) = SLEEP	Inst(PC + 1)	, , ,	Inst(PC + 2)		Inst(0004h)	Inst(0005h)
Instruction executed Inst(PC - 1)	SLEEP	1 1 1	Inst(PC + 1)	Dummy cycle	Dummy cycle	Inst(0004h)

Note 1: XT, HS or LP oscillator mode assumed.

2: TOST = 1024TOSC (drawing not to scale) This delay will not be there for RC osc mode.

3: GIE = '1' assumed. In this case after wake- up, the processor jumps to the interrupt routine. If GIE = '0', execution will continue in-line.

4: CLKOUT is not available in these osc modes, but shown here for timing reference.

10.14 Program Verification/Code Protection

If the code protection bits have not been programmed, the on-chip program memory can be read out for verification purposes.

Note:	Microchip does not recommend code pro-
	tecting windowed devices.

10.15 ID Locations

Four memory locations (2000h - 2003h) are designated as ID locations where the user can store checksum or other code-identification numbers. These locations are not accessible during normal execution, but are readable and writable during program/verify. It is recommended that only the 4 least significant bits of the ID location are used.

For ROM devices, these values are submitted along with the ROM code.

10.16 In-Circuit Serial Programming™

PIC16CXXX microcontrollers can be serially programmed while in the end application circuit. This is simply done with two lines for clock and data, and three more lines for power, ground and the programming voltage. This allows customers to manufacture boards with unprogrammed devices, and then program the microcontroller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

For complete details of serial programming, please refer to the In-Circuit Serial Programming (ICSP™) Guide, DS30277.

13.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings (†)

Ambient temperature under bias	55°C to +125°C
Storage temperature	
Voltage on any pin with respect to Vss (except VDD, MCLR, and RA4)	
Voltage on VDD with respect to VSS	
Voltage on MCLR with respect to Vss (Note 2)	
Voltage on RA4 with respect to Vss	
Total power dissipation (Note 1)	
Maximum current out of Vss pin	
Maximum current into VDD pin	
Input clamp current, Iк (VI < 0 or VI > VDD)	±20 mA
Output clamp current, loк (Vo < 0 or Vo > VDD)	
Maximum output current sunk by any I/O pin	25 mA
Maximum output current sourced by any I/O pin	25 mA
Maximum current sunk by PORTA and PORTB (combined)	200 mA
Maximum current sourced by PORTA and PORTB (combined)	200 mA
Maximum current sunk by PORTC	200 mA
Maximum current sourced by PORTC	200 mA
Note 1: Power dissipation is calculated as follows: Pdis = VDD x {IDD - \sum IOH} + \sum {(VDD-V	ЮН) x IOH} + ∑(VOI x IOL)

2: Voltage spikes below Vss at the MCLR/VPP pin, inducing currents greater than 80 mA, may cause latch-up. Thus, a series resistor of 50-100Ω should be used when applying a "low" level to the MCLR/VPP pin, rather than pulling this pin directly to Vss.

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

13.1 DC Characteristics: PIC16C62B/72A-04 (Commercial, Industrial, Extended) PIC16C62B/72A-20 (Commercial, Industrial, Extended)

			Standar	d Opera	ating Co	ondition	is (unless otherwise stated)
DC CHA			Operatir	ng temp	erature	e 0°C	\leq TA \leq +70°C for commercial
DC CHA				-40°C	\leq TA \leq +85°C for industrial		
						-40°C	\leq TA \leq +125°C for extended
Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
D001	Vdd	Supply Voltage	4.0	-	5.5	V	XT, RC and LP osc mode
D001A		cappij renage	4.5	-	5.5	v	HS osc mode
			VBOR*	-	5.5	V	BOR enabled (Note 7)
D002*	Vdr	RAM Data Retention Voltage (Note 1)	-	1.5	-	V	
D003	VPOR	VDD Start Voltage to ensure internal Power-on Reset signal	-	Vss	-	V	See section on Power-on Reset for details
D004* D004A*	SVDD	VDD Rise Rate to ensure internal Power-on Reset signal	0.05 TBD	-	-	V/ms	PWRT enabled (PWRTE bit clear) PWRT disabled (PWRTE bit set) See section on Power-on Reset for details
D005	VBOR	Brown-out Reset voltage trip point	3.65	-	4.35	V	BODEN bit set
D010	IDD	Supply Current (Note 2, 5)	-	2.7	5	mA	XT, RC osc modes Fosc = 4 MHz, VDD = 5.5V (Note 4)
D013			-	10	20	mA	HS osc mode Fosc = 20 MHz, VDD = 5.5V
D020	IPD	Power-down Current	-	10.5	42	μA	VDD = 4.0V, WDT enabled,-40°C to +85°C
		(Note 3, 5)	-	1.5	16	μA	VDD = $4.0V$, WDT disabled, 0°C to $+70°C$
D021			-	1.5	19	μA	VDD = 4.0V, WDT disabled,-40°C to +85°C
D021B			-	2.5	19	μA	VDD = 4.0V, WDT disabled,-40°C to +125°C
D000*	Abaroz	Module Differential Current (Note 6)		6.0	20		
D022* D022A*		Watchdog Timer Brown-out Reset	-	6.0 TBD	20 200	μΑ	WDTE BIT SET, VDD = 4.0V BODEN bit set, VDD = 5.0V
DUZZA	Δ IBOR	BIOWII-OUL Reset	-	עסו	200	μA	DODEN DIL SEL, VDD = 5.0V

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

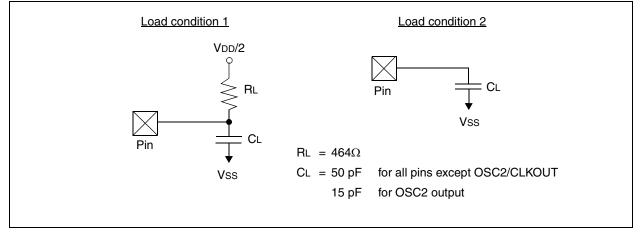
2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

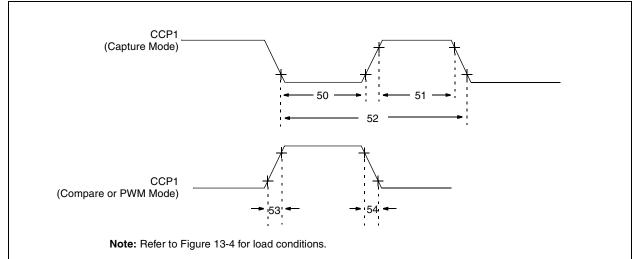
OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD,

 $\overline{MCLR} = VDD$; WDT enabled/disabled as specified.

- **3:** The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and Vss.
- 4: For RC osc mode, current through Rext is not included. The current through the resistor can be estimated by the formula Ir = VDD/2Rext (mA) with Rext in kOhm.
- 5: Timer1 oscillator (when enabled) adds approximately 20 μA to the specification. This value is from characterization and is for design guidance only. This is not tested.
- 6: The ∆ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.
- 7: This is the voltage where the device enters the Brown-out Reset. When BOR is enabled, the device will perform a brown-out reset when VDD falls below VBOR.


13.4.2 TIMING CONDITIONS

The temperature and voltages specified in Table 13-1 apply to all timing specifications unless otherwise noted. Figure 13-4 specifies the load conditions for the timing specifications.


TABLE 13-1: TEMPERATURE AND VOLTAGE SPECIFICATIONS - AC

AC CHARACTERISTICS	Standard Operating Conditions (unless otherwise stated)							
	Operating temperature $0^{\circ}C \leq TA \leq +70^{\circ}C$ for commercial							
	-40°C \leq TA \leq +85°C for industrial							
	$-40^{\circ}C \leq TA \leq +125^{\circ}C$ for extended							
	Operating voltage VDD range as described in DC spec Section 13.1 and Section 13.2.							
	LC parts operate for commercial/industrial temp's only.							

FIGURE 13-4: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

FIGURE 13-10: CAPTURE/COMPARE/PWM TIMINGS

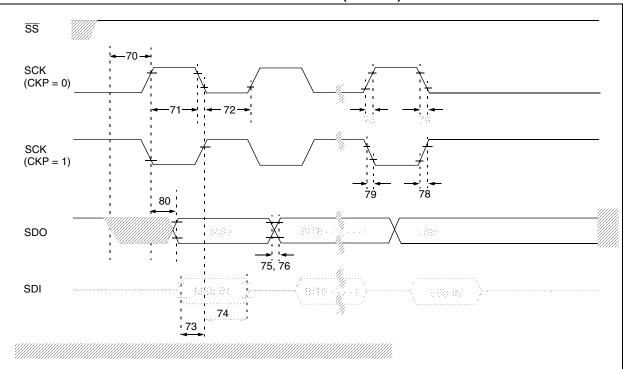


TABLE 13-6: CAPTURE/COMPARE/PWM REQUIREMENTS

Param No.	Sym		Characteristi	Min	Тур†	Max	Units	Conditions	
50*	TccL	CCP1 input low	No Prescaler		0.5Tcy + 20	—	—	ns	
		time	With Prescaler	PIC16CXX	10	_	_	ns	
				PIC16LCXX	20	_	_	ns	
51*	ТссН	cH CCP1 input high time	No Prescaler		0.5TCY + 20	_	_	ns	
			With Prescaler	PIC16CXX	10	-	—	ns	
				PIC16LCXX	20	_	_	ns	
52*	TccP	CCP1 input period			<u>3Tcy + 40</u> N	-	—	ns	N = prescale value (1,4, or 16)
53*	TccR	CCP1 output rise	time	PIC16CXX	—	10	25	ns	
		PIC16		PIC16LCXX	—	25	45	ns	
54*	TccF	CCP1 output fall t	CCP1 output fall time		—	10	25	ns	
				PIC16LCXX	—	25	45	ns	

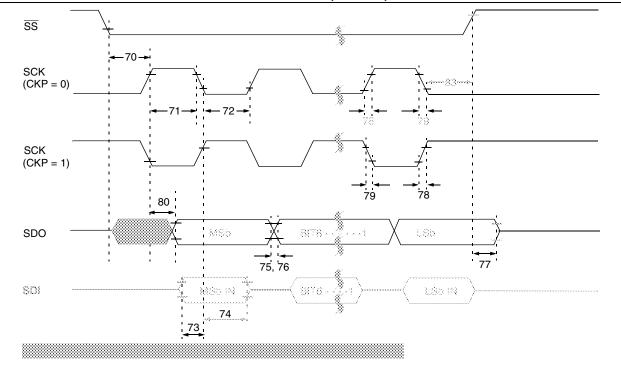
* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 13-11: EXAMPLE SPI MASTER MODE TIMING (CKE = 0)

Param. No.	Symbol	Characterist	Min	Тур†	Max	Units	Conditions	
70	TssL2scH, TssL2scL	SS↓ to SCK↓ or SCK↑ input	Тсү	—	—	ns		
71	TscH	SCK input high time	Continuous	1.25Tcy + 30	—	_	ns	
71A		(slave mode)	Single Byte	40		_	ns	Note 1
72	TscL	SCK input low time	Continuous	1.25Tcy + 30	_		ns	
72A		(slave mode)	Single Byte	40	_	_	ns	Note 1
73	TdiV2scH, TdiV2scL	Setup time of SDI data inpu	100	—	—	ns		
73A	Тв2в	Last clock edge of Byte1 to edge of Byte2	1.5Tcy + 40	—	—	ns	Note 1	
74	TscH2diL, TscL2diL	Hold time of SDI data input	to SCK edge	100	—	—	ns	
75	TdoR	SDO data output rise time	PIC16CXX	_	10	25	ns	
			PIC16LCXX	_	20	45	ns	
76	TdoF	SDO data output fall time		_	10	25	ns	
78	TscR	SCK output rise time	PIC16CXX	_	10	25	ns	
		(master mode)	PIC16LCXX	_	20	45	ns	
79	TscF	SCK output fall time (maste	er mode)	_	10	25	ns	
80	TscH2doV,	SDO data output valid	PIC16CXX	_	_	50	ns	
	TscL2doV	after SCK edge	PIC16LCXX	_	—	100	ns]

TABLE 13-7: EXAMPLE SPI MODE REQUIREMENTS (MASTER MODE, CKE = 0)


† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Specification 73A is only required if specifications 71A and 72A are used.

© 1998-2013 Microchip Technology Inc.

PIC16C62B/72A

FIGURE 13-13: EXAMPLE SPI SLAVE MODE TIMING (CKE = 0)

TABLE 13-9: EXAMPLE SPI MODE REQUIREMENTS (SLAVE MODE TIMING (CKE = 0)

Param. No.	Symbol	Characterist	lic	Min	Тур†	Max	Units	Conditions
70	TssL2scH, TssL2scL	$\overline{SS}\downarrow$ to SCK \downarrow or SCK \uparrow inp	Тсү			ns		
71	TscH	SCK input high time	Continuous	1.25Tcy + 30	—		ns	
71A		(slave mode)	Single Byte	40	—	_	ns	Note 1
72	TscL	SCK input low time	Continuous	1.25Tcy + 30	—		ns	
72A		(slave mode)	Single Byte	40	—		ns	Note 1
73	TdiV2scH, TdiV2scL	Setup time of SDI data inp	ut to SCK edge	100	—	—	ns	
73A	Тв2в	Last clock edge of Byte1 to edge of Byte2	1.5Tcy + 40	—	—	ns	Note 1	
74	TscH2diL, TscL2diL	Hold time of SDI data inpu	100	—	—	ns		
75	TdoR	SDO data output rise time	PIC16CXX	—	10	25	ns	
			PIC16LCXX		20	45	ns	
76	TdoF	SDO data output fall time		—	10	25	ns	
77	TssH2doZ	SS↑ to SDO output hi-imp	edance	10	—	50	ns	
78	TscR	SCK output rise time	PIC16CXX	—	10	25	ns	
		(master mode)	PIC16LCXX		20	45	ns	
79	TscF	SCK output fall time (master mode)		—	10	25	ns	
80	TscH2doV,	SDO data output valid	PIC16CXX	—	—	50	ns	
	TscL2doV	after SCK edge	PIC16LCXX		—	100	ns	
83	TscH2ssH, TscL2ssH	\overline{SS} \uparrow after SCK edge	•	1.5Tcy + 40		_	ns	

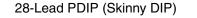
† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

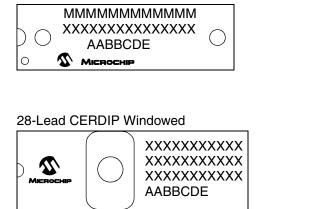
Note 1: Specification 73A is only required if specifications 71A and 72A are used.

14.0 DC AND AC CHARACTERISTICS GRAPHS AND TABLES

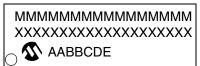
The graphs and tables provided in this section are for **design guidance** and are **not tested**.

In some graphs or tables, the data presented are **outside specified operating range** (i.e., outside specified VDD range). This is for **information only** and devices are guaranteed to operate properly only within the specified range.

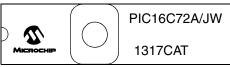

The data presented in this section is a **statistical summary** of data collected on units from different lots over a period of time and matrix samples. 'Typical' represents the mean of the distribution at 25°C. 'Max' or 'min' represents (mean + 3σ) or (mean - 3σ) respectively, where σ is standard deviation, over the whole temperature range.


Graphs and Tables not available at this time.

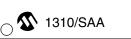
Data is not available at this time but you may reference the *PIC16C72 Series Data Sheet* (DS39016,) DC and AC characteristic section, which contains data similar to what is expected.


15.0 PACKAGING INFORMATION

15.1 Package Marking Information

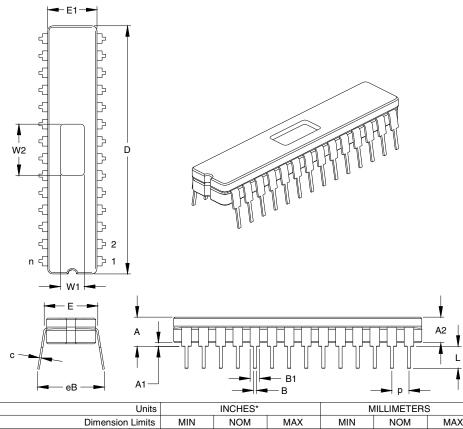


28-Lead SOIC



Example

Example PIC16C62B-20/SO


28-Lead SSOP	Example
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	PIC16C62B 20I/SS025
	○

Legend: MMM Microchip part number information XXX Customer specific information* AA Year code (last 2 digits of calendar year) BB Week code (week of January 1 is week '01') C Facility code of the plant at which wafer is manufactured O = Outside Vendor C = 5" Line S = 6" Line H = 8" Line D Mask revision number E Assembly code of the plant or country of origin in which part was assembled Note: In the event the full Microchip part number cannot be marked on one line, it we be carried over to the next line thus limiting the number of available character for customer specific information.					
be carried over to the next line thus limiting the number of available character	XXX AA BB C D E Note: In the event		 Customer specific information* Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Facility code of the plant at which wafer is manufactured O = Outside Vendor C = 5" Line S = 6" Line H = 8" Line Mask revision number Assembly code of the plant or country of origin in which 		
		be carrie	be carried over to the next line thus limiting the number of available character		

Standard OTP marking consists of Microchip part number, year code, week code, facility code, mask rev#, and assembly code. For OTP marking beyond this, certain price adders apply. Please check with your Microchip Sales Office. For QTP devices, any special marking adders are included in QTP price.

© 1998-2013 Microchip Technology Inc.

15.3 <u>28-Lead Ceramic Dual In-line with Window (JW) – 300 mil (CERDIP)</u>

	Units		INCHES		IV	ILLINIL I LAG)
Dimensio	on Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		28			28	
Pitch	р		.100			2.54	
Top to Seating Plane	Α	.170	.183	.195	4.32	4.64	4.95
Ceramic Package Height	A2	.155	.160	.165	3.94	4.06	4.19
Standoff	A1	.015	.023	.030	0.38	0.57	0.76
Shoulder to Shoulder Width	E	.300	.313	.325	7.62	7.94	8.26
Ceramic Pkg. Width	E1	.285	.290	.295	7.24	7.37	7.49
Overall Length	D	1.430	1.458	1.485	36.32	37.02	37.72
Tip to Seating Plane	L	.135	.140	.145	3.43	3.56	3.68
Lead Thickness	С	.008	.010	.012	0.20	0.25	0.30
Upper Lead Width	B1	.050	.058	.065	1.27	1.46	1.65
Lower Lead Width	В	.016	.019	.021	0.41	0.47	0.53
Overall Row Spacing	eB	.345	.385	.425	8.76	9.78	10.80
Window Width	W1	.130	.140	.150	3.30	3.56	3.81
Window Length	W2	.290	.300	.310	7.37	7.62	7.87
*0 · // D ·							

*Controlling Parameter JEDEC Equivalent: MO-058 Drawing No. C04-080

© 1998-2013 Microchip Technology Inc.

PIC16C62B/72A

PIR1 Register	9, 15
ADIF Bit	
CCP1IF Bit	
SSPIF Bit	
TMR1IF Bit	
TMR2IF Bit	
Pointer, FSR	
PORTA	
Analog Port Pins	
PORTA Register	
RA3:RA0 and RA5 Port Pins	
RA4/T0CKI Pin	
RA5/SS/AN4 Pin	
TRISA Register	
PORTB	
PORTB Register	
Pull-up Enable (RBPU Bit)	
RB0/INT Edge Select (INTEDG Bit)	
RB0/INT Pin, External	
RB3:RB0 Port Pins	
RB7:RB4 Interrupt on Change	
RB7:RB4 Interrupt on Change	
Enable (RBIE Bit)	13, 63
RB7:RB4 Interrupt on Change	,
Flag (RBIF Bit)	13, 21, 63
RB7:RB4 Port Pins	
TRISB Register	10, 21
PORTC	6
Block Diagram	23
PORTC Register	9, 23
RC0/T1OSO/T1CKI Pin	6
RC1/T1OSI Pin	
RC2/CCP1 Pin	6
RC3/SCK/SCL Pin	
RC4/SDI/SDA Pin	
RC5/SDO Pin	6, 39
RC6 Pin	6
RC7 Pin	
TRISC Register	10, 23
Postscaler, Timer2	
Select (TOUTPS3:TOUTPS0 Bits)	
Postscaler, WDT	
Assignment (PSA Bit)	
Block Diagram	
Rate Select (PS2:PS0 Bits)	
Switching Between Timer0 and WDT	
Power-on Reset (POR)	
Oscillator Start-up Timer (OST)	55, 59
POR Status (POR Bit)	
Power Control (PCON) Register	
Power-down (PD Bit)	11, 57
Power-on Reset Circuit, External	
Power-up Timer (PWRT)	
PWRT Enable (PWRTE Bit)	
Time-out (TO Bit)	
Time-out Sequence	
Timing Diagram	
Prescaler, Capture	
Prescaler, Timer0	
Assignment (PSA Bit)	
Block Diagram	
Rate Select (PS2:PS0 Bits) Switching Between Timer0 and WDT	12, 25
Prescaler, Timer1 Select (T1CKPS1:T1CKPS0 Bits)	

Prescaler, Timer2	36
Select (T2CKPS1:T2CKPS0 Bits)	31
PRO MATE® II Universal Programmer	77
Program Counter	
PCL Register	
PCLATH Register	
Reset Conditions	60
Program Memory	7
Interrupt Vector	7
Paging	7, 17
Program Memory Map	7
Reset Vector	7
Program Verification	66
Programming Pin (Vpp)	6
Programming, Device Instructions	67
PWM (CCP Module)	36
Block Diagram	36
CCPR1H:CCPR1L Registers	
Duty Cycle	36
Example Frequencies/Resolutions	37
Output Diagram	36
Period	36
Set-Up for PWM Operation	37
TMR2 to PR2 Match	31, 36
TMR2 to PR2 Match Enable (TMR2IE Bit) .	14
TMR2 to PR2 Match Flag (TMR2IF Bit)	15

Q

Q-Clock	
R	

Register File	8
Register File Map	
Reset	55, 57
Block Diagram	58
Reset Conditions for All Registers	61
Reset Conditions for PCON Register	60
Reset Conditions for Program Counter	60
Reset Conditions for STATUS Register	60
Timing Diagram	92
Revision History	111

S

SEEVAL® Evaluation and Programming System SLEEP	
Software Simulator (MPLAB-SIM)	
Special Features of the CPU	55
Special Function Registers	9
Speed, Operating	1
SPI (SSP Module)	
Block Diagram	
Buffer Full Status (BF Bit)	
Clock Edge Select (CKE Bit)	
Clock Polarity Select (CKP Bit)	
Data Input Sample Phase (SMP Bit)	
Mode Select (SSPM3:SSPM0 Bits)	
Receive Overflow Indicator (SSPOV Bit)	47
Serial Clock (RC3/SCK/SCL)	
Serial Data In (RC4/SDI/SDA)	
Serial Data Out (RC5/SDO)	
Slave Select (RA5/SS/AN4)	
Synchronous Serial Port Enable (SSPEN Bit)	